23.10.2014 Views

Journal of the Association of Arab Universities for Basic and Applied ...

Journal of the Association of Arab Universities for Basic and Applied ...

Journal of the Association of Arab Universities for Basic and Applied ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong><br />

<strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (JAAUBAS)<br />

http://www.ees.elsevier.com/jaaubas<br />

JAAUBAS is a biannual peer-refereed international research journal specialized in <strong>the</strong> basic <strong>and</strong> applied sciences. It is issued by <strong>the</strong><br />

College <strong>of</strong> Science at <strong>the</strong> University <strong>of</strong> Bahrain, Kingdom <strong>of</strong> Bahrain, in accordance to <strong>the</strong> resolution <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong><br />

<strong>Universities</strong> Council (Jordan), <strong>and</strong> <strong>the</strong> resolution <strong>of</strong> <strong>the</strong> University <strong>of</strong> Bahrain council (834/2000).<br />

JAAUBAS scope is to publish original research <strong>and</strong> reviews in <strong>the</strong> field <strong>of</strong> basic <strong>and</strong> applied sciences including; Biology, Chemistry,<br />

Physics, Ma<strong>the</strong>matics, Operation Research, Statistics, Astronomy, Geology <strong>and</strong> Engineering. JAAUBAS will assist researchers, from<br />

local, regional <strong>and</strong> international universities <strong>and</strong> institutions, in publishing original research results <strong>and</strong> studies in basic <strong>and</strong> applied<br />

sciences, <strong>and</strong> having <strong>the</strong>ir finding internationally visible <strong>and</strong> available.<br />

EDITORIAL BOARD<br />

Editor-In-Chief (EIC)<br />

Dr. Hashim A. Al-Sayed<br />

General Secretary <strong>of</strong> Society <strong>of</strong> Colleges <strong>of</strong> Science in<br />

<strong>Arab</strong> <strong>Universities</strong>, Dean <strong>of</strong> College <strong>of</strong> Science,<br />

University <strong>of</strong> Bahrain. P.O. Box 32038,<br />

Kingdom <strong>of</strong> Bahrain.<br />

Halsayed4122@hotmail.com<br />

Managing Editor (ME)<br />

Pr<strong>of</strong>. Waheeb E. Alnaser<br />

Vice President <strong>for</strong> Planning <strong>and</strong> Development,<br />

University <strong>of</strong> Bahrain. P.O. Box 32038,<br />

Kingdom <strong>of</strong> Bahrain.<br />

alnaser@gmail.com<br />

Editorial Secretary (ES)<br />

Dr. Mohammad El-Hilo<br />

Department <strong>of</strong> Physics, University <strong>of</strong> Bahrain.<br />

P.O. Box 32038, Kingdom <strong>of</strong> Bahrain.<br />

mhilo@rocketmail.com<br />

University <strong>of</strong> Bahrain Board Members<br />

Pr<strong>of</strong>. Mohamed S. Akhter,<br />

Dept. <strong>of</strong> Chemistry, Univ. <strong>of</strong> Bahrain, Kingdom <strong>of</strong> Bahrain.<br />

Pr<strong>of</strong> . Jameel A. Alkhuzai ,<br />

Dept. <strong>of</strong> Biology, Univ. <strong>of</strong> Bahrain, Kingdom <strong>of</strong> Bahrain.<br />

Pr<strong>of</strong>. Mahmoud Abdel-Aty,<br />

Dept. <strong>of</strong> Ma<strong>the</strong>matics, Univ. <strong>of</strong> Bahrain, Kingdom <strong>of</strong> Bahrain.<br />

Dr. Haifa A Al-Maskati,<br />

Dept. <strong>of</strong> Biology, Univ. <strong>of</strong> Bahrain, Kingdom <strong>of</strong> Bahrain.<br />

AAU Colleges <strong>of</strong> Science Society Advisory Board Members<br />

Pr<strong>of</strong>. Ghassan Owamerain, Dept. <strong>of</strong> Chemistry, King Fahad Univ., Saudi <strong>Arab</strong>ia.<br />

Pr<strong>of</strong>. Redha Al Hassan, Dept. <strong>of</strong> Biology, Kuwait University, Kuwait.<br />

Pr<strong>of</strong>. Ismail A Taqi, Dept. <strong>of</strong> Ma<strong>the</strong>matics, Kuwait University, Kuwait.<br />

Pr<strong>of</strong>. Lateefa E. Al Hoti, Dept. <strong>of</strong> Physics, Qatar University, Qatar.<br />

Pr<strong>of</strong>. Hala K. Horani, Dept. <strong>of</strong> Bilogy, Jordanian University, Jordan.<br />

Pr<strong>of</strong>. Sami M. Hussain, Dept. <strong>of</strong> Physics Jordanian University, Jordan.<br />

Pr<strong>of</strong>. Ahmed H. Abu Hilal, Dept. <strong>of</strong> Earth <strong>and</strong> Envi. Sci., Yarmouk Univ., Jordan.<br />

Pr<strong>of</strong>. Mohammad S. Abu Saleh, Dept. <strong>of</strong> Ma<strong>the</strong>matics, Yarmouk Univ., Jordan.<br />

Pr<strong>of</strong>. Safwan Ashoor, Dept. <strong>of</strong> Chemistry, Allepo University, Syria.<br />

Pr<strong>of</strong>. Mahmoud Kroom, Dept. <strong>of</strong> Bilolgy, Allepo University, Syria.<br />

Pr<strong>of</strong>. Mohammed Othman, Dept. <strong>of</strong> Biology, Damascus University, Syria.<br />

Pr<strong>of</strong>. Mohammed A. Al Najar, Dept. <strong>of</strong> Biology, Lebanese University, Lebanon.<br />

Pr<strong>of</strong>. Huda Hashim, Dept. <strong>of</strong> Chemistry, Lebanese University, Lebanon.<br />

Pr<strong>of</strong>. Adel M. Awad Allah, Dept. <strong>of</strong> Chemistry, Islamic Univ. <strong>of</strong> Gaza, Palestine.<br />

Pr<strong>of</strong>. Mohammed M. Shabat, Dept. <strong>of</strong> Physics, Islamic Univ. <strong>of</strong> Gaza, Palestine<br />

Pr<strong>of</strong>. Mohammed El Sayed Othman, Dept. <strong>of</strong> Biology, Helwan Univ., Egypt.<br />

Pr<strong>of</strong>. Hassan M. El-Hawart, Dean <strong>of</strong> science, Assiut University, Egypt.<br />

Pr<strong>of</strong>. Bader E. Ahmed, School <strong>of</strong> Appl. Earth Science, Al Neelain Univ. Sudan.<br />

International Advisory Board Members<br />

Pr<strong>of</strong>. Ahmed H. Zewail (Nobel laureate), Cali<strong>for</strong>nia Institute <strong>of</strong> Technology, US<br />

Pr<strong>of</strong>. Farouk El-Baz (Geology), Centre <strong>for</strong> Remote Sensing, Boston Univ., USA.<br />

Pr<strong>of</strong>. El-Sayed Mustafa Amr (Chemistry), Florida State University, USA.<br />

Pr<strong>of</strong>. Mourad E.H. Ismail (Ma<strong>the</strong>matics), University. <strong>of</strong> South Florida, USA.<br />

Pr<strong>of</strong>. Ahmed Sameh (Computer Science), Minnesota University, USA.<br />

Pr<strong>of</strong>. Munir H. Nayfeh (Physics), Illinois University, USA<br />

Pr<strong>of</strong>. Riyad Y. Hamzah, Biochemistry, <strong>Arab</strong>ian Gulf Univ., Kingdom <strong>of</strong> Bahrain.<br />

Ethics statements <strong>and</strong> Copyright<br />

The author(s) are entirely responsible <strong>for</strong> accuracy <strong>of</strong> all<br />

statements <strong>and</strong> data contained in <strong>the</strong> manuscript, as well as<br />

accuracy <strong>of</strong> all references, <strong>and</strong> <strong>for</strong> obtaining <strong>and</strong><br />

submitting written permission from <strong>the</strong> author <strong>and</strong>/or<br />

publisher <strong>of</strong> any previously published manuscript used in<br />

<strong>the</strong> submitted manuscript. Copyrights <strong>of</strong> <strong>the</strong> published<br />

paper will be transferred to <strong>the</strong> JAAUBAS upon<br />

notification <strong>of</strong> acceptance.<br />

Reprints<br />

A s<strong>of</strong>t electronic copy (PDF file) <strong>of</strong> <strong>the</strong> published paper<br />

will be sent to <strong>the</strong> corresponding author via e-mail.<br />

Correspondence<br />

Editor- in-Cheif, <strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong><br />

<strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences, College <strong>of</strong> Science,<br />

University <strong>of</strong> Bahrain, P.O. Box 32038,<br />

Sakhir, Kingdom <strong>of</strong> Bahrain.<br />

Tel.: (00973) 17437556 / 17437436/ 17437555<br />

Fax: (00973) 17449662<br />

All rights are reserved.<br />

Bahrain Publishing Permission: MAAU 394<br />

ISSN 1815-3852<br />

Imprint: University <strong>of</strong> Bahrain<br />

Printed at <strong>the</strong> University <strong>of</strong> Bahrain Printing Press 2012-085960


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong><br />

<strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

Volume 11, April 2012<br />

Published by<br />

University <strong>of</strong> Bahrain


Foreword<br />

It fills me with great satisfaction to see <strong>the</strong> 11 th issue <strong>of</strong><br />

JAAUBAS being published in April 2012. This issue<br />

contains 9 articles from <strong>the</strong> Kingdom <strong>of</strong> Bahrain,<br />

Algeria, Palestine, Yemen, Sudan, France, Iraq <strong>and</strong><br />

Malaysia. The articles cover various areas <strong>of</strong> research<br />

such as electric power load <strong>for</strong>ecast, energy saving, steal<br />

mechanical properties, radioactivity measurement in<br />

water, CdS thin films, spectrophotometric study <strong>of</strong><br />

pyrimethamine, improved hardness <strong>of</strong> resin, purification<br />

<strong>of</strong> biodiesel <strong>and</strong> effect <strong>of</strong> herbal extracts on lactic acid<br />

bacteria.<br />

Now <strong>and</strong> after having JAAUBAS hosted by Elsevier, <strong>the</strong> flow <strong>of</strong> papers have<br />

increased rapidly <strong>and</strong> we started to receive research work from various countries in<br />

addition to <strong>Arab</strong> countries. Also <strong>the</strong> published papers are now recognized by various<br />

international data basis like Scopus, Science Direct, Web Science. JAAUBAS starts<br />

to achieve its aims in publishing original research <strong>and</strong> assisting researchers from <strong>the</strong><br />

<strong>Arab</strong> <strong>and</strong> international universities <strong>and</strong> institutions to make <strong>the</strong>ir findings<br />

internationally visible <strong>and</strong> available.<br />

It is a well known fact that scientific research is a key issue in <strong>the</strong> university ranking.<br />

Thus now any published work in JAAUBAS appear as a record <strong>for</strong> <strong>the</strong> university or<br />

<strong>the</strong> institution since it will be picked up by <strong>the</strong> international data basis. Our next step<br />

is to establish <strong>the</strong> link with <strong>the</strong> ISI (Thomson Reuters) to have <strong>the</strong> journal evaluated<br />

after two years <strong>and</strong> obtain <strong>the</strong> impact factor (IF). This only can be done with your<br />

contribution in publishing your first class scientific research in JAAUBAS. Looking<br />

<strong>for</strong>ward to receive your most recent research work.<br />

Dr. Hashim Al Sayed<br />

Editor-in-Chief, JAAUBAS


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, iii<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

CONTENTS<br />

Enhancement, evaluation <strong>and</strong> implementation <strong>of</strong> a load <strong>for</strong>ecasting method<br />

M.R. Qader <strong>and</strong> I. Qamber . . . ........................................................................................... 1<br />

A self-controlled energy efficient <strong>of</strong>fice lighting system<br />

M. Taleb <strong>and</strong> N. Mannsour . . . ........................................................................................... 9<br />

Fracture process <strong>of</strong> C–Mn steel embrittled by hydrogen<br />

N. Saidani, A. Mihi <strong>and</strong> R. Benbouta .................................................................................... 16<br />

Radioactivity measurements in tap water in Gaza Strip (Al-Naser Area)<br />

M.O. El-Ghossain <strong>and</strong> A.A. Abu Shammala . . . .......................................................................... 21<br />

Syn<strong>the</strong>sis, structure, <strong>and</strong> optical properties <strong>of</strong> CdS thin films nanoparticles prepared by chemical bath technique<br />

A.M.A. Al-Hussam <strong>and</strong> S.A.-J. Jassim . . . ................................................................................ 27<br />

Spectrophotometric determination <strong>of</strong> pyrimethamine (PYM) in pharmaceutical <strong>for</strong>mulation using 1,2-naphthoquinone-4-<br />

sulfonate (NQS)<br />

A.A. Elbashir <strong>and</strong> A.H.E. Elwagee . . ..................................................................................... 32<br />

Kinetic study <strong>of</strong> <strong>the</strong> RTM6/TiO 2 by DSC/TGA <strong>for</strong> improved hardness <strong>of</strong> resin<br />

L. Merad, P. Bourson, Y. Guedra, F. Jochem <strong>and</strong> B. Benyoucef ......................................................... 37<br />

Purification <strong>of</strong> biodiesel using activated carbons produced from spent tea waste<br />

A.B. Fadhil, M.M. Dheyab <strong>and</strong> A.-Q.Y. Abdul-Qader ................................................................... 45<br />

Viability <strong>of</strong> lactic acid bacteria <strong>and</strong> sensory evaluation in Cinnamomum verum <strong>and</strong> Allium sativum-bio-yogurts made from<br />

camel <strong>and</strong> cow milk<br />

A.B. Shori <strong>and</strong> A.S. Baba ................................................................................................ 50


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 1-8<br />

تعزيز و تقييم و تنفيذ طريقة التنبؤ بالحمل الكهربائي<br />

1<br />

محمد رضا قادر ،<br />

2<br />

عيسى سلمان قمبر<br />

قسم<br />

1<br />

الهندسة الكهربائية و اإللكترونية ، كليه الهندسة ، جامعة البحرين،‏ ص.ب<br />

22023، البحرين مملكة<br />

،22023<br />

2<br />

عمادة البحث العلمي ،<br />

جامعة البحرين،‏ ص.ب<br />

البحرين مملكة<br />

الملخص:‏<br />

أثر عدم اليقين لتوقعات الحمل الكهربائي تكون واضحة المعالم إذا كان بعض من سعة االحتياطي<br />

المخزون يتم االستعانة بها لتوفير حمولة زائدة عن الكمية المتوقعة و بالتالي فان االحتياطي المخزون<br />

يخفض.‏ النموذج تم تطويره للحصول على الحمل المتوقع لمملكة البحرين.‏<br />

طريقة الحساب تمت باستخدام طريقة مونت كارلو لنمذجة الحمل الكهربائي.‏ النموذج المستخدم يستطيع أن<br />

يتنبأ بالحمل الكهربائي مع مرور الزمن خالل فترات سنوية بحيث تم تقسيم كل سنة الى<br />

النموذج المعد للتنبؤ يقوم بحساب الحد األدنى لمتوسط الخطأ التربيعي<br />

25<br />

)MMSE(<br />

اسبوعا.‏<br />

لمتوسط القدرة المخزونة<br />

المشروط واالنحراف المعياري المشروط في كل فترة محددة للتنبؤ باألحمال الكهربائية المتوقعة.‏ لعمل ذلك،‏<br />

وضحت النتائج المتوسط المشروط و نماذج التغاير من منظور تصفية خطيه وطبقت تكرار التوقعات<br />

المشروطة على المعادالت العودية لكل فترة تنبؤ عند كل زمن.‏ وقد تم استنباط النتائج وتمت مناقشتها في<br />

هذه الدراسة.‏<br />

M.R. Qader, I. Qamber


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 1–8<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Enhancement, evaluation <strong>and</strong> implementation<br />

<strong>of</strong> a load <strong>for</strong>ecasting method<br />

M.R. Qader a, *, I. Qamber b<br />

a Department <strong>of</strong> Electrical <strong>and</strong> Electronics Engineering, University <strong>of</strong> Bahrain, P.O. Box 32038, Isa Town, Kingdom <strong>of</strong> Bahrain<br />

b Deanship <strong>of</strong> Scientific Research, University <strong>of</strong> Bahrain, P.O. Box 32038, Sakhir, Kingdom <strong>of</strong> Bahrain<br />

KEYWORDS<br />

Monte Carlo;<br />

Load <strong>for</strong>ecast;<br />

MMSE;<br />

Kingdom <strong>of</strong> Bahrain<br />

Abstract The effect <strong>of</strong> load <strong>for</strong>ecast uncertainty may be well-defined if some <strong>of</strong> <strong>the</strong> spinning reserve<br />

capacity is needed to supply <strong>the</strong> load in excess <strong>of</strong> <strong>the</strong> amount predicted <strong>and</strong>, <strong>the</strong>reby <strong>the</strong> spinning<br />

reserve is reduced. The model was developed <strong>for</strong> load estimation <strong>of</strong> Kingdom <strong>of</strong> Bahrain. The calculation<br />

method involves a Monte Carlo technique <strong>for</strong> <strong>the</strong> simulation <strong>of</strong> <strong>the</strong> load. The model enables <strong>the</strong><br />

predication <strong>of</strong> <strong>the</strong> load against <strong>the</strong> time during years, where each year is divided into 52 weeks. The<br />

<strong>for</strong>ecasting model, computes minimum mean square error (MMSE) <strong>for</strong>ecasts <strong>of</strong> <strong>the</strong> conditional mean<br />

<strong>of</strong> reserve power <strong>and</strong> conditional st<strong>and</strong>ard deviation <strong>of</strong> <strong>the</strong> innovations in each period over a userspecified<br />

<strong>for</strong>ecast possibility. To do this, it views <strong>the</strong> conditional mean <strong>and</strong> variance models from a<br />

linear filtering perspective, <strong>and</strong> applies iterated conditional expectations to <strong>the</strong> recursive equations,<br />

one <strong>for</strong>ecast period at a time. The results are obtained <strong>and</strong> discussed.<br />

ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

The prediction method used in <strong>the</strong> present paper is based on<br />

Monte-Carlo simulation in which it is well known that any<br />

approach using <strong>the</strong> Monte Carlo simulation method does<br />

not solve <strong>the</strong> equations describing <strong>the</strong> model. The Monte Carlo<br />

simulation uses a r<strong>and</strong>om number generator. And this generator<br />

is needed to bring <strong>the</strong> stochastic element in <strong>the</strong> calculations.<br />

* Corresponding author.<br />

E-mail address: mrqader@eng.uob.bh (M.R. Qader).<br />

1815-3852 ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2012.02.001<br />

Production <strong>and</strong> hosting by Elsevier<br />

The researcher could use a physical r<strong>and</strong>om-number generator<br />

such as electrical load variation through a certain period.<br />

The Monte-Carlo simulation requires <strong>the</strong> creation <strong>of</strong> r<strong>and</strong>om<br />

numbers, in this paper, <strong>the</strong> generated numbers were chosen<br />

to follow <strong>the</strong> normal distribution with average value <strong>and</strong><br />

st<strong>and</strong>ard deviation <strong>of</strong> <strong>the</strong> electrical load <strong>of</strong> Bahrain.<br />

In Bordalo et al. (2006) <strong>the</strong>y presented a probabilistic shortcircuit<br />

approach to generate <strong>the</strong> probability distributions <strong>of</strong><br />

<strong>the</strong> system average variation index. The methodology followed<br />

is based on <strong>the</strong> combination <strong>of</strong> <strong>the</strong> Monte-Carlo simulation<br />

<strong>and</strong> <strong>the</strong> admittance summation method.<br />

In El-Khattam et al. (2006) <strong>the</strong>y presented a novel algorithm<br />

to evaluate <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> electric distribution systems,<br />

including distributed generation. Monte Carlo simulation is<br />

employed to solve <strong>the</strong> system operation r<strong>and</strong>omness problem.<br />

The simulation is implemented to per<strong>for</strong>m <strong>the</strong> analysis <strong>of</strong> all<br />

possible operations <strong>of</strong> <strong>the</strong> system under study. The system loading<br />

follows several typical load curves.<br />

In Ionescu et al. (2006), <strong>the</strong> purpose <strong>of</strong> <strong>the</strong>ir study was to<br />

obtain a per<strong>for</strong>mable tool based on generalized stochastic Petri


2 M.R. Qader, I. Qamber<br />

1800<br />

1600<br />

Load (MW)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

0 10 20 30 40 50 60<br />

WEEKS<br />

Figure 1 Load <strong>for</strong>ecasts <strong>of</strong> one year in Kingdom <strong>of</strong> Bahrain (year <strong>of</strong> 2002).<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

reserve MW<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

0 5 10 15 20 25 30 35 40 45 50<br />

WEEKS<br />

Figure 2<br />

Translation <strong>of</strong> weekly power to weekly reserve.<br />

Nets (GSPN). After description <strong>and</strong> implementation through<br />

GSPN, each configuration has been evaluated, in order to<br />

choose <strong>the</strong> most appropriate structure.<br />

Batlle <strong>and</strong> Barquín (2004) in <strong>the</strong>ir paper (2004) present a<br />

fuel prices scenario generator in <strong>the</strong> frame <strong>of</strong> a simulation tool<br />

developed to support risk analysis in a competitive electricity<br />

environment. A multivariate Generalized Autoregressive Conditional<br />

Heteroskedastic model has been designed in order to<br />

allow <strong>the</strong> generation <strong>of</strong> future fuel prices paths. The model<br />

makes use <strong>of</strong> a decomposition method to simplify <strong>the</strong> consideration<br />

<strong>of</strong> <strong>the</strong> multidimensional conditional covariance. An<br />

example <strong>of</strong> its application with real data is also presented.<br />

Gonos et al. (2003)present in <strong>the</strong>ir paper (2004), a method<br />

which estimates <strong>the</strong> lightning per<strong>for</strong>mance <strong>of</strong> high voltage transmission<br />

lines based on <strong>the</strong> Monte-Carlo simulation technique.<br />

On several operating Greek transmission lines, <strong>the</strong> method is applied<br />

<strong>and</strong> showing good correlation between predicted <strong>and</strong> field<br />

observation results. The proposed method can be used as a useful<br />

tool in <strong>the</strong> design <strong>of</strong> electric power systems, aiding in <strong>the</strong> right<br />

insulation dimensioning <strong>of</strong> a transmission line.<br />

In Zhaohong <strong>and</strong> Xifan (2002) study (2002) <strong>the</strong>y present a<br />

new variance reduction technique <strong>of</strong> Monte Carlo simulation<br />

– fission <strong>and</strong> roulette method. The proposed method reduces<br />

<strong>the</strong> variance <strong>of</strong> simulation <strong>and</strong> speeds up <strong>the</strong> computation<br />

dramatically.<br />

Wehenkel et al. (1999), <strong>the</strong> authors deal with probabilistic<br />

approach to <strong>the</strong> design <strong>of</strong> power-system special stability controls.<br />

They used Monte-Carlo simulations, which take into ac-


Enhancement, evaluation <strong>and</strong> implementation <strong>of</strong> a load <strong>for</strong>ecasting method 3<br />

0.5<br />

Innovations<br />

Innovation<br />

0<br />

-0.5<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Conditional St<strong>and</strong>ard Deviations<br />

St<strong>and</strong>ard Deviation<br />

0.2<br />

0.1<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Forecast <strong>of</strong> STD <strong>of</strong> Residuals<br />

St<strong>and</strong>ard Deviation<br />

0.08<br />

0.075<br />

<strong>for</strong>ecast results<br />

simulation results<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Forecast Period<br />

Figure 3<br />

Application <strong>of</strong> Monte Carlo simulation.<br />

0.08<br />

Approximate Versus Exact Secondary St<strong>and</strong>ard Deviations<br />

0.075<br />

0.07<br />

0.065<br />

0.06<br />

0.055<br />

0.05<br />

0.045<br />

0.04<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Figure 4<br />

Graphical comparisons <strong>of</strong> <strong>the</strong> first realization <strong>of</strong> <strong>the</strong> approximate <strong>and</strong> <strong>the</strong> exact secondary conditional st<strong>and</strong>ard deviations.<br />

count all <strong>the</strong> potential causes <strong>of</strong> blackouts. The approach is<br />

tested on a large-scale study on <strong>the</strong> South–Eastern part <strong>of</strong> <strong>the</strong><br />

extra-high-voltage system <strong>of</strong> Electricite´ de France.<br />

2. Methodology<br />

A wide variety <strong>of</strong> <strong>for</strong>ecasting methods are available to <strong>the</strong><br />

management. The evaluation <strong>of</strong> s<strong>of</strong>t computing techniques<br />

has increased <strong>the</strong> underst<strong>and</strong>ing <strong>of</strong> various aspects <strong>of</strong> <strong>the</strong><br />

problem environment <strong>and</strong> consequently <strong>the</strong> predictability<br />

<strong>of</strong> many events. The concept <strong>of</strong> a time series, an ordered<br />

set <strong>of</strong> observations <strong>of</strong> a time-series correspond to timetagged<br />

indices, or observations, <strong>and</strong> correspond to sample<br />

paths, independent realizations, or individual time series.<br />

In any given column, <strong>the</strong> first row contains <strong>the</strong> oldest observation<br />

<strong>and</strong> <strong>the</strong> last row contains <strong>the</strong> most recent observation.<br />

In this representation, a time-series array is said to<br />

be column-oriented.


4 M.R. Qader, I. Qamber<br />

0.0755<br />

0.075<br />

Forecast <strong>of</strong> STD <strong>of</strong> Residuals<br />

<strong>for</strong>ecast results<br />

simulation results<br />

0.0745<br />

St<strong>and</strong>ard Deviation<br />

0.074<br />

0.0735<br />

0.073<br />

0.0725<br />

0.072<br />

0.0715<br />

0.071<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Forecast Period<br />

Figure 5 Compare <strong>the</strong> first <strong>for</strong>ecast output, i.e., <strong>the</strong> conditional st<strong>and</strong>ard deviations <strong>of</strong> future innovations, with its counterpart derived<br />

from <strong>the</strong> Monte Carlo simulation.<br />

1 x 10 -3 Forecast <strong>of</strong> reserve MW<br />

0.5<br />

0<br />

MMSE<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

<strong>for</strong>ecast results<br />

simulation results<br />

-2.5<br />

0 5 10 15 2 2 3 3 4 4 50<br />

Forecast Period<br />

Figure 6 Compare <strong>the</strong> second <strong>for</strong>ecast output, <strong>the</strong> minimum mean square error <strong>for</strong>ecasts <strong>of</strong> <strong>the</strong> conditional mean <strong>of</strong> <strong>the</strong> Kingdom <strong>of</strong><br />

Bahrain reserves power series, with its counterpart derived from <strong>the</strong> Monte Carlo simulation.<br />

In <strong>the</strong> present model, it is assumed that time-series vectors<br />

<strong>and</strong> matrices are time-tagged series <strong>of</strong> observations. If we have<br />

a power series, <strong>the</strong> model lets you convert it to a reserve series<br />

using ei<strong>the</strong>r continuous compounding or periodic compounding.<br />

If it denotes successive power observations made at times<br />

t <strong>and</strong> t +1asP t <strong>and</strong> P t+1 , respectively, continuous compounding<br />

trans<strong>for</strong>ms a power series P t into a reserve series y t as (Bollerslev,<br />

1987; Bollerslev, 1986; Box et al., 1994; Enders, 1995).<br />

y t ¼ log P tþ1<br />

P t<br />

Periodic compounding defines <strong>the</strong> trans<strong>for</strong>mation as:


Enhancement, evaluation <strong>and</strong> implementation <strong>of</strong> a load <strong>for</strong>ecasting method 5<br />

0.7<br />

Forecast <strong>of</strong> STD <strong>of</strong> Cumulative Holding Period<br />

0.6<br />

0.5<br />

St<strong>and</strong>ard Deviation<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

<strong>for</strong>ecast results<br />

simulation results<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Forecast Period<br />

Figure 7 Compare <strong>the</strong> third <strong>for</strong>ecast output, cumulative holding period power reserves, with its counterpart derived from <strong>the</strong> Monte<br />

Carlo simulation.<br />

y t ¼ log P tþ1<br />

1<br />

P t<br />

Our modeling is typically based on relatively high frequency<br />

data (i.e. weekly observations). The models are designed to<br />

capture certain characteristics that are commonly associated<br />

with time series. Probability distributions <strong>for</strong> quality reserve<br />

<strong>of</strong>ten exhibit fatter tails than <strong>the</strong> st<strong>and</strong>ard normal, or Gaussian<br />

distribution. In addition, power time series usually exhibit a<br />

characteristic known as volatility clustering, in which large<br />

changes tend to follow large changes, <strong>and</strong> small changes tend<br />

to follow small changes. In ei<strong>the</strong>r case, <strong>the</strong> changes from one<br />

period to <strong>the</strong> next are typically <strong>of</strong> unpredictable sign. Large<br />

disturbances, positive or negative, become part <strong>of</strong> <strong>the</strong> in<strong>for</strong>mation<br />

set used to construct <strong>the</strong> variance <strong>for</strong>ecast <strong>of</strong> <strong>the</strong> next period’s<br />

disturbance. In this manner, large shocks <strong>of</strong> ei<strong>the</strong>r sign<br />

are allowed to persist, <strong>and</strong> can influence <strong>the</strong> volatility <strong>for</strong>ecasts<br />

<strong>for</strong> several periods.<br />

3. Forecasting <strong>of</strong> power time series<br />

If we treat a financial time series as a sequence <strong>of</strong> r<strong>and</strong>om<br />

observations, this r<strong>and</strong>om sequence, or stochastic process,<br />

may exhibit some degree <strong>of</strong> correlation from one observation<br />

to <strong>the</strong> next. This correlation structure can be used to predict<br />

future values <strong>of</strong> <strong>the</strong> process based on <strong>the</strong> past history <strong>of</strong> observations<br />

(Engle, 1982; Engle et al., 1987; Glosten et al., 1993;<br />

Hamilton, 1994). The following equation uses <strong>the</strong>se components<br />

to represent a model <strong>of</strong> an observed time series y t .<br />

y t ¼ fðt 1; XÞþe t<br />

where<br />

f(t 1,X) represents <strong>the</strong> <strong>for</strong>ecast, <strong>of</strong> <strong>the</strong> current reserve as a<br />

function <strong>of</strong> any in<strong>for</strong>mation known at time t + 1 , including<br />

past innovations. The variable e t is <strong>the</strong> r<strong>and</strong>om component.<br />

The autoregressive (AR) models include past observation <strong>of</strong><br />

<strong>the</strong> dependent variable in <strong>the</strong> <strong>for</strong>ecast <strong>of</strong> future variances, <strong>and</strong><br />

<strong>for</strong> <strong>the</strong> conditional mean apply to all variance models:<br />

y t ¼ C þ XR<br />

i¼1<br />

/ i y t 1 þ e t þ XM<br />

j¼1<br />

h j e t<br />

j þ XNx<br />

k¼1<br />

b k Xðt; kÞ<br />

With autoregressive coefficients / i , moving average coefficients<br />

h j , regression coefficients b k , innovations e t , <strong>and</strong> reserve y t , C<br />

represents <strong>the</strong> constant. X is an explanatory regression matrix<br />

in which each column is a time series <strong>and</strong> X(t,k) denotes <strong>the</strong> t-<br />

th row <strong>and</strong> k th column. Where, R <strong>and</strong> M represent <strong>the</strong> order<br />

<strong>of</strong> <strong>the</strong> conditional mean model.<br />

4. Probability estimation<br />

Given models <strong>for</strong> <strong>the</strong> conditional mean <strong>and</strong> variance, <strong>and</strong> an<br />

observed reserve series, <strong>the</strong> estimation concludes <strong>the</strong> innovations<br />

(i.e., residuals) from <strong>the</strong> reserve series, <strong>and</strong> estimates,<br />

by maximum probability, <strong>the</strong> parameters needed to fit <strong>the</strong><br />

specified models to <strong>the</strong> reserve series (Nelson, 1991).<br />

Given <strong>the</strong> vector <strong>of</strong> current parameter values <strong>and</strong> <strong>the</strong> observed<br />

data series, <strong>the</strong> log-probability functions conclude <strong>the</strong><br />

process innovations by inverse filtering (Engle, 1982; Engle<br />

et al., 1987; Glosten et al., 1993). This inference, or inverse filtering,<br />

operation rearranges <strong>the</strong> conditional mean equation to<br />

solve <strong>for</strong> <strong>the</strong> current innovation e t :<br />

X R X M X Nx<br />

y t ¼ C þ y t / i y t 1 h j e t j b k Xðt; kÞ<br />

i¼1<br />

j¼1<br />

This equation is a whitening filter, trans<strong>for</strong>ming a correlated<br />

process into an uncorrelated white noise process. The logprobability<br />

function <strong>the</strong>n uses <strong>the</strong> inferred innovations e t to infer<br />

<strong>the</strong> corresponding conditional variances r 2 t<br />

via recursive<br />

k¼1


6 M.R. Qader, I. Qamber<br />

St<strong>and</strong>ard Error <strong>of</strong> Forecast<br />

0.078<br />

0.077<br />

<strong>for</strong>ecast results<br />

simulation results<br />

0.076<br />

St<strong>and</strong>ard Deviation<br />

0.075<br />

0.074<br />

0.073<br />

0.072<br />

0.071<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Forecast Period<br />

Figure 8 Compare <strong>the</strong> fourth <strong>for</strong>ecast output, <strong>the</strong> root mean square errors <strong>of</strong> <strong>the</strong> <strong>for</strong>ecasted power reserves, with its counterpart derived<br />

from <strong>the</strong> Monte Carlo simulation.<br />

substitution into <strong>the</strong> model-dependent conditional variance<br />

equations. Finally, <strong>the</strong> function uses <strong>the</strong> inferred innovations<br />

<strong>and</strong> conditional variances to evaluate <strong>the</strong> appropriate logprobability<br />

objective function. If <strong>the</strong> Gaussian, <strong>the</strong> log-probability<br />

function is:<br />

LLF ¼ T 2 logð2pÞ 1 X T<br />

2<br />

t¼1<br />

log r 2 t<br />

1 X T<br />

2<br />

t¼1<br />

e 2 t<br />

r 2 t<br />

where, T is <strong>the</strong> sample size, i.e., <strong>the</strong> number <strong>of</strong> rows in <strong>the</strong> series<br />

y t .<br />

5. Minimum mean squire error volatility <strong>for</strong>ecasts <strong>of</strong> reserve<br />

This is designed to minimize <strong>the</strong> variance <strong>of</strong> <strong>the</strong> estimation or<br />

<strong>for</strong>ecast error. The volatility <strong>for</strong>ecasts <strong>of</strong> reserve over multi<br />

period holding intervals. That it contains <strong>the</strong> expected stan-<br />

1400<br />

Cumulative Holding Period at Forecast Horizon<br />

1200<br />

1000<br />

800<br />

Count<br />

600<br />

400<br />

200<br />

0<br />

-3 -2 -1 0 1 2 3<br />

reserve MW<br />

Figure 9 Histogram illustrates <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> cumulative holding period reserve obtained if a quality was held <strong>for</strong> <strong>the</strong> full 52-<br />

week <strong>for</strong>ecast possibility. Notice that this histogram is directly related to <strong>the</strong> final <strong>of</strong> <strong>the</strong> root mean square error.


Enhancement, evaluation <strong>and</strong> implementation <strong>of</strong> a load <strong>for</strong>ecasting method 7<br />

1400<br />

Simulated at Forecast Horizon<br />

1200<br />

1000<br />

Count<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3<br />

reserve MW<br />

Figure 10 Histogram illustrates <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> single-period power reserve at <strong>the</strong> <strong>for</strong>ecast possibility. Notice that this histogram<br />

is directly related to <strong>the</strong> final <strong>of</strong> <strong>the</strong> minimum mean square error <strong>and</strong> root mean square errors.<br />

dard deviation <strong>of</strong> reserve <strong>for</strong> assets held <strong>for</strong> one period <strong>for</strong> each<br />

realization <strong>of</strong> series. It also contains <strong>the</strong> st<strong>and</strong>ard deviation <strong>of</strong><br />

reserve <strong>for</strong> assets held <strong>for</strong> two periods as shown in <strong>the</strong> results<br />

obtained during <strong>the</strong> present study. Thus, last contains <strong>the</strong> <strong>for</strong>ecast<br />

<strong>of</strong> <strong>the</strong> st<strong>and</strong>ard deviation <strong>of</strong> <strong>the</strong> cumulative reserve obtained<br />

if an asset was held <strong>for</strong> <strong>the</strong> entire <strong>for</strong>ecast horizon.<br />

There<strong>for</strong>e it computes <strong>the</strong> elements <strong>of</strong> r by taking <strong>the</strong> square<br />

root <strong>of</strong>:<br />

" # 2 ! 2<br />

3<br />

X s<br />

var t ¼ Xs<br />

4 1 þ Xs¼1<br />

w j Eðr 2 tþi Þ 5<br />

i¼1<br />

y tþ1<br />

i¼1<br />

j¼1<br />

where s is <strong>the</strong> <strong>for</strong>ecast horizon <strong>of</strong> interest, <strong>and</strong> w j is <strong>the</strong> coefficient<br />

<strong>of</strong> <strong>the</strong> jth lag <strong>of</strong> <strong>the</strong> innovations process in an infinite-order<br />

representation <strong>of</strong> <strong>the</strong> conditional mean model.<br />

6. Simulation results<br />

To compute <strong>the</strong> load <strong>for</strong>ecasts <strong>for</strong> <strong>the</strong> Kingdom <strong>of</strong> Bahrain reserve<br />

<strong>the</strong> power <strong>for</strong> 52 weeks <strong>for</strong> expecting <strong>the</strong> power in <strong>the</strong> future.<br />

First setting <strong>the</strong> <strong>for</strong>ecast possibility to 52 weeks (i.e., one<br />

year), <strong>the</strong>n <strong>the</strong> <strong>for</strong>ecasting engine, with <strong>the</strong> estimated model<br />

parameters, coefficient, <strong>the</strong> Kingdom <strong>of</strong> Bahrain reserve, <strong>and</strong><br />

<strong>the</strong> <strong>for</strong>ecast possibility. Possibility = 52% which define <strong>the</strong><br />

<strong>for</strong>ecast possibility.<br />

This will simulate reserve <strong>for</strong>ecasts <strong>of</strong> conditional st<strong>and</strong>ard<br />

deviations <strong>of</strong> <strong>the</strong> residuals <strong>for</strong>ecasts <strong>of</strong> <strong>the</strong> Bahrain reserve<br />

power. Forecasts <strong>of</strong> <strong>the</strong> st<strong>and</strong>ard deviations <strong>of</strong> <strong>the</strong> cumulative<br />

holding period reserve power <strong>and</strong> st<strong>and</strong>ard errors associated<br />

with <strong>for</strong>ecasts <strong>of</strong> reserve power.<br />

Monte Carlo simulation uses <strong>the</strong> same estimated model<br />

coefficient which is used in <strong>the</strong> <strong>for</strong>ecast part <strong>of</strong> <strong>the</strong> data simulated,<br />

<strong>for</strong>ecasting, to simulate 20,000 realizations <strong>for</strong> <strong>the</strong> same<br />

52 week period. In this context, referred to as dependent-path<br />

simulation, all simulated sample paths share a common conditioning<br />

set <strong>and</strong> evolve from <strong>the</strong> same set <strong>of</strong> initial conditions,<br />

thus enabling Monte Carlo simulation <strong>of</strong> <strong>for</strong>ecasts <strong>and</strong> <strong>for</strong>ecast<br />

error distributions. For this application <strong>of</strong> Monte Carlo<br />

simulation, <strong>the</strong> simulation generates a relatively large number<br />

<strong>of</strong> realizations, or sample paths, so that it can aggregate across<br />

realizations. The following code simulates 20,000 paths as a result;<br />

each time-series output that reserves are an array <strong>of</strong> size<br />

possibility, 52-by-20,000.<br />

In <strong>the</strong> present paper, we will compare data <strong>of</strong> <strong>the</strong> Kingdom<br />

<strong>of</strong> Bahrain reserve power graphically. It compares <strong>the</strong><br />

<strong>for</strong>ecasts results with <strong>the</strong>ir counterparts derived from <strong>the</strong><br />

Monte Carlo trial described above. Fig. 1 shows <strong>the</strong> load<br />

<strong>for</strong>ecasts <strong>of</strong> one year (year <strong>of</strong> 2002) in <strong>the</strong> Kingdom <strong>of</strong> Bahrain<br />

which clearly shows that power consumption is high between<br />

weeks 20 <strong>and</strong> 40 <strong>of</strong> high season. Fig. 2 is <strong>the</strong><br />

translation <strong>of</strong> weekly power to weekly reserve. To segment<br />

<strong>the</strong> data in an ef<strong>for</strong>t to compare estimation results obtained<br />

from a relatively stable period to those from a period <strong>of</strong> relatively<br />

high instability. By examining <strong>the</strong> reserve power, it<br />

can be seen <strong>the</strong>re is a distinct increase in instability starting.<br />

Fig. 3 shows application <strong>of</strong> Monte Carlo simulation, <strong>the</strong> figures<br />

show <strong>the</strong> production <strong>of</strong> a relatively large number <strong>of</strong> sample<br />

paths, so that it can aggregate across realizations. Because<br />

each underst<strong>and</strong>ing corresponds to a time-series output, <strong>the</strong><br />

outputs are large. The model simulates 20,000 paths. Fig. 4<br />

is a graphical comparison <strong>of</strong> <strong>the</strong> first realization <strong>of</strong> <strong>the</strong><br />

approximate <strong>and</strong> <strong>the</strong> exact secondary conditional st<strong>and</strong>ard<br />

deviations reveal <strong>the</strong> distinction between automatically generated<br />

<strong>and</strong> user-specified pre sample data. Notice that <strong>the</strong><br />

approximate <strong>and</strong> exact st<strong>and</strong>ard deviations are asymptotically<br />

identical. The only difference between <strong>the</strong> two curves<br />

is attributable to <strong>the</strong> transients induced by <strong>the</strong> default initial<br />

conditions. Although <strong>the</strong> figure highlights <strong>the</strong> first realization<br />

<strong>of</strong> conditional st<strong>and</strong>ard deviations, <strong>the</strong> comparison holds <strong>for</strong><br />

any realization <strong>and</strong> <strong>for</strong> <strong>the</strong> inferred residuals as well.


8 M.R. Qader, I. Qamber<br />

7. Comparing <strong>for</strong>ecasts with simulation results<br />

Figs. 5–8 directly compare each <strong>of</strong> <strong>the</strong> <strong>for</strong>ecast outputs, in<br />

turn, with <strong>the</strong> corresponding statistical result obtained from<br />

simulation. Figs. 9 <strong>and</strong> 10 illustrate histograms from which<br />

approximate probability density functions <strong>and</strong> empirical confidence<br />

bounds can be computed.<br />

This illustration merely highlights <strong>the</strong> range <strong>of</strong> possibilities,<br />

<strong>and</strong> provides a deeper underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> interaction between<br />

<strong>the</strong> simulation, <strong>for</strong>ecasting, <strong>and</strong> estimation model.<br />

Fig. 5 shows <strong>the</strong> convergence <strong>of</strong> st<strong>and</strong>ard deviation with respect<br />

to <strong>the</strong> <strong>for</strong>ecast period. For developing <strong>the</strong> <strong>for</strong>ecasting<br />

models, <strong>the</strong> load dem<strong>and</strong> data <strong>for</strong> 52 week period was tested<br />

from <strong>the</strong> first day <strong>of</strong> January to <strong>the</strong> last day <strong>of</strong> <strong>the</strong> year 2002<br />

which is <strong>the</strong> end <strong>of</strong> December in <strong>the</strong> Kingdom <strong>of</strong> Bahrain.<br />

8. Conclusion<br />

The paper presents estimation <strong>of</strong> <strong>the</strong> load <strong>of</strong> <strong>the</strong> Kingdom <strong>of</strong><br />

Bahrain using <strong>the</strong> Monte Carlo simulation. Satisfactory results<br />

<strong>for</strong> one year <strong>of</strong> Bahrain network was presented <strong>and</strong> verifying<br />

<strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> method used. The presented method can<br />

be easily used <strong>for</strong> any electric power utilities in order to predict<br />

<strong>the</strong> electric load. The result consists <strong>of</strong> <strong>the</strong> MMSE <strong>for</strong>ecasts <strong>of</strong><br />

<strong>the</strong> conditional st<strong>and</strong>ard deviations <strong>and</strong> <strong>the</strong> conditional mean<br />

<strong>of</strong> <strong>the</strong> reserve power is modeled <strong>and</strong> illustrated. Note that <strong>the</strong><br />

calculation <strong>of</strong> <strong>the</strong> st<strong>and</strong>ard deviation is strictly correct <strong>for</strong> continuously<br />

compounded reserve. There<strong>for</strong>e, it is clear that <strong>the</strong><br />

used technique is useful tool <strong>for</strong> electric power system <strong>for</strong> load<br />

estimation.<br />

References<br />

Batlle, Carlos, Barquín, Julián, 2004. Fuel prices scenario generation<br />

based on a multivariate GARCH model <strong>for</strong> risk analysis in a<br />

wholesale electricity market. International <strong>Journal</strong> <strong>of</strong> Electrical<br />

Power <strong>and</strong> Energy Systems 26 (4), 273–280.<br />

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity.<br />

<strong>Journal</strong> <strong>of</strong> Econometrics 31, 307–327.<br />

Bollerslev, T., 1987. A conditionally heteroskedastic time series model<br />

<strong>for</strong> speculative prices <strong>and</strong> rates <strong>of</strong> return. Review <strong>of</strong> Economics <strong>and</strong><br />

Statistics 69, 542–547.<br />

Bordalo, U., Rodrigues, A., Silva, M., 2006. A new methodology <strong>for</strong><br />

probabilistic short-circuit evaluation with applications in power<br />

quality analysis. IEEE Transactions on Power Systems 21 (2),<br />

474–479.<br />

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 1994. Time Series Analysis:<br />

Forecasting <strong>and</strong> Control, third ed. Prentice Hall.<br />

El-Khattam, W., Hegazy, Y., Salama, M., 2006. Investigating distributed<br />

generation systems per<strong>for</strong>mance using Monte Carlo simulation.<br />

IEEE Transactions on Power Systems 21 (2), 524–532.<br />

Enders, W., 1995. <strong>Applied</strong> Econometric Time Series. John Wiley &<br />

Sons.<br />

Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with<br />

estimates <strong>of</strong> <strong>the</strong> variance <strong>of</strong> United Kingdom inflation. Econometrica<br />

50, 987–1007.<br />

Engle, R.F., Lilien, D.M., Robins, R.P., 1987. Estimating time varying<br />

risk premia in <strong>the</strong> term structure: <strong>the</strong> ARCH-M model. Econometrica<br />

59, 391–407.<br />

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On <strong>the</strong> relation<br />

between expected value <strong>and</strong> <strong>the</strong> volatility <strong>of</strong> <strong>the</strong> nominal excess<br />

return on stocks. The <strong>Journal</strong> <strong>of</strong> Finance 48, 1779–1801.<br />

Gonos, I.F., Ekonomou, L., Topalis, F.V., Stathopulos, I.A., 2003.<br />

Probability <strong>of</strong> backflashover in transmission lines due to lightning<br />

strokes using Monte-Carlo simulation. International <strong>Journal</strong> <strong>of</strong><br />

Electrical Power <strong>and</strong> Energy Systems 25 (2), 107–111.<br />

Hamilton, J.D., 1994. Time Series Analysis. Princeton University<br />

Press.<br />

Ionescu, D.C., Ulmeanu, A.P., Constantinescu, A.C., Rotaru, I., 2006.<br />

Reliability modelling <strong>of</strong> medium voltage distribution systems <strong>of</strong><br />

nuclear power plants using generalized stochastic petri nets.<br />

Computers <strong>and</strong> Ma<strong>the</strong>matics with Applications 51 (2), 285–290.<br />

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a<br />

new approach. Econometrica 59, 347–370.<br />

Wehenkel, L., Lebrevelec, C., Trotignon, M., Batut, J., 1999.<br />

Probabilistic design <strong>of</strong> power-system special stability controls.<br />

Control Engineering Practice 7 (2), 183–194.<br />

Zhaohong, Bie, Xifan, Wang, 2002. Studies on variance reduction<br />

technique <strong>of</strong> Monte Carlo simulation in composite system reliability<br />

evaluation. Electric Power Systems Research 63 (1), 59–64.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 9-15<br />

نظام إنارة مكتبي<br />

ذو تحكم ذاتي و<br />

الطاقة استهالك في مجدي<br />

1<br />

معمر طالب ،<br />

2<br />

نورالدين منصور<br />

قسم<br />

1<br />

الهندسة الكهربائية وااللكترونية،‏<br />

قسم<br />

، كلية الهندسة<br />

جامعة البحرين،‏ ص.ب 32038<br />

،<br />

2<br />

الهندسة الكميائية ، كلية الهندسة ، جامعة البحرين،‏ ص.ب ، 32038 البحرين<br />

البحرين<br />

الملخص:‏<br />

من دون شك أن ألشعة الشمس<br />

فمن هذا المنطلق<br />

المكتب.‏<br />

مساهمة<br />

قام الباحثون باستخدام<br />

غير مهملة<br />

تتبلور فكرة التحكم في تحقيق االستراتيجية التالية:‏<br />

مستوى شدة ضوء الشمس<br />

في تحديد كمية وشدة الضوء داخل<br />

المحيط بالمكتب للتحكم في<br />

المكاتب اإلدارية.‏<br />

مستوى إنارة<br />

حين تزداد شدة أشعة الشمس المحيط بالمكتب ينبغي<br />

تخفيف استهالك الطاقة الكهربائية،‏ وحين تنخفض شدة أشعة الشمس المحيطة بالمكتب ينبغي رفع استهالك<br />

الطاقة الكهربائية.‏<br />

حالن تحكميان طبقا<br />

وبغية تحقيق االستراتيجية السابقة<br />

قام الباحثون باقتراح<br />

عمليًا باستخدام برنامج حاسوبي معروف باسم<br />

بانجاز أو تركيب دائرة كهربائية اعتمد في بنائها على عناصر الكترونية متفرقة.‏<br />

الثالثة بميزة التحكم الذاتي.‏<br />

عن تمخض<br />

مع ثبات مستوى االنارة<br />

تطبيق الحلول التحكمية<br />

داخل المكتب.‏<br />

بأحد مكاتب جامعة البحرين<br />

في<br />

ثالث حلول تحكمية عملية:‏<br />

) ،(LABVIEW بينما طبق حل ثالث<br />

%5.04 توفير<br />

تتميز الحلول<br />

التحكمية<br />

من الفاتورة الكهربائية<br />

M. Taleb, N. Mannsour


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 9–15<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

A self-controlled energy efficient <strong>of</strong>fice lighting system<br />

Maamar Taleb a, *, Noureddine Mannsour b<br />

a Department <strong>of</strong> Electrical <strong>and</strong> Electronics Engineering, University <strong>of</strong> Bahrain, P. O. Box 32038, Isa Town, Bahrain<br />

b Department <strong>of</strong> Chemical Engineering, University <strong>of</strong> Bahrain, P. O. Box 32038, Isa Town, Bahrain<br />

Available online 14 December 2011<br />

KEYWORDS<br />

Electric energy saving;<br />

Office lighting control;<br />

LABVIEW<br />

Abstract The fact that ambient sunlight can add significant contribution to <strong>the</strong> lighting level <strong>of</strong> an<br />

<strong>of</strong>fice, has motivated <strong>the</strong> authors into using <strong>the</strong> level <strong>of</strong> sunlight to control <strong>the</strong> dem<strong>and</strong> <strong>of</strong> <strong>the</strong> electric<br />

lighting in an <strong>of</strong>fice. The control strategy is such that <strong>the</strong> level <strong>of</strong> <strong>the</strong> surrounding light increases<br />

<strong>the</strong> supply voltage, hence electric power consumption, to <strong>the</strong> electric lighting system is reduced. Similarly,<br />

when <strong>the</strong> surrounding sunlight decreases <strong>the</strong> supply voltage, <strong>the</strong> electric power consumption,<br />

to <strong>the</strong> electric lighting system is increased. The objective is to save <strong>the</strong> overall electric energy used <strong>for</strong><br />

<strong>of</strong>fice lighting. Three controllers have been proposed to fulfill <strong>the</strong> previous control strategy. Two<br />

controllers were implemented <strong>and</strong> tested using LABVIEW. A third controller designed <strong>and</strong> constructed<br />

using discrete electronic components. All three controllers were self-regulated. The implementation<br />

<strong>of</strong> <strong>the</strong> control strategy in a university <strong>of</strong>fice showed that a 5.40% saving in <strong>the</strong> electricity<br />

bill was achieved whilst maintaining an almost constant lighting level.<br />

ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

Most <strong>of</strong> <strong>the</strong> <strong>of</strong>fices worldwide have shifted from using inc<strong>and</strong>escent<br />

bulbs to fluorescent lamps. The primary reason behind<br />

such a shift is that fluorescent lamps are more energy-efficient.<br />

As a matter <strong>of</strong> fact, st<strong>and</strong>ard inc<strong>and</strong>escent bulbs use three to<br />

four times more electricity than fluorescent lamps (Chugach<br />

Electric <strong>Association</strong>, 2011). Moreover, fluorescent lamps last<br />

up to six times longer than inc<strong>and</strong>escent lamps. In spite <strong>of</strong><br />

* Corresponding author.<br />

E-mail addresses: maamar@eng.uob.bh (M. Taleb), nmansour@<br />

eng.uob.bh (N. Mannsour).<br />

1815-3852 ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.10.002<br />

Production <strong>and</strong> hosting by Elsevier<br />

<strong>the</strong> tremendous cut in <strong>the</strong> energy requirement by <strong>the</strong> fluorescent<br />

lamps those days, research had not stopped from looking<br />

fur<strong>the</strong>r in saving more energy. One alternative <strong>of</strong> <strong>the</strong> saving is<br />

<strong>the</strong> development <strong>of</strong> compact fluorescent lamps (CFLs). CFLs<br />

own several advantages (Greenfeet, LLC, copyright 1999–<br />

2008) when compared to <strong>the</strong>ir counterpart lamps: classic fluorescent<br />

lamps as well as inc<strong>and</strong>escent lamps.<br />

The present contribution treats <strong>of</strong>fice lighting electric energy<br />

saving from ano<strong>the</strong>r perspective. Such a perspective is documented<br />

as follows: It is well recognized that when an<br />

employee enters his/her <strong>of</strong>fice, <strong>the</strong> first thing that he/she will<br />

do is to switch-on <strong>the</strong> light <strong>and</strong> let it shining fully during <strong>the</strong><br />

whole working hours period. A careful glance at <strong>the</strong> working<br />

hours period, can easily make one notice that <strong>the</strong>re is an additional<br />

free source <strong>of</strong> energy that can be considered as a second<br />

contributor to <strong>the</strong> overall <strong>of</strong>fice lighting. This second contributor<br />

consists <strong>of</strong> <strong>the</strong> surrounding natural sunlight (i.e., sunlight or<br />

day light). The sunlight intensity is probably low at <strong>the</strong> earliest<br />

hours <strong>of</strong> <strong>the</strong> working-hours period but starts increasing as time<br />

passes. It reaches a maximum point around noon time. In <strong>the</strong><br />

afternoon, <strong>the</strong> natural sunlight starts decreasing. This<br />

increase <strong>and</strong> decrease behaviors <strong>of</strong> <strong>the</strong> sunlight are actually


10 M. Taleb, N. Mannsour<br />

dependent on <strong>the</strong> location <strong>of</strong> <strong>the</strong> <strong>of</strong>fice towards <strong>the</strong> sun<br />

position.<br />

This paper uses <strong>the</strong> variation <strong>of</strong> <strong>the</strong> surrounding sunlight in<br />

saving some electric energy needed by <strong>the</strong> lighting system <strong>of</strong> an<br />

<strong>of</strong>fice during working-hours periods.<br />

2. Problem motivation <strong>and</strong> rationale<br />

In order to evaluate <strong>the</strong> contribution <strong>of</strong> <strong>the</strong> surrounding sunlight<br />

to <strong>the</strong> overall light <strong>of</strong> an <strong>of</strong>fice, a small experiment was<br />

held in a university <strong>of</strong>fice. The <strong>of</strong>fice light is provided by 6<br />

pairs <strong>of</strong> florescent lamps. Each florescent is rated 36 W. The<br />

experiment consisted <strong>of</strong> recording <strong>the</strong> effects that may occur<br />

on any light sensor device during <strong>the</strong> <strong>of</strong>fice working hours.<br />

In this investigation, <strong>the</strong> <strong>of</strong>fice working hours were pretended<br />

to be between 08:00 <strong>and</strong> 16:00. A light dependent resistance<br />

(LDR) was considered to be <strong>the</strong> light sensor device. It is worth<br />

mentioning that <strong>the</strong> LDR presents large resistance value at low<br />

levels <strong>of</strong> light (i.e., dark environment) <strong>and</strong> small resistance value<br />

at high levels <strong>of</strong> light (i.e., shining environment) (Radio<br />

Spares (RS) Components, 1997).<br />

Four LDRs are connected to four potentiometers as shown<br />

in Fig. 1. The LDRs are located in four different places in <strong>the</strong><br />

<strong>of</strong>fice. This was done in purpose to find out which LDR was<br />

<strong>the</strong> most sensitive to <strong>the</strong> light. The most sensitive LDR will<br />

be taken as a reference signal in <strong>the</strong> controllers that will be discussed<br />

later. The DC voltage supply was fixed at a 12 V. Each<br />

potentiometer <strong>of</strong> <strong>the</strong> four legs <strong>of</strong> Fig. 1 was adjusted so that its<br />

resistance was close to <strong>the</strong> corresponding LDR resistance value<br />

at 08:00 on <strong>the</strong> day <strong>of</strong> <strong>the</strong> experiment. It is expected that <strong>the</strong><br />

voltage across <strong>the</strong> potentiometer to be near 6 V at 08:00. It<br />

is worth stating that once each potentiometer resistance is set<br />

at 08:00, it is left unaltered during <strong>the</strong> day <strong>of</strong> experiment.<br />

The voltage across <strong>the</strong> four potentiometers terminals were recorded<br />

during <strong>the</strong> time from 08:00 to 16:00 h on December 17,<br />

2008. The day <strong>of</strong> December 17, 2008 was a clear <strong>and</strong> bright day<br />

in <strong>the</strong> kingdom <strong>of</strong> Bahrain. Measurements were taken using<br />

LABVIEW s<strong>of</strong>tware facilities <strong>and</strong> PCI-6221 as a data acquisition<br />

card (National Instruments, 2008). Voltage measurements<br />

across <strong>the</strong> four potentiometers were recorded every second as<br />

depicted in Fig. 2.<br />

After a glance at <strong>the</strong> obtained patterns <strong>of</strong> <strong>the</strong> measurements,<br />

<strong>the</strong> next remarks can be noted:<br />

All voltage drops across <strong>the</strong> four potentiometers have been<br />

set to be near 6 V at <strong>the</strong> start-up <strong>of</strong> <strong>the</strong> measurements (i.e.,<br />

at 08:00).<br />

LDR1 <strong>and</strong> LDR2 indicate that <strong>the</strong> surrounding sunlight<br />

peaks up around 10:00.<br />

LDR4 measurements indicate that <strong>the</strong> surrounding light<br />

exhibits a maximum contribution at <strong>the</strong> sensor position<br />

around 13:30. This can be justified by <strong>the</strong> fact that <strong>the</strong><br />

LDR4 will face <strong>the</strong> sun in <strong>the</strong> afternoon ra<strong>the</strong>r than <strong>the</strong><br />

morning. This was not <strong>the</strong> case <strong>for</strong> LDR1 <strong>and</strong> LDR2.<br />

The contribution <strong>of</strong> <strong>the</strong> surrounding light is manifested by<br />

4 V voltage drop between 10:00 <strong>and</strong> 16:00 <strong>for</strong> LDR1 <strong>and</strong><br />

LDR2. The last two LDRs seem to be more sensitive than<br />

LDR4 <strong>and</strong> LDR3.<br />

The main observation that can be deduced from <strong>the</strong> measurements<br />

is that any anticipated occupant <strong>of</strong> this <strong>of</strong>fice will<br />

witness more light in <strong>the</strong> morning <strong>and</strong> less light in <strong>the</strong> afternoon<br />

but what is interesting is that <strong>the</strong> <strong>of</strong>fice occupant(s) will<br />

feel com<strong>for</strong>t in both sessions. There<strong>for</strong>e, it might be a good<br />

idea to reduce <strong>the</strong> main electric supply partially in <strong>the</strong> morning<br />

session <strong>and</strong> use it fully in <strong>the</strong> afternoon session.<br />

Potentiometer 1<br />

Potentiometer 2<br />

Potentiometer 3<br />

Potentiometer 4<br />

LDR 1<br />

LDR2<br />

LDR 3<br />

LDR 4<br />

12 V<br />

Data Acquisition Card<br />

(PCI 6221Card<br />

manufactured by National Instrument )<br />

PC<br />

Figure 1<br />

Effect <strong>of</strong> <strong>the</strong> surrounding light on <strong>the</strong> overall <strong>of</strong>fice lighting system: circuit layout to record <strong>the</strong> online sunlight effects.


A self-controlled energy efficient <strong>of</strong>fice lighting system 11<br />

9<br />

Mesurements recorded on Thursday December 17, 2008<br />

LDR4<br />

Voltage across <strong>the</strong> potentiometer terminals<br />

8<br />

7<br />

6<br />

5<br />

4<br />

LDR2<br />

LDR1<br />

LDR3<br />

3<br />

8 9 10 11 12 13 14 15 16<br />

Time (hour)<br />

Figure 2<br />

Effect <strong>of</strong> <strong>the</strong> surrounding light on <strong>the</strong> overall light in <strong>the</strong> <strong>of</strong>fice under test.<br />

3. Control strategy<br />

The transition from full use to partial use <strong>of</strong> <strong>the</strong> main electric<br />

supply is possible through <strong>the</strong> application <strong>of</strong> power electronics<br />

circuitry. This is possible through <strong>the</strong> implementation <strong>of</strong> <strong>the</strong><br />

circuit <strong>of</strong> Fig. 3. Fig. 3 represents actually <strong>the</strong> schematic diagram<br />

<strong>of</strong> an AC converter. The <strong>the</strong>ory <strong>and</strong> analysis <strong>of</strong> an AC<br />

converter using a triac are documented in several power electronics<br />

textbooks (e.g., Mohan et al., 2003). Three firing angle<br />

controllers are suggested to control <strong>the</strong> operation <strong>of</strong> <strong>the</strong> triac<br />

<strong>of</strong> Fig. 3.<br />

3.1. Firing angle controller<br />

This controller serves at monitoring <strong>the</strong> instant <strong>of</strong> firing <strong>the</strong><br />

gate triac with a periodic train <strong>of</strong> pulses. The controller is<br />

designed in such a way that <strong>the</strong> firing angle can be adjusted<br />

between 0° <strong>and</strong> 90° <strong>and</strong> between 180° <strong>and</strong> 270° during <strong>the</strong><br />

positive <strong>and</strong> negative cycles <strong>of</strong> <strong>the</strong> main voltage supply, respectively.<br />

This is possible through designing a block diagram<br />

similar to <strong>the</strong> one shown in Fig. 4a. Fig. 4a can be split into<br />

two parts: an upper part <strong>and</strong> a lower part. The upper part guarantees<br />

a train <strong>of</strong> pulses to triac gate when <strong>the</strong> ma<strong>the</strong>matical<br />

12 V<br />

Office Light Level<br />

Potentiometer 1<br />

LDR<br />

1<br />

Triggering<br />

Circuit<br />

Firing Angle Controller<br />

Figure 3<br />

6 pairs <strong>of</strong> lamps<br />

Triac<br />

Controllable AC converter.<br />

240 V<br />

50 Hz<br />

+<br />

+<br />

product <strong>of</strong> <strong>the</strong> main supply voltage signal with its derivative<br />

is negative. This is possible between 90° <strong>and</strong> 180° <strong>and</strong> between<br />

270° <strong>and</strong> 360°, respectively. Note that 0° corresponds to <strong>the</strong><br />

zero-crossing point <strong>of</strong> <strong>the</strong> main voltage supply. The lower part<br />

provides a train <strong>of</strong> pulses when <strong>the</strong> absolute value <strong>of</strong> <strong>the</strong> main<br />

supply voltage is greater than a certain level. The latter level is<br />

actually <strong>the</strong> output <strong>of</strong> a limited integrator. The integrator is<br />

positive <strong>and</strong> it is adjusted online during <strong>the</strong> working <strong>of</strong>fice<br />

hours period. That depends on <strong>the</strong> input sign to <strong>the</strong> integrator.<br />

The input to <strong>the</strong> integrator is a constant. It can be positive,<br />

or negative or zero. It is positive when <strong>the</strong> overall <strong>of</strong>fice lighting<br />

is above an upper limit level, negative when <strong>the</strong> overall <strong>of</strong>fice<br />

lighting is below a lower limit level, <strong>and</strong> zero when <strong>the</strong> <strong>of</strong>fice<br />

lighting is between <strong>the</strong> two upper <strong>and</strong> lower limits. The upper<br />

limit <strong>and</strong> <strong>the</strong> lower limit levels correspond to V reference + DV<br />

<strong>and</strong> V reference DV, respectively. In this paper, V reference <strong>and</strong><br />

DV were taken as 6 V <strong>and</strong> 0.2 V, respectively. When <strong>the</strong> voltage<br />

across <strong>the</strong> potentiometer terminals (V potentiometer ) <strong>of</strong> <strong>the</strong> left<br />

sensor exceeds V reference + DV (i.e., 6.2 V), <strong>the</strong> integrator output<br />

level increases <strong>and</strong> consequently <strong>the</strong> generation <strong>of</strong> firing pulses<br />

to <strong>the</strong> triac gate will be delayed. Delaying firing pulses generation<br />

will lower <strong>the</strong> <strong>of</strong>fice light level. Similarly, when <strong>the</strong> measured<br />

voltage across <strong>the</strong> potentiometer terminals <strong>of</strong> <strong>the</strong> left<br />

sensor is below V reference DV (i.e., 5.8 V), <strong>the</strong> integrator output<br />

level decreases <strong>and</strong> consequently an early generation <strong>of</strong> firing<br />

pulses to <strong>the</strong> triac gate is noted. Early generation <strong>of</strong> firing<br />

pulses results in an increase in <strong>the</strong> <strong>of</strong>fice lighting level.<br />

Fig. 4b depicts <strong>the</strong> different wave<strong>for</strong>ms that can be expected<br />

at <strong>the</strong> output <strong>of</strong> <strong>the</strong> different blocks <strong>of</strong> Fig. 4a. In Fig. 4b, it is<br />

assumed that <strong>the</strong> <strong>of</strong>fice lighting level is above an upper limit<br />

(i.e., 6.2 V) <strong>and</strong> <strong>the</strong> firing angle needs to be increased. The<br />

firing angle keeps increasing automatically until <strong>the</strong> <strong>of</strong>fice<br />

lighting falls below a preset upper limit.<br />

It is worth mentioning that <strong>the</strong> proposed firing angle controller<br />

provides a zero firing angle at minimum <strong>of</strong>fice overall<br />

lighting level <strong>and</strong> 90° at maximum <strong>of</strong>fice overall lighting level.<br />

The firing angle controller <strong>of</strong> Fig. 4a has been translated to<br />

a LABVIEW code. The developed LABVIEW code is used to


12 M. Taleb, N. Mannsour<br />

Out<br />

Towards Triac<br />

Gate Driver<br />

π<br />

X<br />

X2<br />

2 π<br />

3 π<br />

ωt<br />

4 π<br />

Sign Indicator<br />

Upper Part<br />

X1<br />

Output =1 if u ≤0<br />

Pulses Generator<br />

Output = 0 if u >0<br />

X4<br />

du<br />

----<br />

dt<br />

X<br />

X5<br />

X2 X3<br />

From Main<br />

Supply<br />

+<br />

a<br />

Z1<br />

+<br />

X6<br />

Voltage<br />

Trans<strong>for</strong>mer<br />

Z<br />

|u|<br />

Y6<br />

Output =1 if u1 ≥ u2<br />

Lower Part<br />

Output = 0 if u1


A self-controlled energy efficient <strong>of</strong>fice lighting system 13<br />

From Sensor<br />

(Potentiomer<br />

Terminals)<br />

From VT<br />

National Instrument Data<br />

Acquisition Card PCI 6221<br />

+ 5 V<br />

Optocoupler<br />

Mosfet<br />

+12 V<br />

Pulse<br />

Trans<strong>for</strong>mer<br />

G<br />

MT2<br />

MT1<br />

To predict <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> integral cycle controller<br />

<strong>of</strong> Fig. 6a <strong>and</strong> b visualizes <strong>the</strong> expected wave<strong>for</strong>ms that can<br />

be generated at <strong>the</strong> output <strong>of</strong> <strong>the</strong> different blocks <strong>of</strong> Fig. 6a.<br />

The wave<strong>for</strong>ms are drawn by pretending a 25% value <strong>for</strong><br />

<strong>the</strong> duty cycle <strong>for</strong> a generated periodic pulse <strong>of</strong> frequency<br />

2.5 Hz. The last wave<strong>for</strong>m <strong>of</strong> Fig. 6b can be interpreted by<br />

<strong>the</strong> fact that <strong>the</strong> triac <strong>of</strong> Fig. 3 will be <strong>of</strong>f <strong>for</strong> 0.1 s (i.e., 0.1 s<br />

corresponds to 5 cycles <strong>of</strong> <strong>the</strong> 50 Hz main supply) <strong>and</strong> conducting<br />

<strong>for</strong> <strong>the</strong> following 0.3 s (i.e., 0.3 s corresponds to 15 cycles<br />

<strong>of</strong> <strong>the</strong> 50 Hz main supply). The integral cycle controller <strong>of</strong><br />

Fig. 6a has been also written in ano<strong>the</strong>r LABVIEW code. Such<br />

LABVIEW code is insulated from <strong>the</strong> power circuit through<br />

<strong>the</strong> hardware <strong>of</strong> Fig. 5.<br />

Figure 5<br />

Insulating firing angle controller from power circuit.<br />

3.3. Conduction period controller<br />

<strong>the</strong> duty cycle reaches 100% value, no firing pulses will be provided<br />

to <strong>the</strong> triac gate <strong>and</strong> consequently no contribution is<br />

marked from <strong>the</strong> main electric outlet.<br />

The intended task from this controller is to provide conducting<br />

<strong>and</strong> non-conducting portions <strong>for</strong> <strong>the</strong> triac during each half<br />

cycle <strong>of</strong> <strong>the</strong> main supply. Fig. 7 suggests a practical circuit that<br />

can provide such intended task. The task is made possible<br />

Out<br />

X<br />

5<br />

0.2 0.3<br />

0.6 0.8<br />

Time (s)<br />

X3<br />

Upper Part<br />

Pulses Generator <strong>of</strong><br />

High Frequency<br />

X2<br />

NOT<br />

Output =1 if u ≥ 0<br />

X X1<br />

Output = 0 if u < 0<br />

Square wave<br />

2.5 Hz<br />

Y4<br />

Duty Cycle<br />

a<br />

Lower Part<br />

1<br />

-0.2<br />

y1 Y2 1 Y3 100<br />

0.2<br />

+ k<br />

-----<br />

- S<br />

Y<br />

0<br />

-1<br />

Integrator Limiter<br />

Vreference<br />

-5<br />

1<br />

0<br />

X1<br />

X2<br />

1<br />

0<br />

6.3<br />

6.0<br />

1<br />

0.3<br />

25<br />

%<br />

5<br />

5<br />

out<br />

X3<br />

0.1<br />

0.4<br />

0.1<br />

0.4<br />

0.1 0.4<br />

V potentiometer<br />

V reference<br />

Y1<br />

Y<br />

Y2<br />

Y3<br />

0.1<br />

0.4<br />

0.1<br />

0.4<br />

b<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.5<br />

0.8<br />

Time (s)<br />

0.8<br />

Time (s)<br />

0.8<br />

Time (s)<br />

Time (s)<br />

Time (s)<br />

0.8<br />

Time (s)<br />

0.8<br />

Time (s)<br />

Figure 6<br />

Integral cycle controller: (a) control block diagram, (b) expected wave<strong>for</strong>ms at different stages <strong>of</strong> <strong>the</strong> control block diagram.


14 M. Taleb, N. Mannsour<br />

Vrectified<br />

Comparator<br />

+VCC<br />

+<br />

-<br />

R discharching<br />

B<br />

V control<br />

B’<br />

V measured<br />

NO<br />

Oscillator<br />

Timer<br />

+VCC<br />

8<br />

4<br />

3<br />

+VCC<br />

7<br />

pulses<br />

6<br />

2 1 5<br />

Out<br />

Vs<br />

π<br />

2π<br />

V up<br />

3π<br />

V measured<br />

4π<br />

5π<br />

6π<br />

ωt<br />

Vc<br />

V down<br />

A A’<br />

R charging<br />

NO<br />

X1<br />

X2<br />

ωt<br />

ωt<br />

+VCC<br />

Upper Relay<br />

Upper Comparator<br />

+VCC<br />

LED<br />

+<br />

-<br />

X1<br />

+VCC<br />

X2<br />

+<br />

LED<br />

-<br />

Lower Comparator<br />

LDR<br />

Lower Relay<br />

V rectified<br />

V control<br />

Vs<br />

π<br />

π<br />

2π<br />

2π<br />

3π<br />

3π<br />

4π<br />

4π<br />

5π<br />

5π<br />

6π<br />

6π<br />

ωt<br />

ωt<br />

Pulses<br />

+VCC<br />

Vup<br />

+VCC<br />

Vdown<br />

π<br />

2π<br />

3π<br />

4π<br />

5π<br />

6π<br />

ωt<br />

Vs<br />

Out<br />

L<br />

240 V<br />

N<br />

π<br />

2π<br />

3π<br />

4π<br />

5π<br />

ωt<br />

6π<br />

Figure 7<br />

diagram.<br />

Conduction period controller: (a) control block diagram, (b) expected wave<strong>for</strong>ms at different stages <strong>of</strong> <strong>the</strong> control block<br />

through <strong>the</strong> result <strong>of</strong> comparing a rectified signal <strong>of</strong> <strong>the</strong> main<br />

voltage supply with a voltage level across a capacitor. The voltage<br />

level across <strong>the</strong> capacitor is monitored by <strong>the</strong> operation <strong>of</strong><br />

two comparators. The principle <strong>of</strong> operation <strong>of</strong> <strong>the</strong> different<br />

active devices in <strong>the</strong> figure (i.e., Fig. 7a) can be obtained from<br />

Maini (2007).<br />

When <strong>the</strong> <strong>of</strong>fice lighting exceeds a pre-set upper limit (i.e.,<br />

6.2 V), <strong>the</strong> upper comparator will allow <strong>the</strong> upper relay to close<br />

its contacts <strong>and</strong> consequently <strong>the</strong> capacitor voltage starts<br />

increasing through <strong>the</strong> charging resistance (R charging ). Increasing<br />

<strong>the</strong> capacitor voltage shortens <strong>the</strong> conducting periods <strong>of</strong> <strong>the</strong> triac.<br />

Similarly, when <strong>the</strong> <strong>of</strong>fice lighting falls below a pre-set lower<br />

limit (i.e., 5.8 V), <strong>the</strong> lower comparator allows <strong>the</strong> lower relay to<br />

close its contacts <strong>and</strong> consequently <strong>the</strong> capacitor voltage starts<br />

decreasing through <strong>the</strong> discharging resistance (R discharging ).<br />

Decreasing <strong>the</strong> capacitor voltage level extends <strong>the</strong> duration <strong>of</strong><br />

<strong>the</strong> triac conduction periods. When <strong>the</strong> <strong>of</strong>fice lighting is between<br />

<strong>the</strong> preset upper <strong>and</strong> lower limits, both relays contacts are found<br />

open <strong>and</strong> <strong>the</strong>re is a no-need to ei<strong>the</strong>r shorten or extend <strong>the</strong> conduction<br />

periods.


A self-controlled energy efficient <strong>of</strong>fice lighting system 15<br />

Table 1<br />

Controller<br />

Controllers per<strong>for</strong>mance.<br />

Increasing <strong>the</strong> conducting period means that more contribution<br />

<strong>of</strong> <strong>the</strong> main supply to <strong>the</strong> <strong>of</strong>fice lighting is expected<br />

<strong>and</strong> decreasing <strong>the</strong> conducting period means that less contribution<br />

<strong>of</strong> <strong>the</strong> main supply is expected.<br />

Fig. 7b depicts <strong>the</strong> different signals that can be expected at<br />

<strong>the</strong> output <strong>of</strong> <strong>the</strong> different block <strong>of</strong> Fig. 7a. The output port<br />

termed ‘‘Out’’ in Fig. 7a is linked to <strong>the</strong> gate <strong>of</strong> <strong>the</strong> triac <strong>of</strong><br />

Fig. 3 through <strong>the</strong> insulating gate circuit <strong>of</strong> Fig. 5.<br />

4. Controllers per<strong>for</strong>mance<br />

Electric energy Electric energy<br />

consumed by <strong>the</strong> saving index (%)<br />

<strong>of</strong>fice light system<br />

No-controller 2.98 kW h –<br />

Firing angle controller 2.90 kW h 2.68%<br />

Integral cycle controller 2.82 kW h 5.37%<br />

Conduction period controller 2.85 kW h 4.36%<br />

The main target <strong>of</strong> this investigation is to take advantage <strong>of</strong><br />

<strong>the</strong> surrounding sunlight in lighting up an <strong>of</strong>fice. Excess<br />

<strong>of</strong> <strong>the</strong> surrounding sunlight means that a partial cut <strong>of</strong> <strong>the</strong><br />

main electric supply can be practiced <strong>and</strong> <strong>the</strong>re<strong>for</strong>e some<br />

savings in electric energy consumption can be expected. The<br />

partial cut is done by field implementation <strong>of</strong> <strong>the</strong> previous<br />

three controllers <strong>and</strong> testing <strong>the</strong>ir per<strong>for</strong>mance. The per<strong>for</strong>mance<br />

consists <strong>of</strong> recording how much electric energy can be<br />

consumed by <strong>the</strong> electric lighting system <strong>of</strong> <strong>the</strong> <strong>of</strong>fice during<br />

<strong>the</strong> <strong>of</strong>fice working hours period. Table 1 reflects energy consumption<br />

when testing <strong>the</strong> previous three controllers.<br />

As seen from <strong>the</strong> obtained results, a 5.37% <strong>of</strong> electric<br />

energy can be saved when using <strong>the</strong> integral controller. The<br />

saving energy index in <strong>the</strong> third column <strong>of</strong> Table 1 was calculated<br />

as: (Energy consumed without using controller Energy<br />

consumed when using a particular controller) * 100/(Energy<br />

consumed without using controller).<br />

It should be emphasized that <strong>the</strong> energy saving is reached<br />

while <strong>the</strong> <strong>of</strong>fice lighting level is kept between two pre-set upper<br />

<strong>and</strong> lower limits (i.e., 6.2 V <strong>and</strong> 5.8 V, respectively). Note that<br />

<strong>the</strong> two pre-set limits do not harm <strong>the</strong> com<strong>for</strong>t <strong>of</strong> <strong>the</strong> anticipated<br />

<strong>of</strong>fice occupants. The drawback that was encountered<br />

when implementing such controllers is <strong>the</strong> creation <strong>of</strong> some<br />

minor flickering in <strong>the</strong> florescent lamps. Such phenomenon<br />

has been relatively visible when implementing <strong>the</strong> integral cycle<br />

controller.<br />

5. Conclusion<br />

The presence <strong>of</strong> <strong>the</strong> natural sunlight around an <strong>of</strong>fice has a significant<br />

contribution to <strong>the</strong> overall lighting <strong>of</strong> <strong>the</strong> <strong>of</strong>fice. The<br />

contribution consists <strong>of</strong> cutting partially some <strong>of</strong> <strong>the</strong> electric<br />

energy consumption needed presumably by <strong>the</strong> <strong>of</strong>fice lighting<br />

system. The partial cut in <strong>the</strong> electric energy consumption in<br />

this paper has been fulfilled by field implementation <strong>of</strong> three<br />

suggested controllers. In per<strong>for</strong>ming <strong>the</strong> partial cut in <strong>the</strong> electric<br />

energy consumption, a 5.37% as an index <strong>of</strong> electric energy<br />

saving has been reached whilst <strong>the</strong> overall light level in <strong>the</strong><br />

<strong>of</strong>fice is kept nearly com<strong>for</strong>table to <strong>the</strong> <strong>of</strong>fice occupants. Some<br />

flickering phenomenon has been encountered when implementing<br />

<strong>the</strong> three controllers. The idea presented in this paper can<br />

be extended to a number <strong>of</strong> real life processes that may require<br />

a controlled light level to produce a desired optimum output/<br />

level.<br />

Acknowledgment<br />

The financial assistance <strong>of</strong> <strong>the</strong> Deanship <strong>of</strong> Research at<br />

University <strong>of</strong> Bahrain in per<strong>for</strong>ming <strong>the</strong> different tasks <strong>of</strong><br />

<strong>the</strong> present contribution is appreciated by <strong>the</strong> authors.<br />

References<br />

Chugach Electric <strong>Association</strong>, Alaska, USA. <br />

(accessed 4.08.11).<br />

Greenfeet, LLC (copyright 1999–2008). The Benefits <strong>of</strong> Compact<br />

Fluorescent Lighting, Cali<strong>for</strong>nia, USA. (accessed 4.08.11).<br />

Maini, Anil K., 2007. Digital Electronics: Principles, Devices, <strong>and</strong><br />

Applications. John Wiley & Sons Ltd, West Sussex, Engl<strong>and</strong>.<br />

Mohan, N., Undel<strong>and</strong>, T., Robbins, W., 2003. Power Electronics:<br />

Converters, Applications, <strong>and</strong> Design. John Wiley & Sons Ltd.,<br />

West Sussex, Engl<strong>and</strong>.<br />

National Instruments Corporation (2008). Introducing LABVIEW<br />

8.6. Austin, Texas, USA.<br />

Radio Spares (RS) Components, Part 232-3816 (March 1997), Light<br />

Dependent Resistors.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 16-20<br />

)C – Mn(<br />

عملية الكسر لفوالذ الكربون –<br />

المنجنيز<br />

الهش بالهيدروجين<br />

نور الدين<br />

سعيداني،‏ عبدالقادر ميحي،‏ رشيد بن بوتة<br />

قسم الميكانيك،‏ كلية التكنولوجيا،‏ جامعة باتنة،‏ باتنة 00000،<br />

الجزائر<br />

و<br />

الملخص:‏<br />

تم فحص بنية عينات تكسرت عن طريق اختبار إجهاد الشد بسرعة تشوه بطيئة،‏ بهدف دراسة أصناف<br />

الكسر ‏)التقصف(‏ باستخدام مجهر مسح إلكتروني.‏<br />

أرشدت هذه الدراسة إلى تحديد ثالثة أصناف من العينات:‏ عينات غير هشة،‏ عينات خفيفة الهشاشة<br />

وعينات هشة جدا.‏ وتتألف الفئة األولى من عينات االختبار التي تمت تجربتها في الهواء بجهد<br />

08.0-<br />

08.0-<br />

08.0-<br />

فولط مع معدل الهش<br />

فولط.‏ وذلك بسبب هشاشة<br />

08.0 ≥<br />

.08..<br />

كما تم اختبار العينات خفيفة الهشاشة بجهد<br />

أما بالنسبة للعينات المعنية بنسبة الهش أقل من<br />

08..<br />

فتدخل في الفئة<br />

ذات العينات الهشة جدا.‏<br />

أثبتت دراسات صور االنكسار أن هش الفوالذ الصلب ناتج عن الهش بواسطة الهيدروجين.‏ كما لوحظ<br />

أن البنية ‏)بين الحبيبات وعبر الحبيبات(‏ لمقاطع االنكسار،‏ بالنسبة للفوالذ الهش،‏ هي نموذجية ودالة<br />

الهش بالهيدروجين.‏<br />

N. Saidani et al.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 16–20<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Fracture process <strong>of</strong> C–Mn steel embrittled by hydrogen<br />

N. Saidani, A. Mihi, R. Benbouta *<br />

University <strong>of</strong> Batna, Faculty <strong>of</strong> Technology, Mechanical Engineering Department, Batna 05000, Algeria<br />

Available online 31 January 2012<br />

KEYWORDS<br />

Fracture;<br />

Hydrogen embrittlement;<br />

Morphologies;<br />

Fracture modes;<br />

Scanning electron microcopy<br />

(SEM)<br />

Abstract Fracture morphologies <strong>of</strong> tested specimens, by means <strong>of</strong> <strong>the</strong> slow strain rate tensile testing,<br />

were examined to study fracture modes by using scanning electron microscopy.<br />

This study has led to <strong>the</strong> determination <strong>of</strong> three categories <strong>of</strong> specimens: unembrittled specimens,<br />

slightly embrittled specimens <strong>and</strong> severely embrittled specimens. The first category <strong>of</strong> unembrittled<br />

specimens includes specimens tested in air, at potentials <strong>of</strong> 0.80 <strong>and</strong> 0.85 V (SCE) with embrittlement<br />

ratio (ER) P 0.97. In <strong>the</strong> category <strong>of</strong> specimens slightly embrittled, only <strong>the</strong> specimen<br />

tested at 0.9 V with an embrittlement ratio (ER) <strong>of</strong> 0.69 is included. The last category <strong>of</strong> severely<br />

embrittled specimens includes <strong>the</strong> specimens with embrittlement ratio (ER) < 0.69.<br />

The fractographic studies are consistent with <strong>the</strong> embrittlement <strong>of</strong> steel being due to hydrogen<br />

embrittlement. The intergranular <strong>and</strong> transgranular quasicleavage fracture surface morphologies<br />

observed with embrittled specimens are typical <strong>and</strong> characteristic <strong>of</strong> hydrogen embrittlement.<br />

ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

* Corresponding author. Tel./fax: +213 0 33 81 21 43.<br />

E-mail address: r_benbouta@yahoo.fr (R. Benbouta).<br />

1815-3852 ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2012.01.001<br />

Production <strong>and</strong> hosting by Elsevier<br />

The detrimental effect which hydrogen produces in metals,<br />

generally known as hydrogen embrittlement (HE), has always<br />

been one <strong>of</strong> <strong>the</strong> main problems <strong>of</strong> practical <strong>and</strong> <strong>the</strong>oretical<br />

material technology <strong>of</strong> corrosion <strong>and</strong> protection <strong>of</strong> metals.<br />

Hydrogen is <strong>the</strong> cause <strong>of</strong> damage whenever metal hydrogen<br />

systems are involved in <strong>the</strong> production, transport <strong>and</strong> storage<br />

<strong>of</strong> hydrogen, or fluids containing hydrogen, <strong>and</strong> in <strong>the</strong> presence<br />

<strong>of</strong> electrochemical processes such as pickling, electroplating,<br />

cathodic protection <strong>and</strong> corrosion. Hydrogen when<br />

present ei<strong>the</strong>r as an external gas environment or as a dissolved<br />

proton can produce internal cracking or a dramatic loss <strong>of</strong><br />

toughness in a variety <strong>of</strong> metals (Takeda <strong>and</strong> McMahon,<br />

1981; Gooch, 1974; Woodward <strong>and</strong> Procter, 1988; Hirth <strong>and</strong><br />

Johnson, 1976; Luu <strong>and</strong> Wu, 2001; Wu <strong>and</strong> Wu, 2002).<br />

When considering <strong>the</strong> hydrogen embrittlement phenomenon,<br />

one <strong>of</strong> <strong>the</strong> areas that is <strong>of</strong> most interest is <strong>the</strong> mode <strong>of</strong><br />

hydrogen fracture.<br />

In <strong>the</strong> present work <strong>the</strong> objective was to study <strong>the</strong> fracture<br />

process <strong>of</strong> <strong>the</strong> specimens tested under slow strain rate testing<br />

(SSRT).<br />

2. Experimental procedure<br />

2.1. Material<br />

The material investigated in <strong>the</strong> present study was low carbonmanganese<br />

structural steel BS 4360 grade 50D. The nominal<br />

composition <strong>of</strong> this material <strong>and</strong> its mechanical properties in<br />

<strong>the</strong> condition in which it has been tested are given in Table 1.<br />

The cylindrical tensile specimens with a 25.0 mm gauge length


Fracture process <strong>of</strong> C–Mn steel embrittled by hydrogen 17<br />

Table 1 Mechanical properties <strong>and</strong> chemical composition <strong>of</strong><br />

steel.<br />

Mechanical properties Heat treatment<br />

r 0.2 = 1220 MPa Austenitization <strong>for</strong> 1 min at 1200 °C<br />

U.T.S = 1440 MPa Water quench<br />

RA = 48% Tempered <strong>for</strong> 30 min at 170 °C<br />

Chemical composition wt%<br />

C Si Mn S P Ni Cr Mo<br />

0.16 0.34 1.44 0.011 0.026 0.03 0.06


18 N. Saidani et al.<br />

3.1.2.3. Tests at 0.95 to 1.3 V. The tests carried out at<br />

potentials <strong>of</strong> 0.95 to 1.3 V showed high degree <strong>of</strong> embrittlement<br />

(ER ranged from 0.063 to 0.323). Examination <strong>of</strong> <strong>the</strong><br />

fracture surfaces indicated similarities between <strong>the</strong> fracture<br />

morphologies. The fracture surfaces appeared to have a flat<br />

fracture pr<strong>of</strong>ile normal to <strong>the</strong> loading direction <strong>and</strong> shear type<br />

fracture oriented at about 45° to <strong>the</strong> tensile axis. Typical photomicrographs<br />

<strong>of</strong> fracture are shown in Fig. 5.<br />

In general, <strong>the</strong> fracture surfaces consisted mainly <strong>of</strong> a large<br />

ductile region <strong>and</strong> small brittle area. The brittle area was generally<br />

localized at or near <strong>the</strong> edge <strong>of</strong> <strong>the</strong> fracture surface with<br />

a predominantly intergranular cracking along <strong>the</strong> prior austenite<br />

grain boundaries <strong>and</strong> limited areas <strong>of</strong> quasicleavage. Fig. 6<br />

is characteristic <strong>of</strong> <strong>the</strong> features observed on many fracture surfaces<br />

in this potential range. It was noticed that as <strong>the</strong> potential<br />

became more negative <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> brittle region<br />

increases.<br />

4. Discussion<br />

Figure 3 SEM photomicrograph <strong>of</strong> fractured specimen tested at<br />

0.85 V (SCE).<br />

4.1. Fracture process<br />

4.1.1. Unembrittled specimens<br />

All <strong>the</strong>se specimens fractured in a similar pattern <strong>of</strong> microvoids<br />

coalescence. Usually, <strong>the</strong> microvoids nucleate at regions<br />

<strong>of</strong> highly localized plastic de<strong>for</strong>mation such as inclusions <strong>and</strong><br />

grain boundaries. As <strong>the</strong> stress on <strong>the</strong> specimen increases,<br />

<strong>the</strong> microvoids exp<strong>and</strong> <strong>and</strong> intersect one ano<strong>the</strong>r <strong>and</strong> finally<br />

break up when <strong>the</strong> reduced cross sectional area cannot withst<strong>and</strong><br />

<strong>the</strong> load any longer.<br />

4.2. Slightly embrittled specimens<br />

(a) Gauge section<br />

(b) Fracture surface edge<br />

Figure 4 SEM photomicrographs <strong>of</strong> <strong>the</strong> gauge section <strong>and</strong><br />

fracture surface edge <strong>of</strong> steel at 0.9 V (SCE).<br />

dimples contained in <strong>the</strong> central cup <strong>of</strong> <strong>the</strong> fracture surfaces is<br />

shown in Fig. 2. These dimples are <strong>the</strong> result <strong>of</strong> <strong>the</strong> growth <strong>and</strong><br />

coalescence <strong>of</strong> microvoids which nucleate at particles such as<br />

inclusions <strong>and</strong> precipitates.<br />

3.1.2. Fracture in 3.5% NaCl<br />

3.1.2.1. Tests at 0.8 <strong>and</strong> 0.85 V. For <strong>the</strong> tests per<strong>for</strong>med at<br />

0.8 <strong>and</strong> 0.85 V <strong>the</strong> fracture surface <strong>of</strong> specimens had also a<br />

cup <strong>and</strong> cone appearance similar to that obtained in <strong>the</strong> air<br />

test, Fig. 3.<br />

3.1.2.2. Test at 0.9 V. In this test, some embrittlement was noticed.<br />

Failure occurred with an amount <strong>of</strong> plastic de<strong>for</strong>mation<br />

lower than that observed in tests in air, <strong>and</strong> at 0.8 <strong>and</strong><br />

0.85 V, Fig. 4a. The fracture surface consisted <strong>of</strong> a ragged<br />

fracture path <strong>and</strong> smoo<strong>the</strong>r fracture path inclined at about<br />

45° from <strong>the</strong> loading direction. A few patches, consisted<br />

predominantly <strong>of</strong> intergranular cracking along <strong>the</strong> prior<br />

austenite grain boundaries, were observed at <strong>the</strong> edge <strong>of</strong> <strong>the</strong><br />

ragged fracture path. A photomicrograph <strong>of</strong> <strong>the</strong> brittle area<br />

is shown in Fig. 4b.<br />

In this case, brittle type <strong>of</strong> failure, predominantly intergranular<br />

cracking along prior austenite grain boundaries <strong>and</strong> some quasicleavage<br />

features, accompanied <strong>the</strong> ductile type <strong>of</strong> failure such<br />

as dimples <strong>and</strong> ductile tearing. The proportion <strong>of</strong> <strong>the</strong> brittle region<br />

was minimal, only one or two patches localized at <strong>the</strong><br />

edges <strong>of</strong> <strong>the</strong> specimen. It is believed that <strong>the</strong> presence <strong>and</strong><br />

growth <strong>of</strong> <strong>the</strong>se brittle types <strong>of</strong> fracture cause <strong>the</strong> cross section<br />

<strong>of</strong> <strong>the</strong> specimen, already reduced by necking, to be reduced even<br />

more, <strong>and</strong> thus, <strong>the</strong> specimen will fail earlier than in <strong>the</strong>ir<br />

absence. Because <strong>of</strong> <strong>the</strong> limited amount <strong>of</strong> hydrogen available<br />

under <strong>the</strong>se conditions, <strong>the</strong> cracks do not grow long enough<br />

to cause an earlier reduction in <strong>the</strong> net cross sectional area.<br />

4.3. Severely embrittled specimens<br />

In this category <strong>of</strong> tests, <strong>the</strong> hydrogen availability is very high,<br />

it diffuses into steel through <strong>the</strong> lattice <strong>and</strong> accumulates at defect<br />

sites such as dislocations, inclusions, grain boundaries,<br />

microvoids, phase interface <strong>and</strong> carbides. Its interaction with<br />

certain <strong>of</strong> <strong>the</strong>se defects results in intergranular or transgranular<br />

quasicleavage cracking. Since <strong>the</strong> availability <strong>of</strong> hydrogen is<br />

high, <strong>the</strong> number <strong>of</strong> sites <strong>for</strong> crack nucleation increases <strong>and</strong><br />

<strong>the</strong>y grow long enough so that <strong>the</strong>y could link more easily,<br />

resulting in a surface covered with a large fraction <strong>of</strong> brittle<br />

types <strong>of</strong> failures. Also, as <strong>the</strong> cracks grow faster, <strong>the</strong> reduction<br />

in <strong>the</strong> net cross sectional area occurs at an earlier stage than<br />

when insufficient hydrogen is available.<br />

In summary <strong>the</strong> reduced ductility <strong>of</strong> <strong>the</strong> C–Mn structural<br />

steel when tested in NaCl solution at cathodic applied


Fracture process <strong>of</strong> C–Mn steel embrittled by hydrogen 19<br />

(a) Gauge section (- 1. 1 V ) (b) Fracture surface(- 1. 1 V )<br />

(c) Gauge section (- 1.3 V ) (d) Fracture surface(- 1.3 V )<br />

Figure 5 Typical SEM photomicrographs <strong>of</strong> <strong>the</strong> gauge sections <strong>and</strong> fracture surfaces <strong>of</strong> specimens tested at potentials between 0.95<br />

<strong>and</strong> 1.3 V (SCE).<br />

(a) Tested at –0.95 V<br />

(b) Tested at – 1.1 V<br />

(c) Tested at – 1.3 V<br />

Figure 6 Selected SEM photomicrographs <strong>of</strong> <strong>the</strong> fracture surface edge <strong>of</strong> specimens tested at potentials between 0.95 <strong>and</strong> 1.3 V<br />

(SCE).


20 N. Saidani et al.<br />

potentials is <strong>the</strong> result <strong>of</strong> <strong>the</strong> presence <strong>of</strong> mainly intergranular<br />

cracks induced by cathodically evolved hydrogen. The hydrogen<br />

which has diffused through <strong>the</strong> lattice accumulates at susceptible<br />

interfaces, <strong>and</strong> probably lowers <strong>the</strong> cohesive strength <strong>of</strong><br />

<strong>the</strong> lattice after a critical concentration has been reached, <strong>the</strong>reby<br />

initiating an embrittling event at room temperatures in<br />

ductile steel (Yoshino <strong>and</strong> McMahon, 1974; Wang et al., 2007).<br />

5. Conclusion<br />

This work is devoted to fractographic investigation <strong>of</strong> C–Mn<br />

structural steel under slow strain rate tensile testing. Examination<br />

<strong>of</strong> <strong>the</strong> fracture surfaces using SEM revealed <strong>the</strong> following<br />

results:<br />

1. The intergranular <strong>and</strong> transgranular quasicleavage fracture<br />

surface morphologies observed with embrittled specimens<br />

are typical <strong>and</strong> characteristic <strong>of</strong> hydrogen embrittlement.<br />

2. The reduction in ductility <strong>of</strong> steel is attributed to <strong>the</strong><br />

appearance <strong>of</strong> brittle modes <strong>of</strong> fracture such as intergranular<br />

<strong>and</strong> transgranular quasicleavage features on <strong>the</strong> fracture<br />

surface.<br />

References<br />

Gooch, T.G., 1974. Stress corrosion cracking <strong>of</strong> welded joints in high<br />

strength steels weld. Welding <strong>Journal</strong> 53, 2877.<br />

Hirth, J.P., Johnson, H.H., 1976. Hydrogen problems in energy related<br />

technology. Corrosion 32, 3.<br />

Luu, W.C., Wu, J.K., 2001. Influence <strong>of</strong> aluminium content on<br />

retarding hydrogen transport in Fe–Al binary alloys. Corrosion<br />

Science 43, 2325.<br />

Takeda, Y., McMahon, C.J., 1981. Strain controlled vs stress<br />

controlled hydrogen induced fracture in a quenched <strong>and</strong> tempered<br />

steel. Metallurgical Transactions 12A, 1255.<br />

Wang, M., Akiyama, E., Tsuzaki, K., 2007. Effect <strong>of</strong> hydrogen on <strong>the</strong><br />

fracture behavior <strong>of</strong> high strength steel during slow strain rate test.<br />

Corrosion Science 49, 4081.<br />

Woodward, J., Procter, R.P.M., 1988. Fatigue <strong>of</strong> <strong>of</strong>fshore structures.<br />

In: Dover, W.D., Glinka, G. (Eds.), Proceedings <strong>of</strong> International<br />

Conference, London.<br />

Wu, T.I., Wu, J.K., 2002. Effects <strong>of</strong> thiourea <strong>and</strong> its derivatives on <strong>the</strong><br />

electrolytic hydrogenation behavior <strong>of</strong> Ti–6Al–4V alloy. Materials<br />

Letters 53, 193.<br />

Yoshino, K., McMahon Jr., 1974. The cooperative relation between<br />

temper embrittlement <strong>and</strong> hydrogen embrittlement in a high<br />

strength steel. Metallurgical Transactions 5A, 363.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 21-26<br />

قياسات األشعة في مياه الشرب في منطقة النصر بغزة<br />

ماهر عمر الغصين،‏<br />

عبد القادر أبوشمالة<br />

الجامعة اإلسالمية<br />

في غزة،‏<br />

قسم الفيزياء،‏ ص.‏ ب 801،<br />

فلسطين غزة،‏<br />

الملخص:‏<br />

إن األشعة المؤينة تأتي من الكون ومن األرض و حتى من داخل أجسامنا،‏ فهي موجودة في الهواء الذي<br />

نتنفسه وفي الطعام الذي نأكله وفي الماء الذي نشربه وفي مواد البناء التي نبني بها بيوتنا.‏<br />

ان التعرض لغاز الرادون ومخلفاته يعتقد بأنه يعمل على زيادة خطر االصابة بالعديد من انواع السرطان<br />

ومنها سرطان الرئة في حال استنشاق الغاز.‏ أما في حال تناول ماء يحتوي على غاز الرادون فإنه يعتقد<br />

بان يكون مصاحبا الى زيادة خطورة االصابة بأورام للعديد من االعضاء الداخلية و خاصة المعدة.‏<br />

في هذه الدراسة،‏ لقد تم قياس شدة النشاط اإلشعاعي لجسيمات ألفا ويبتا وأشعة جاما في مياه الشرب في<br />

منطقة النصر شمال غرب مدينة غزة<br />

.<br />

للقيام بهذا العمل تم استخدام كاشف المسارات النووية<br />

)CR-93(<br />

وبعض الكواشف األخرى مثل عداد جيجر وصوديم أيودين.‏ متوسط النشاط اإلشعاعي لجسيمات ألفا كان<br />

95.53<br />

بيكرل لكل متر مكعب<br />

,<br />

لكل متر مكعب وأصغر قيمة كانت<br />

أي مايعادل<br />

تعرض وتقارن بالمتوسط العالمي وهو<br />

االشعاعي.‏<br />

0.35.<br />

بيكو كوري لكل لتر,‏ أكبر قيمة كانت<br />

46.46<br />

46.43<br />

55<br />

بيكرل<br />

بيكرل لكل متر مكعب ‏.النتائج من الكواشف األخرى سوف<br />

بيكو كوري لكل لتر,‏ جميع النتائج تدل علي تدني النشاط<br />

M.O. El-Ghossain, A.A. Abu Shammala


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 21–26<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Radioactivity measurements in tap water in Gaza Strip<br />

(Al-Naser Area)<br />

Maher O. El-Ghossain *, Abedalqader A. Abu Shammala<br />

Physics Department, The Islamic University <strong>of</strong> Gaza, Gaza, Occupied Palestinian Territory<br />

Available online 23 November 2011<br />

KEYWORDS<br />

CR-39;<br />

Tap water;<br />

Radiation;<br />

Alpha concentration<br />

Abstract Ionizing radiation comes from outer space (cosmic), <strong>the</strong> ground (terrestrial), <strong>and</strong> even<br />

from within our own bodies. It is present in <strong>the</strong> air we brea<strong>the</strong>, <strong>the</strong> food we eat, <strong>the</strong> water we drink,<br />

<strong>and</strong> in <strong>the</strong> construction materials used to build our homes. Exposure to radon <strong>and</strong> its progeny is<br />

believed to be associated with increased risks <strong>of</strong> several kinds <strong>of</strong> cancer. When radon or its progeny<br />

is inhaled, lung cancer accounts <strong>for</strong> most <strong>of</strong> <strong>the</strong> total incremental cancer risk. Ingestion <strong>of</strong> radon in<br />

water is suspected <strong>of</strong> being associated with increased risk <strong>of</strong> tumors <strong>of</strong> several internal organs, primarily<br />

<strong>the</strong> stomach.<br />

In this work, <strong>the</strong> activity <strong>of</strong> alpha, beta <strong>and</strong> gamma radiation, in tap water in <strong>the</strong> north-east <strong>of</strong><br />

Gaza (Al-Naser area) were measured. For this purpose we used a solid state nuclear track detectors<br />

(CR-39) <strong>and</strong> some o<strong>the</strong>r detectors (Geiger counter, NaI detector). The average gross alpha concentration<br />

from C4-39 is 35.50 Bq/m 3 (0.95 pci/L), <strong>the</strong> maximum concentration is 64.67 Bq/m 3 , <strong>and</strong><br />

minimum concentration is 24.20 Bq/m 3 . Results obtained from all detectors, <strong>and</strong> <strong>the</strong>ir methods will<br />

be shown, <strong>and</strong> compared with <strong>the</strong> word average <strong>of</strong> 15 pci/L, all results indicate low level <strong>of</strong> activity.<br />

ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

Most water sources have very low levels <strong>of</strong> radioactive contaminants<br />

(radio nuclides), levels low enough to not be considered<br />

a public health concern. Radio-nuclides emit ‘‘ionizing radiation’’,<br />

a known human carcinogen, when <strong>the</strong>y naturally decay.<br />

* Corresponding author.<br />

E-mail address: ghossain@iugaza.edu.ps (M.O. El-Ghossain).<br />

1815-3852 ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.10.003<br />

Production <strong>and</strong> hosting by Elsevier<br />

Long-term exposure to radionuclides in drinking water may<br />

cause cancer. Of particular concern are naturally occurring<br />

uranium <strong>and</strong> <strong>the</strong> naturally occurring radium isotopes, radium-226<br />

<strong>and</strong> radium-228, which have been observed to accumulate<br />

to levels <strong>of</strong> concern in drinking water sources. Most <strong>of</strong><br />

<strong>the</strong> naturally occurring radionuclides are alpha particle emitters<br />

(e.g., <strong>the</strong> uranium isotopes <strong>and</strong> radium-226), naturally<br />

occurring beta particle emitters do occur (e.g., radium-228<br />

<strong>and</strong> potassium-40) (Environmental Protection Agency (EPA),<br />

2000; Beir, 2000). The source <strong>of</strong> naturally occurring radionuclides<br />

is <strong>the</strong> earth’s crust. Among <strong>the</strong>se radionuclides <strong>the</strong>re exist<br />

three radioactive series originating from 238 U, 235 U <strong>and</strong> 232 Th<br />

being one <strong>of</strong> <strong>the</strong> most abundant sources <strong>of</strong> naturally occurring<br />

radioactivity, <strong>the</strong> 238 U series has been widely investigated.<br />

Exposure to radionuclides from drinking water results in<br />

<strong>the</strong> increased risk <strong>of</strong> cancer. The radioactive particles (alpha,<br />

beta) <strong>and</strong> gamma photons emitted by radionuclides are called<br />

‘‘ionizing radiation’’ because <strong>the</strong>y ionize (‘‘destabilize’’) nearby


22 M.O. El-Ghossain, A.A. Abu Shammala<br />

atoms as <strong>the</strong>y travel through a cell or o<strong>the</strong>r material. In living<br />

tissue, this ionization process can damage chromosomes or<br />

o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> cell. This cellular damage can lead to <strong>the</strong><br />

death <strong>of</strong> <strong>the</strong> cell or to unnatural reproduction <strong>of</strong> <strong>the</strong> cell. Exposure<br />

to elevated uranium levels in drinking water has been<br />

shown to lead to changes in kidney function that are indicators<br />

<strong>of</strong> potential future kidney failure (Beir, 2000; Sources <strong>and</strong><br />

health effect <strong>of</strong> ionizing radiation 1980).<br />

EPA has promulgated a limit <strong>for</strong> uranium as required by<br />

<strong>the</strong> 1986 amendments to <strong>the</strong> Safe Drinking Water Act. The<br />

current st<strong>and</strong>ards (‘‘Risk Assessment <strong>of</strong> Radon in Drinking<br />

Water’’, released September 15, 1998,) are: combined radium<br />

226/228 <strong>of</strong> 5 pci/L; a gross alpha st<strong>and</strong>ard <strong>for</strong> all alphas <strong>of</strong><br />

15 pci/L, not including radon <strong>and</strong> uranium; a combined st<strong>and</strong>ard<br />

<strong>of</strong> 4 mrem/year <strong>for</strong> beta emitters (Risk assessment <strong>of</strong> radon<br />

in drinking water, 1998).<br />

2. Experimental methods<br />

Samples were collected from 40 places, from <strong>the</strong> north-west region<br />

<strong>of</strong> Gaza city, Al-Naser region <strong>of</strong> Gaza, which was divided<br />

into four regions in our survey, included Nasser west (A), Nasser<br />

east (B), Nasser shakhradwan (C), Nasser south (D). We<br />

have obtained ten samples from <strong>the</strong> houses <strong>of</strong> each area. After<br />

that, each sample was put in a one liter plastic jar to do <strong>the</strong> test<br />

<strong>of</strong> radiation activity, <strong>the</strong> detectors that used <strong>for</strong> making <strong>the</strong><br />

measurements are:<br />

(a) Solid State Nuclear Track Detectors (SSNTDs) are passive,<br />

low cost, long term method, most widely used <strong>for</strong> measuring<br />

radon <strong>and</strong> can be used <strong>for</strong> site assessment both indoors <strong>and</strong><br />

outdoors. (Durani <strong>and</strong> Ilic, 1997).<br />

The detectors are placed inside <strong>the</strong> dosimeters 1.5 cm above<br />

water. Detectors are usually exposed <strong>for</strong> 2–12 months. When<br />

alpha particles from <strong>the</strong> decay <strong>of</strong> radon <strong>and</strong> its progeny strike<br />

<strong>the</strong> detector, <strong>the</strong>y cause damage tracks. After <strong>the</strong> exposure, <strong>the</strong><br />

detector is chemically treated <strong>and</strong> <strong>the</strong> number <strong>of</strong> tracks over<br />

area counted by an optical microscope <strong>and</strong> radon concentration<br />

or gross alpha concentration is determined (David Bodansky<br />

et al., 1989). The water samples are placed in a calibrated<br />

(El-Ghossain <strong>and</strong> Abusaleh, 2007) plastic cup with plastic cover,<br />

<strong>the</strong> diameter <strong>of</strong> <strong>the</strong> cover equals 6 cm <strong>and</strong> <strong>the</strong> height <strong>of</strong> <strong>the</strong><br />

cup is 11 cm as shown in Figs. 1 <strong>and</strong> 2. The CR-39 detector is<br />

fixed under <strong>the</strong> cover facing <strong>the</strong> water sample <strong>and</strong> <strong>the</strong> radium<br />

source at <strong>the</strong> same distance <strong>of</strong> 1.5 cm, same volume, same<br />

geometry, <strong>and</strong> same temperature.<br />

The detector should remain undisturbed above <strong>the</strong> sample<br />

<strong>for</strong> at least 3 weeks. Solid State Nuclear Track Detector<br />

(CR-39) is used to measure Radon-222 or gross alpha concentration<br />

in water, soil & air at <strong>the</strong> collected sample. Each sample<br />

was put inside <strong>the</strong> cup as shown in Fig. 2. Forty detectors were<br />

exposed to <strong>for</strong>ty samples which concern <strong>the</strong> north-west region<br />

Figure 1<br />

Measurement technique <strong>for</strong> a solid radium source.<br />

Figure 2 Measurement technique using CR-39 to measure alpha<br />

activity in water.<br />

<strong>of</strong> Gaza Strip. This distribution <strong>of</strong> detectors is based on <strong>the</strong><br />

nature <strong>of</strong> <strong>the</strong> tap water type <strong>and</strong> geological location. The<br />

detectors are left in isolated place in <strong>the</strong> laboratory, about<br />

74 days during <strong>the</strong> months April, May <strong>and</strong> June <strong>of</strong> 2005; this<br />

is <strong>the</strong> exposure time to allow radon gas to come to an equilibrium<br />

level with radioactive parents. After <strong>the</strong> exposition was<br />

finished, <strong>the</strong> <strong>for</strong>ty detectors were collected <strong>and</strong> chemically<br />

etched using a 6 M (Mole) solution <strong>of</strong> NaOH, at <strong>the</strong> temperature<br />

<strong>of</strong> 70 °C, <strong>for</strong> 6 h, (st<strong>and</strong>ard etching condition). The CR-39<br />

detectors were mounted vertically in a stainless steel spring <strong>and</strong><br />

<strong>the</strong>n immersed in <strong>the</strong> etching solution. At <strong>the</strong> end <strong>of</strong> <strong>the</strong> etching<br />

process <strong>the</strong> detectors were washed thoroughly with distilled<br />

water <strong>and</strong> <strong>the</strong>n left to dry. Tracks in each detector counted<br />

visually using an optical microscope with a power <strong>of</strong><br />

(40 · 10). We counted <strong>the</strong> average number <strong>of</strong> tracks in 1 cm 2 .<br />

(b) Ano<strong>the</strong>r method used to measure alpha <strong>and</strong> beta activity<br />

in water samples was using <strong>the</strong> Electra Plus (DP6AD, measured<br />

CPM as Geiger counter, LLD 3-12 CPM) (Nuclear<br />

Energy <strong>and</strong> Radiation Protection (NERP), 2005). It is a portable<br />

rate meter based on <strong>the</strong> variety <strong>of</strong> GM <strong>and</strong> scintillation<br />

probes. A rectangular wooden box was filled with a water sample.<br />

The scintillation probes were put on <strong>the</strong> surface <strong>of</strong> <strong>the</strong><br />

water sample <strong>the</strong> window area equals to 100 cm 2<br />

(c) Also field space digital spectrometer (Dose rate 10 nSv/<br />

h-10 Sv/h) (Nuclear Energy <strong>and</strong> Radiation Protection<br />

(NERP), 2005) was used to measure <strong>the</strong> activity <strong>of</strong> gamma<br />

radiation in water. The probe <strong>of</strong> <strong>the</strong> device was put over <strong>the</strong><br />

surface <strong>of</strong> <strong>the</strong> water. The distance between <strong>the</strong> probe <strong>and</strong> <strong>the</strong><br />

water sample in <strong>the</strong> cup equals 0 cm.<br />

(d) The scintillation counter (Na I) (Nuclear Energy <strong>and</strong><br />

Radiation Protection (NERP), 2005) is a very common tool<br />

in nuclear <strong>and</strong> particle physics. It is used <strong>for</strong> measuring <strong>the</strong><br />

energies <strong>of</strong> gamma-ray photons <strong>and</strong> o<strong>the</strong>r elementary particles<br />

(Bell, 2005). The intensity <strong>of</strong> <strong>the</strong> light is proportional to <strong>the</strong><br />

amount <strong>of</strong> energy deposited in <strong>the</strong> crystal by radiation. The<br />

cup <strong>of</strong> <strong>the</strong> sample was used to taking a spectrum which resulted<br />

from <strong>the</strong> water by using scintillation counter where<br />

<strong>the</strong> probe <strong>of</strong> <strong>the</strong> device was put on <strong>the</strong> surface <strong>of</strong> water. The<br />

distances between <strong>the</strong> probe <strong>and</strong> <strong>the</strong> water sample in <strong>the</strong> cup<br />

equals 1 cm. The measurements obtained from <strong>the</strong> scintillation<br />

counter confirm <strong>the</strong>re is low level radiation <strong>of</strong> gamma radiation<br />

in <strong>the</strong> water in north-west <strong>of</strong> Gaza Strip. The basic technique<br />

<strong>for</strong> this measurement is to count <strong>the</strong> number <strong>of</strong> pulses<br />

during a fixed time interval as a function <strong>of</strong> pulse height,<br />

<strong>and</strong> make a graph <strong>of</strong> <strong>the</strong> number <strong>of</strong> pulses versus pulse height.<br />

(e) Geiger-Mu¨ller counters are used where <strong>the</strong> mechanism<br />

<strong>and</strong> methods are based on <strong>the</strong> interaction <strong>of</strong> <strong>the</strong> radiation with<br />

matter. Since ionization is an important process <strong>for</strong> radioactivity,<br />

most detectors exploit <strong>the</strong> signals generated due to ions


Radioactivity measurements in tap water in Gaza Strip (Al-NASER) 23<br />

Table 1 Final results <strong>for</strong> <strong>the</strong> four regions are <strong>of</strong> min, max <strong>and</strong> mean (E) concentrations from CR-39 detectors <strong>for</strong> (A), (B), (C) <strong>and</strong> (D)<br />

regions.<br />

Location No. <strong>of</strong> detectors Min. concentr. (Bq/m 3 ) Max. concentr. (Bq/m 3 ) E (Bq/m 3 ) S.D. (Bq/m 3 )<br />

A 10 21.32 46.33 32.59 1.77<br />

B 10 24.19 71.34 33.08 3.10<br />

C 10 24.22 103.73 45.59 7.60<br />

D 10 24.20 38.95 30.48 1.40<br />

Average 24.20 64.67 35.50 3.45<br />

<strong>and</strong> electrons all <strong>the</strong>se detectors calibrated with normal radioactive<br />

sources Co, Cs, <strong>and</strong> Na.<br />

3. Calculations <strong>of</strong> gross alpha concentration using CR-39<br />

Gross alpha contamination (El-Ghossain <strong>and</strong> Abusaleh, 2007)<br />

in water sample is measured in terms <strong>of</strong> Bq/m 3 . Determination<br />

<strong>of</strong> gross alpha concentration C w <strong>and</strong> <strong>the</strong> st<strong>and</strong>ard deviation r<br />

(S.D.) in a sample <strong>of</strong> water using nuclear track detector is done<br />

by <strong>the</strong> following Eq. (1).<br />

<br />

Bq<br />

C w ¼<br />

C <br />

RT R qw<br />

<br />

ð1Þ<br />

m 3 q R Tw<br />

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

P n<br />

k<br />

r n ðS:D:Þ ¼<br />

ðX k<br />

XÞ 2<br />

ð2Þ<br />

n 1<br />

where C w , Concentration <strong>of</strong> activity <strong>of</strong> 222 Rn in a water sample;<br />

C R , Concentration <strong>of</strong> activity <strong>of</strong> 226 Ra (solid radon source)<br />

equal 800 Bq/m 3 ; q R , Track density (number <strong>of</strong> tracks/m 2 )in<br />

detectors exposed to 226 Ra; T R , Exposure time (in days) <strong>of</strong><br />

detectors exposed to 226 Ra, equal 72 days; q w , Track density<br />

(number <strong>of</strong> tracks/m 2 ) in detectors exposed to water samples;<br />

T w , Exposure time (in days) <strong>of</strong> detectors exposed to in water<br />

samples, equal 74 days; X K , Activity concentration <strong>of</strong> a sample;<br />

X, Mean activity concentration <strong>of</strong> n samples; N, number<br />

<strong>of</strong> samples <strong>and</strong> r n (S.D.): st<strong>and</strong>ard de´viation.<br />

4. Calibration <strong>of</strong> CR-39 detectors<br />

Two detectors were exposed to a known activity <strong>of</strong> 226 Ra (solid<br />

radon source) <strong>for</strong> a determined period <strong>of</strong> time. Then <strong>the</strong>se<br />

detectors were treated by chemical etching. The average numbers<br />

<strong>of</strong> tracks/cm 2 were calculated. These detectors were inserted<br />

in <strong>the</strong> same volume (plastic cup) <strong>of</strong> <strong>the</strong> investigated<br />

sample, so <strong>the</strong>y considered as a calibration st<strong>and</strong>ard. (El-<br />

Ghossain <strong>and</strong> Abusaleh, 2007; Raed M. Abusaleh 2005; Mahmoud<br />

Rasas, 2003; Nabil Hamed, 2005). Similar method is<br />

also used <strong>for</strong> detector technique as in (El-Ghossain <strong>and</strong> Abusaleh,<br />

2007) to determine <strong>the</strong> calibration constant (factor) K.<br />

This is derived by dividing <strong>the</strong> track density by <strong>the</strong> total exposure<br />

<strong>of</strong> radon source as in Eq. (3).<br />

<br />

K ¼<br />

C RT R<br />

q R<br />

<br />

; ð3Þ<br />

Then Eq. (1) <strong>for</strong> radon concentration becomes as follows.<br />

<br />

Bq q<br />

C w ¼ K w<br />

m 3 1;2<br />

ð4Þ<br />

T w<br />

where<br />

k 1;2 ¼ðk 1 þ k 2 Þ=2<br />

The calibration factor (K) is determined, where two CR-39<br />

detectors are exposed to 226 Ra (Radium Source) <strong>of</strong> activity<br />

concentration 800 Bq/m 3 (from factory) <strong>for</strong> 72 days. The calibration<br />

process <strong>for</strong> detectors used in this survey was carried<br />

out at <strong>the</strong> nuclear laboratory at physics department in The Islamic<br />

University <strong>of</strong> Gaza (IUG). The density <strong>of</strong> tracks <strong>for</strong> <strong>the</strong><br />

two detectors equals 19.6 · 10 6 tracks/m 2 <strong>and</strong><br />

18.6 · 10 6 tracks/m 2 , <strong>and</strong> <strong>the</strong> average calibration factor K is<br />

3.06 · 10 3 [Bq/m 3 day/tracks/m 2 ], <strong>and</strong> <strong>the</strong> st<strong>and</strong>ard deviation<br />

is 10.5%. Substituting calibration constant in equation, <strong>the</strong><br />

activity concentration <strong>of</strong> alpha particles in water becomes:<br />

<br />

<br />

Bq<br />

C w ¼ 3:06 10 3 q w<br />

ð5Þ<br />

m 3<br />

T w<br />

Where 1 pci/L = 37 Bq/m 3 is used as conversion unit. E in <strong>the</strong><br />

Table 1 is <strong>the</strong> average concentration <strong>and</strong> (S.D.) is <strong>the</strong> st<strong>and</strong>ard<br />

deviation.<br />

4.1. Results from CR-39 detector <strong>and</strong> o<strong>the</strong>r detectors<br />

Gross alpha concentration in water samples were calculated<br />

using Eq. (5) <strong>for</strong> various locations. The minimum <strong>and</strong> <strong>the</strong> maximum<br />

gross alpha concentration in tap water samples measured<br />

in Bq/m 3 units are tabulated in <strong>the</strong> Table 1 as well as<br />

<strong>the</strong> mean value <strong>of</strong> gross alpha concentration (E) <strong>and</strong> St<strong>and</strong>ard<br />

Deviation (S.D.) <strong>for</strong> each location in this study which is mentioned<br />

(El-Ghossain <strong>and</strong> Abusaleh, 2007).<br />

The gross alpha concentration <strong>for</strong> each location was calculated<br />

by summing individual gross alpha concentration values<br />

<strong>of</strong> each detector, <strong>and</strong> <strong>the</strong> sums <strong>of</strong> <strong>the</strong> values were divided by<br />

<strong>the</strong> total number <strong>of</strong> detectors, results shown in Table 2. The<br />

st<strong>and</strong>ard deviation was also (El-Ghossain <strong>and</strong> Abusaleh,<br />

2007) calculated by Eq. (2). Fig. 3 shows <strong>the</strong> average gross alpha<br />

concentration <strong>for</strong> C <strong>and</strong> B locations found higher than D.<br />

The results indicate <strong>the</strong> range: from minimum 24.20 Bq/m 3 to<br />

maximum 64.67 Bq/m 3 in gross alpha concentration in each<br />

location which is very low level radiation, if to compare with<br />

<strong>the</strong> world average <strong>of</strong> 10 kBq/m 3 . This variation in gross alpha<br />

concentration inside <strong>the</strong> locations is mainly due to <strong>the</strong> different<br />

places, <strong>and</strong> different contamination level <strong>of</strong> tap water from<br />

environment.<br />

The results obtained from field space mentioned above<br />

showed <strong>the</strong> relation between <strong>the</strong> gamma activity in water sample<br />

in unit <strong>of</strong> (n Sv/h) as in Fig. 4, <strong>the</strong> minimum, maximum<br />

gamma concentration in tap water, mean value concentration<br />

<strong>and</strong> st<strong>and</strong>ard deviation, we see that, gamma activity in all Naser<br />

having <strong>the</strong> same values due mainly to <strong>the</strong> same exposed<br />

background radiation.<br />

Results <strong>of</strong> <strong>the</strong> alpha activities in water sample in unit <strong>of</strong><br />

(CPS) (which can be converted CPM) obtained from Electra


24 M.O. El-Ghossain, A.A. Abu Shammala<br />

Table 2 All results calculated from CR-39 <strong>for</strong> (A), (B), (C)<br />

<strong>and</strong> (D) regions.<br />

Cw Bq/m 3 No. <strong>of</strong> tracks 1 cm 2 Slides no. Regions<br />

24.19 59 1 Part ‘‘A’’ (Nasser West)<br />

39.77 97 2<br />

27.06 66 3<br />

38.13 93 4<br />

31.98 78 5<br />

21.32 52 6<br />

31.98 78 7<br />

33.21 81 8<br />

46.33 113 9<br />

31.98 78 10<br />

31.16 76 11 Part ‘‘B’’ (Nasser East)<br />

24.19 59 12<br />

25.42 62 13<br />

71.34 174 14<br />

27.88 68 15<br />

24.19 59 16<br />

25.42 62 17<br />

38.13 93 18<br />

38.13 93 19<br />

25.01 61 20<br />

31.98 78 21 Part ‘‘C’’ (Nasser South)<br />

74.21 181 22<br />

27.88 68 23<br />

27.47 67 24<br />

37.72 92 25<br />

27.06 66 26<br />

24.19 59 27<br />

27.88 68 28<br />

103.73 253 29<br />

73.80 180 30<br />

38.95 95 31 Part ‘‘D’’<br />

24.19 59 32 (Nasser Shakhradwan)<br />

27.06 66 33<br />

30.75 75 34<br />

24.19 59 35<br />

37.31 91 36<br />

35.67 87 37<br />

28.29 69 38<br />

27.06 66 39<br />

31.16 79 40<br />

35.50 86.50 Mean value ‘‘E’’<br />

3.45 7.19 St<strong>and</strong>ard deviation<br />

Gross Alpha Contamination(Bq/m3)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Figure 3<br />

A B C D Avg<br />

The Regions <strong>of</strong> Nasser<br />

Min.con.<br />

Max.con.<br />

Mean v."E"<br />

S.D.<br />

Gross alpha concentration in each location <strong>and</strong> S.D.<br />

Gamma contamination (nSv/h)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

A B C D avg<br />

The Region <strong>of</strong> Nasser<br />

min.con<br />

max.con<br />

E<br />

S.D<br />

Figure 4 Gamma concentration (nSv/h) in each location <strong>and</strong> S.<br />

Alpha Activity (C.P.S)<br />

Beta Activity (C.P.S)<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

Figure 5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Figure 6<br />

A B C D Avg<br />

The Regions <strong>of</strong> Nasser<br />

Alpha activity in Nasser regions (Electra Plus).<br />

A B C D Avg<br />

The regions <strong>of</strong> Gaza<br />

min<br />

max<br />

mean<br />

S.D<br />

min.con<br />

max.con.<br />

E<br />

S.D.<br />

Beta activity in Nasser regions (from Electra Plus).<br />

Plus <strong>and</strong> <strong>the</strong> relation among regions are shown in <strong>the</strong> Fig. 5.<br />

We can see that <strong>the</strong> alpha activity in Nasser Shakhradwan<br />

(C) is greater than in o<strong>the</strong>r regions <strong>and</strong> in Nasser East (B) –<br />

lower than in o<strong>the</strong>r region in activity values <strong>and</strong> <strong>the</strong> difference<br />

is still less than <strong>the</strong> st<strong>and</strong>ard deviation.<br />

Fig. 6 shows results <strong>of</strong> <strong>the</strong> beta activity in water samples in<br />

unit <strong>of</strong> (CPS) obtained from Electra Plus <strong>and</strong> <strong>the</strong> relation<br />

among regions. The results obtained from Electra Plus show<br />

that <strong>the</strong> beta radiation level in <strong>the</strong>se regions is very low if to<br />

compare with o<strong>the</strong>r regions.<br />

The results obtained from Geiger counter showed <strong>the</strong> relation<br />

between <strong>the</strong> radiation activities in water in unit <strong>of</strong> (CPM)<br />

<strong>and</strong> (kBq) calibrated. (The 37 kBq <strong>of</strong> Cesium radioactive<br />

source is used <strong>for</strong> calibration by multiplying by X (0.102) kBq).<br />

The results from all detectors indicate that, <strong>the</strong>re is low level<br />

radiation in <strong>the</strong> studied area, because it is below 10 kBq/m 3 .<br />

Fig. 7 shows <strong>the</strong>re is low level radiation in water samples in<br />

<strong>the</strong> studied area in comparison to each o<strong>the</strong>r. The activities


Radioactivity measurements in tap water in Gaza Strip (Al-NASER) 25<br />

The concentration <strong>of</strong> Radiation<br />

Activity (C.P.M)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

A B C D Avg<br />

The Regions <strong>of</strong> Nasser<br />

min.con.<br />

max.con<br />

E<br />

S.D.<br />

Figure 7 Radiation activity in Nasser regions in CPM <strong>for</strong><br />

comparison.<br />

Figure 8 Spectrum <strong>of</strong> water sample number-25 in Nasser<br />

Shakhradwan (C).<br />

Figure 9<br />

Spectrum <strong>of</strong> background in surrounding air.<br />

in <strong>the</strong>se samples are very low because it is far away from rocks<br />

which contain Uranium <strong>and</strong> o<strong>the</strong>r radioactive material.<br />

The results obtained from scintillation counter showed that<br />

<strong>the</strong>re is low level radiation in <strong>the</strong> studied area. (Region, y-axis<br />

is <strong>the</strong> number <strong>of</strong> counts <strong>of</strong> radiation <strong>and</strong> x-axis is <strong>the</strong> channel<br />

number (energy), spectrum from background, sources were taken<br />

<strong>for</strong> calibration, 137 Cs <strong>and</strong> 60 Co)<br />

In Fig. 8, <strong>the</strong> energy spectrum obtained <strong>for</strong> a water sample,<br />

each spectrum compared with each sample spectra <strong>and</strong> <strong>the</strong> calibration<br />

spectra, which showed no peaks appear in <strong>the</strong> sample<br />

spectra, that indicates that <strong>the</strong> water contain very low level <strong>of</strong><br />

radiation.<br />

The measurements <strong>of</strong> gamma rays made by means <strong>of</strong> <strong>the</strong><br />

scintillation counter confirm that <strong>the</strong>re is low level <strong>of</strong> radiation<br />

because <strong>the</strong> water sample level differs slightly from <strong>the</strong> background<br />

level, see Fig. 9.<br />

5. Conclusion<br />

The study purpose was to measure <strong>the</strong> radiation activity <strong>and</strong> to<br />

find out an approximate mean <strong>and</strong> range <strong>of</strong> radiation concentration<br />

in tap water at Nasser region in Gaza city. Only CR-39<br />

determines concentration <strong>of</strong> alpha particles in terms <strong>of</strong> quantity<br />

in Bq/m 3 , all o<strong>the</strong>r methods give <strong>the</strong> activity <strong>of</strong> radiation<br />

water samples in terms CPM.<br />

Nasser region was divided into four areas, in our survey, included,<br />

Nasser west (A), Nasser east (B), Nasser shakhradwan<br />

(C), <strong>and</strong> Nasser south (D). We used five types <strong>of</strong> detectors.<br />

These detectors <strong>and</strong> <strong>the</strong>ir methods are already explained earlier:<br />

Solid State Nuclear Track Detectors (CR-39), Geiger<br />

counter, Portable Gamma Spectrometer, Scintillation counter<br />

<strong>and</strong> Portable Electra Plus.<br />

In <strong>the</strong> present work all detector results indicate <strong>the</strong> low level<br />

<strong>of</strong> radiation activity in <strong>the</strong> Al-Nasser area. In general most<br />

water samples have very low levels <strong>of</strong> <strong>the</strong> natural radionuclides,<br />

<strong>and</strong> <strong>the</strong> average alpha concentration was 35.95 Bq/m 3<br />

or 0.95 pci/L <strong>for</strong> Al-Nasser <strong>for</strong> <strong>the</strong> four regions <strong>of</strong> study, levels<br />

low enough to not be considered a public health concern as<br />

mentioned earlier in this reference. (‘‘Risk Assessment <strong>of</strong> Radon<br />

in Drinking Water’’, released September 15, 1998).<br />

We are interested mainly in measuring alpha concentration<br />

which measured in Bq/m 3 using CR-39 accurately by counting<br />

alpha tracks, but in general way beta <strong>and</strong> gamma are measured<br />

<strong>for</strong> comparison purposes <strong>of</strong> samples with each o<strong>the</strong>r <strong>and</strong> with<br />

<strong>the</strong> calibration sources <strong>and</strong> not exactly like CR-39.<br />

It is shown that <strong>the</strong> results <strong>of</strong> <strong>the</strong> measurements, <strong>the</strong> radiation<br />

concentration in water vary in <strong>the</strong> low level scale.<br />

The main results <strong>of</strong> radiation measurements in water observed<br />

in <strong>the</strong> present study can be summarized as follows:<br />

1. The radiation concentration in <strong>the</strong> tap water at Nasser is<br />

typically in values close to those normally found in o<strong>the</strong>r<br />

countries <strong>and</strong> much lower than <strong>the</strong> word average 10 kBq/<br />

m 3 (UNSCEAR, 1986).<br />

2. The higher radiation concentration in water at Nasser<br />

south 103.75 Bq/m 3 or 2.8 pci/L, does not create any special<br />

environment <strong>and</strong> or health problem because it is less than<br />

<strong>the</strong> average <strong>of</strong> 10 k Bq/m 3 hopefully, <strong>and</strong> EPA <strong>of</strong> 15 pci/L<br />

<strong>for</strong> gross <strong>of</strong> all alpha st<strong>and</strong>ards, <strong>and</strong> 5 pci/L <strong>for</strong> alphas from<br />

combined radium 226/228.<br />

3. We would like to do more specific measurements on some<br />

<strong>of</strong> naturally occurring radioactive isotopes like potassium,<br />

uranium, radium <strong>and</strong> o<strong>the</strong>rs. This required more equipment<br />

which should be more accurate <strong>for</strong> this low level <strong>of</strong><br />

radiation.<br />

Acknowledgments<br />

Thanks to <strong>the</strong> department <strong>of</strong> physics, <strong>and</strong> <strong>the</strong> dean <strong>of</strong> scientific<br />

research at <strong>the</strong> Islamic University <strong>of</strong> Gaza, <strong>for</strong> <strong>the</strong> partial sup-


26 M.O. El-Ghossain, A.A. Abu Shammala<br />

port <strong>and</strong> help. We thank also <strong>the</strong> Palestinian Energy Authority<br />

<strong>for</strong> <strong>the</strong>ir help in using <strong>the</strong>ir equipments.<br />

References<br />

Abusaleh, Raed M., 2005. Measurement <strong>of</strong> Radiation concentration in<br />

soil at middle <strong>of</strong> Gaza Strip. <strong>the</strong>sis, Islamic University <strong>of</strong> Gaza.<br />

Beir, V., 2000. National Research Council report on Health Effects <strong>of</strong><br />

Low Levels <strong>of</strong> Ionizing Radiation.<br />

Bell, J., 2005. Modern Physics Lab: The Scintillation Counter,<br />

Department <strong>of</strong> Physics & Computer Science, Presbyterian College,<br />

Clinton SC 29325, http://web.presby.edu/.jtbell/classes/phy217/<br />

labs/ScintCounter.pdf.<br />

David Bodansky, Maurice, A. Robkin, Stadler, David R., 1989.<br />

Indoor Radon <strong>and</strong> Its Hazards, second ed. Univ. <strong>of</strong> Washington<br />

Press Seattle <strong>and</strong> London, printed in <strong>the</strong> USA.<br />

Saeed A. Durrani <strong>and</strong> Radomir Ilic, 1997, Radon measurements by<br />

etched track detectors. Applications in radiation protection, earth<br />

science <strong>and</strong> <strong>the</strong> environment, printed in Singapore.<br />

El-Ghossain, M.O., Abusaleh, Raed M., 2007. Measurement <strong>of</strong><br />

radiation concentration in soil at middle <strong>of</strong> Gaza Strip using<br />

different type <strong>of</strong> detectors. The Islamic University <strong>Journal</strong> 15 (1),<br />

23–37.<br />

Environmental Protection Agency (EPA), November 2000. Fact sheet<br />

about final Radionuclides rule <br />

or, ; EPA 815-F-<br />

00-013.<br />

Mahmoud Rasas, 2003. Measurement <strong>of</strong> Radon <strong>and</strong> its Daughter’s<br />

Concentration Indoor <strong>and</strong> Outdoor throughout Gaza Strip, <strong>the</strong>sis,<br />

Islamic University <strong>of</strong> Gaza.<br />

Nabil Hamed, 2005, Measurement <strong>of</strong> Radon Concentration in Soil at<br />

North Gaza, <strong>the</strong>sis, Islamic University <strong>of</strong> Gaza.<br />

Nuclear Energy <strong>and</strong> Radiation Protection Directorate (NERP), 2005.<br />

Palestinian Energy Authority.<br />

Risk Assessment <strong>of</strong> Radon in Drinking Water, released September 15,<br />

1998, by <strong>the</strong> National Academy <strong>of</strong> Sciences.<br />

Sources <strong>and</strong> Health Effects <strong>of</strong> Ionizing Radiation, A/AC-82/<br />

R,441:113-120, Unclear-US Scientific Committee on Atomic Radiations,<br />

Washington, DC, 1980.<br />

UNSCEAR-United Nation Scientific Committee on Atomic Radiations:<br />

Sources <strong>and</strong> effects <strong>of</strong> ionizing radiation, A/AC-82/R,<br />

441:113-120, 1986.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 27-31<br />

تركيب<br />

أغشية رقيقة من كبريتيد الكادميوم بلوراتها الجسيمية في حدود النانو<br />

بتقنية الحمام الكيميائي ودراسة خواصها التركيبية والضوئية<br />

عبد اهلل<br />

2<br />

1<br />

الحسام ، صالح عبد الجبار جاسم<br />

1<br />

قسم الكيمياء<br />

، كلية العلوم التطبيقية ، جامعة ذمار،‏ اليمن<br />

2<br />

قسم الفيزياء ، كلية العلوم التطبيقية ، جامعة ذمار،‏ اليمن<br />

الملخص :<br />

رسبت أغشية رقيقة<br />

من كبريتيد الكادميوم بلوراتها الجسيمية في حدود النانو بطريقة الحمام الكيميائي على<br />

شرائح زجاجية وكانت درجة حرارة الترسيب<br />

اليوريا الكبريتية.‏<br />

الجسيمية في حدود النانو.‏<br />

الى<br />

80 o C<br />

وزمن الترسيب<br />

6h<br />

باستخدام تركيبتين<br />

وقد تم التعرف على جميع متغيرات الحمام الكيميائي والتي أعطت أغشية<br />

مختلفتين من<br />

رقيقة بلوراتها<br />

أثبتت تحليالت الخواص الضوئية أن فجوة الطاقة لألغشية المحضرة عانت<br />

انحراف باتجاه اللون األزرق كما حسبت البلورات الجسيمية لألغشية المحضرة وتراوحت قيمها بين<br />

62823<br />

نانومتر.‏ 8<br />

A.M.A. Al-Hussam, S.Abdul-Jabbar Jassim


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 27–31<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

Syn<strong>the</strong>sis, structure, <strong>and</strong> optical properties <strong>of</strong> CdS thin films<br />

nanoparticles prepared by chemical bath technique<br />

Abdullah M.A. Al-Hussam a , Salah Abdul-Jabbar Jassim b, *<br />

a Chemistry Department, Faculty <strong>of</strong> <strong>Applied</strong> Science, Thamar University, Thamar, Yemen<br />

b Physics Department, Faculty <strong>of</strong> <strong>Applied</strong> Science, Thamar University, Thamar, Yemen<br />

Available online 13 January 2012<br />

KEYWORDS<br />

Chemical bath deposition;<br />

CdS thin films;<br />

Nanoparticles;<br />

Structural <strong>and</strong> optical studies<br />

Abstract CdS nanocrystalline thin films were deposited onto glass substrates by chemical bath<br />

deposition (CBD). The films deposited at 80 °C <strong>for</strong> 6 h with two different concentrations <strong>of</strong><br />

thiourea. The deposition parameters were optimized. The obtained films were characterized <strong>for</strong><br />

structural <strong>and</strong> optical properties, X-ray diffraction patterns revealed that <strong>the</strong> films were nanocrystalline<br />

in nature with cubic structures. A blue shift in <strong>the</strong> b<strong>and</strong> gap was observed in <strong>the</strong> UV–visible<br />

absorption spectra indicating <strong>the</strong> <strong>for</strong>mation <strong>of</strong> nano particles <strong>of</strong> sizes between 3.826 <strong>and</strong> 8 nm.<br />

ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

Semiconductors nano-particles (also known as quantum dots),<br />

belong to state <strong>of</strong> matter in <strong>the</strong> transition region between<br />

molecules <strong>and</strong> solids, have attracted a great deal <strong>of</strong> attention because<br />

<strong>of</strong> <strong>the</strong>ir unique electrical <strong>and</strong> optical properties, compared<br />

to bulk materials (Alivisatos, 1996). Their electrical <strong>and</strong> optical<br />

properties are directly associated with <strong>the</strong> quantum confinement<br />

<strong>of</strong> charge carriers leading to <strong>the</strong> blue shift <strong>of</strong> <strong>the</strong> b<strong>and</strong> gap with<br />

<strong>the</strong> shrinkage <strong>of</strong> <strong>the</strong>ir size (Kotkata et al., 2009). Particularly<br />

When <strong>the</strong> dimension <strong>of</strong> <strong>the</strong> semiconductor quantum dots<br />

* Corresponding author.<br />

E-mail address: salahjassim200@yahoo.com (S.A-J Jassim).<br />

1815-3852 ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.10.001<br />

Production <strong>and</strong> hosting by Elsevier<br />

reduced close to characteristic length known as <strong>the</strong> exciton Bohr<br />

diameter, <strong>the</strong>se characteristic lengths are usually in <strong>the</strong> range <strong>of</strong> a<br />

few nanometers, <strong>the</strong>re will be large changes in <strong>the</strong>ir properties,<br />

this effect changes <strong>the</strong> surface to volume ration <strong>and</strong> it also shifts<br />

electronic energy levels towards higher energy leading to an increase<br />

in <strong>the</strong> b<strong>and</strong> gap (Alivisatos, 1996). CdS as a semiconductor<br />

material has received much attention due to its direct b<strong>and</strong><br />

gap resulting in emission in <strong>the</strong> visible wavelength. CdS nanostructures<br />

are being widely investigated <strong>for</strong> applications in semiconductor<br />

laser (Dunan et al., 2003), nonlinear optical devices<br />

(Grohs et al., 1994), biological applications (Santos et al.,<br />

2008) display devices (Schmitt-Rink et al., 1989) <strong>and</strong> as window<br />

materials <strong>for</strong> hetero-junction solar cells because it has a high<br />

absorption coefficient (Xiaoxia et al., 2010).<br />

In recent years, considerable ef<strong>for</strong>ts have been made to<br />

syn<strong>the</strong>size CdS nanostructures by several methods such as,<br />

dc- sputtering (Ghosh et al., 2006), solvo<strong>the</strong>rmal route (Ujjal<br />

et al., 2003), sonochemical (Raghvendra et al., 2010) <strong>and</strong> chemical<br />

bath deposition (Dongre et al., 2009). The chemical bath<br />

deposition (CBD) is <strong>the</strong> deposition technique most widely employed<br />

to obtain CdS thin films .The CBD process is a simple<br />

<strong>and</strong> inexpensive technique to obtain homogeneous, hard,<br />

adherent, transparent <strong>and</strong> stoichiometric CdS thin films.<br />

Typically, chemically deposited CdS thin films are <strong>for</strong>med from


28 A.M.A. Al-Hussam, S.Abdul-Jabbar Jassim<br />

<strong>the</strong> reaction between a cadmium salt <strong>and</strong> thiourea in an ammoniacal<br />

alkaline solution. The main role <strong>of</strong> ammonia in <strong>the</strong> CBD<br />

process is as complexing agent <strong>for</strong> <strong>the</strong> cadmium ions in <strong>the</strong><br />

reaction solution. It has been reported that CdS may have ei<strong>the</strong>r<br />

cubic or hexagonal structure depending on <strong>the</strong> syn<strong>the</strong>sis<br />

conditions.<br />

In this work, we report <strong>the</strong> CBD preparation <strong>of</strong> nanostructure<br />

CdS thin films deposited on <strong>the</strong> glass substrates using a<br />

mixed aqueous solution <strong>of</strong> cadmium chloride, thiourea <strong>and</strong><br />

ammonium chloride. Structural <strong>and</strong> optical properties have<br />

been investigated.<br />

2. Experimental detail<br />

CdS thin films are deposited on glass substrates using CBD at<br />

various concentrations <strong>of</strong> thiourea. The substrates used <strong>for</strong> <strong>the</strong><br />

deposition <strong>of</strong> CdS thin films were (35 · 25 · 1) mm commercial<br />

glass slides. Be<strong>for</strong>e <strong>the</strong> deposition <strong>the</strong> substrates must be<br />

cleaned using nitric acid <strong>for</strong> 48 h, scoop water followed by distilled<br />

water <strong>and</strong> finally dried in air. Aqueous solutions <strong>of</strong><br />

0.02 M cadmium chloride with 0.05 M ammonium chloride<br />

NH3Cl in 100 ml distilled water. Then ammonia solution <strong>of</strong><br />

0.55 M as a complexing agent in 50 ml distilled water was<br />

added to <strong>the</strong> solution to adjust <strong>the</strong> PH value <strong>of</strong> <strong>the</strong> bath to<br />

9. The solution was continuously stirred. Then add 0.05 M<br />

thiourea (NH 2 ) 2 CS. Solution was mixed with a magnetic stirrer<br />

<strong>and</strong> after obtaining a clear homogenized bath, <strong>the</strong> stirrer<br />

was turned <strong>of</strong>f <strong>and</strong> glass slides were placed in <strong>the</strong> bath vertically.<br />

The solution temperature was kept constant at 80 °C<br />

<strong>for</strong> given time <strong>of</strong> deposition 6 h .After <strong>the</strong> deposition <strong>the</strong> samples<br />

were pulled out from <strong>the</strong> bath <strong>and</strong> washed with distilled<br />

water <strong>and</strong> dried in air. The CdS films were deposited <strong>for</strong> different<br />

concentrations <strong>of</strong> (NH 2 ) 2 CS as shown in Table 1.<br />

The possible chemical reaction that takes place to produce<br />

CdS films may be as follows:<br />

CdCl 2 þ 4NH 3 ! CdðNH 3 Þ 4<br />

Cl 2<br />

ð1Þ<br />

½CdðNH 3 Þ 4<br />

Š þ2 ! Cdþ 2 þ 4NH 3<br />

NH 3 þ H 2 O ! NH 4 þ 2 þ OH<br />

Cdþ 2 þ 2OH ! CdðOHÞ 2<br />

ð4Þ<br />

ðNH 2 Þ 2<br />

CS þ 2OH !½HSŠ þ þ H 2 O þ CH 2 N 2 ð5Þ<br />

½HSŠ þ þ OH ! S 2 þ H 2 O ð6Þ<br />

½CdðNH 3 Þ 4<br />

Š þ2 þ S 2 ! CdS þ NH 3<br />

ð7Þ<br />

The deposited CdS thin films are uni<strong>for</strong>m, light yellow in<br />

color, highly adhesive, smooth <strong>and</strong> reflecting. For thickness<br />

measurement, gravimetric weight different method with <strong>the</strong><br />

ð2Þ<br />

ð3Þ<br />

relation t = m/(q·A) where, m is <strong>the</strong> mass <strong>of</strong> <strong>the</strong> film<br />

deposited on <strong>the</strong> substrate in g, A <strong>the</strong> area <strong>of</strong> <strong>the</strong> deposited film<br />

in cm 2 <strong>and</strong> q <strong>the</strong> density <strong>of</strong> <strong>the</strong> deposited material (CdS =<br />

4.84 g/cm 3 ).thickness <strong>of</strong> <strong>the</strong> films were 434.7 nm <strong>and</strong><br />

453.36 nm <strong>for</strong> samples (a) <strong>and</strong> (b) respectively.<br />

Optical properties <strong>of</strong> chemical bath deposited CdS thin<br />

films were measured at room temperature by using UV/VIS<br />

spectrophotometer Cary 50 Cm-Exlena in <strong>the</strong> wavelength<br />

range <strong>of</strong> (300–900 nm). X- ray diffraction pattern <strong>of</strong> <strong>the</strong> dry<br />

nanopartical powder was obtained using Siemens D5005<br />

X-ray diffract meter with CuKa radiation (k = 0.1542 nm).<br />

3. Results <strong>and</strong> discussion<br />

3.1. Optical studies<br />

The optical studies <strong>of</strong> <strong>the</strong> CdS films were per<strong>for</strong>med using <strong>the</strong><br />

transmission <strong>and</strong> absorption spectra observed in <strong>the</strong> wavelength<br />

range 300–900 nm.<br />

Fig. 1 shows <strong>the</strong> transmission spectra <strong>of</strong> CdS films, it can be<br />

seen that <strong>the</strong> films present high transmission (72–85%) in <strong>the</strong><br />

visible range which is good <strong>for</strong> opt-electronic devices, especially<br />

<strong>for</strong> solar cell window layers. <strong>and</strong> have sharp fall at <strong>the</strong><br />

b<strong>and</strong> edge, which is an indication <strong>of</strong> good crystallinity <strong>of</strong><br />

CdS in <strong>the</strong> films.<br />

Absorption spectra <strong>of</strong> <strong>the</strong> two syn<strong>the</strong>sized CdS films are<br />

shown in Fig. 2 it can be seen that <strong>the</strong> films show peaks at<br />

478,470 <strong>for</strong> sample (a) <strong>and</strong> (b) respectively that means <strong>the</strong><br />

absorption edge shifted toward blue .The blue shift can be<br />

attributed to <strong>the</strong> exitonic absorbance due to <strong>the</strong> quantum confinement<br />

at low dimensions compared to its bulk counterparts.<br />

The b<strong>and</strong>-gap value (E g ) <strong>of</strong> <strong>the</strong> deposited films were determined<br />

by analyzing <strong>the</strong> optical data with <strong>the</strong> expression <strong>for</strong><br />

<strong>the</strong> optical absorbance a <strong>and</strong> <strong>the</strong> photon energy ht using Taucs<br />

<strong>for</strong>mula relation (Tauc <strong>and</strong> Abeies, 1970).<br />

aht ¼ Cðht E g Þ n ð8Þ<br />

where C is a constant <strong>and</strong> <strong>the</strong> exponent n depends on type <strong>of</strong><br />

transition, n may have values 1/2, 2, 3/2 <strong>and</strong> 3 corresponding<br />

to allowed direct, allowed indirect, <strong>for</strong>bidden direct <strong>and</strong> <strong>for</strong>bidden<br />

indirect transitions, respectively. As CdS nanoparticles<br />

have direct allowed transitions we choose n = 1/2 .The b<strong>and</strong><br />

gap <strong>of</strong> CdS nanoparticals was determined by extrapolating<br />

<strong>the</strong> straight line portion <strong>of</strong> <strong>the</strong> (aht) 2 vs. (ht) graphs to <strong>the</strong><br />

(ht) axis as shown in <strong>the</strong> Fig. 3. It can be observed from<br />

Fig. 3 that <strong>the</strong> b<strong>and</strong> gap <strong>of</strong> CdS nanoparticales is 3.2 eV <strong>and</strong><br />

2.6 eV <strong>for</strong> sample (a) <strong>and</strong> (b), respectively. These values <strong>of</strong> <strong>the</strong><br />

energy gaps reflect a considerable blue-shift relative to <strong>the</strong> corresponding<br />

absorption b<strong>and</strong> edge <strong>of</strong> bulk CdS, such observed<br />

shift reveals quantum size effect in <strong>the</strong> syn<strong>the</strong>sized CdS thin<br />

films. Our present E g values were in a good agreement with<br />

those reported by (Raghvendra et al., 2010; Dongre et al., 2009).<br />

Table 1<br />

The compositions <strong>of</strong> <strong>the</strong> sample in <strong>the</strong> start solution.<br />

Reaction bath pH CdCl 2 (NH 2 ) 2 CS NH 4 Cl NH 3 H 2 O<br />

Mol. (M) Vol. (ml) Mol. (M) Vol. (ml) Mol. (M) Vol. (ml) Mol. (M) Vol. (ml)<br />

Sample-a 9 0.03 50 0.1 50 0.05 50 0.6 50<br />

Sample-b 9 0.03 50 0.05 50 0.05 50 0.6 50


Syn<strong>the</strong>sis, structure, <strong>and</strong> optical properties <strong>of</strong> CdS thin films nanoparticles prepared by chemical bath technique 29<br />

Figure 1<br />

Plot <strong>of</strong> transmittance with wavelength <strong>for</strong> CdS films.<br />

Figure 3 The variation <strong>of</strong> (aht) 2 vs. ht to determine <strong>the</strong> direct<br />

b<strong>and</strong> gap <strong>of</strong> CdS thin films.<br />

Figure 2 The variation <strong>of</strong> optical absorbance vs. wavelength <strong>for</strong><br />

CdS films.<br />

The values <strong>of</strong> <strong>the</strong> b<strong>and</strong>-gap were higher than <strong>the</strong> b<strong>and</strong> gap<br />

<strong>of</strong> bulk CdS (2.42 eV) (Enriques <strong>and</strong> Ma<strong>the</strong>w, 2003) <strong>the</strong>re<strong>for</strong>e,<br />

<strong>the</strong> blue shift <strong>of</strong> b<strong>and</strong> gap edge is 0.78 eV <strong>and</strong> 0.18 eV <strong>for</strong> samples<br />

(a) <strong>and</strong> (b) respectively. The increased effective b<strong>and</strong> gap<br />

makes nanocrystalline CdS a more effective window material<br />

in photovoltaic applications like <strong>the</strong> CdS/CdTe solar cells.<br />

For CdS nanoparticles (Brus, 1986) proposed <strong>the</strong> effective<br />

mass approximation <strong>for</strong>mal (EMA) to explain <strong>the</strong> <strong>the</strong>ory <strong>of</strong><br />

blue shift, which gives energy E nd <strong>for</strong> lowest 1s states as a function<br />

<strong>of</strong> nanoparticle radius, shows as follows:<br />

E np ¼ E bluk<br />

g<br />

þ E comf þ E coul ð9Þ<br />

where E np is <strong>the</strong> b<strong>and</strong> gap <strong>of</strong> CdS nanoparticle, E g is <strong>the</strong> b<strong>and</strong><br />

gap <strong>of</strong> <strong>the</strong> bulk <strong>of</strong> CdS, E comf is <strong>the</strong> electron–hole pair confinement<br />

kinetic energy <strong>and</strong> E coul is <strong>the</strong> coulomb interaction energy<br />

between <strong>the</strong> hole <strong>and</strong> <strong>the</strong> electron, which is given by<br />

E coul ¼ 1:8e 2 =pe o e s R ð10Þ<br />

And E comf ¼ðh 2 p 2 =2R 2 Þð1=m e þ 1=m hÞ corresponding to <strong>the</strong><br />

lowest energy transition.<br />

Now <strong>the</strong> above equation can be written as<br />

E np ¼ E bulk<br />

g<br />

þðhp 2 =2R 2 Þð1=m e þ 1=m h Þ<br />

ð1:8e 2 =4pe o e s RÞ<br />

ð11Þ<br />

where h =h/2p, h is plank constant, R is <strong>the</strong> radius <strong>of</strong> nanoparticles,<br />

m e<br />

is <strong>the</strong> effective mass <strong>of</strong> electron (m e ¼ 0:19m e),<br />

m h is <strong>the</strong> effective mass <strong>of</strong> hole (m h ¼ 0:8m e), m e is <strong>the</strong> mass<br />

<strong>of</strong> electron, e s is <strong>the</strong> dielectric constant <strong>of</strong> material (5.7) <strong>and</strong><br />

e o is <strong>the</strong> permittivity <strong>of</strong> free space. In <strong>the</strong> EMA <strong>for</strong>mula, <strong>the</strong><br />

coulomb term <strong>of</strong> electron–hole interaction was small compared<br />

to electron - hole confinement kinetic energy, which supported<br />

<strong>the</strong> blue shift result.<br />

Applying Eq. (11), values 4 nm (<strong>the</strong> diameter is 8 nm) <strong>and</strong><br />

1.913 nm (<strong>the</strong> diameter 3.826 nm) have been estimated <strong>for</strong><br />

<strong>the</strong> radius <strong>of</strong> <strong>the</strong> two nanoparticales CdS samples (a) <strong>and</strong> (b)<br />

respectively.<br />

It can be seen clearly that <strong>the</strong> decreasing particle size (as <strong>the</strong><br />

thiourea concentrations increases) causes increase in <strong>the</strong> b<strong>and</strong><br />

gap. Similar observation <strong>of</strong> <strong>the</strong> decrease in particle size as <strong>the</strong><br />

thiourea concentrations increased was reported by Yao et al.<br />

(2003). The dependence <strong>of</strong> b<strong>and</strong> gap on particle size in semiconductor<br />

nanocrystals has been extensively studied by Brus<br />

(1984). Particles whose dimensions become comparable to<br />

<strong>the</strong> bulk excition Bohr radius (a B ), equal to 5.3 nm <strong>for</strong> CdS,<br />

are observed to exhibit strong quantum confinement effect,<br />

which result in increase in <strong>the</strong> b<strong>and</strong> gap with decreasing particle<br />

size. So <strong>the</strong>re is a very good agreement with our result.<br />

These values are in good agreement with <strong>the</strong> sizes determined<br />

from XRD.<br />

3.2. X-ray diffraction studies<br />

Fig. 4 shows <strong>the</strong> XRD pattern <strong>of</strong> CdS powered nanoparticles<br />

<strong>for</strong> sample b. Comparing with <strong>the</strong> data <strong>of</strong> <strong>the</strong> JCPDS file (Powder<br />

Diffraction File Card, No. 10-454), it was found that <strong>the</strong><br />

CdS nanoparticles are identified as b-CdS, which belong to


30 A.M.A. Al-Hussam, S.Abdul-Jabbar Jassim<br />

4. Conclusion<br />

An aqueous solution system <strong>for</strong> growing CdS thin film nanocrystals<br />

network was investigated. The present method is simple,<br />

economic <strong>and</strong> easy .The crystal structure <strong>and</strong> grain size <strong>of</strong><br />

<strong>the</strong> particles was determined using XRD. The radius <strong>of</strong> <strong>the</strong><br />

particle was calculated using an effective mass approximation<br />

mode. The calculated radius <strong>of</strong> CdS nanoparticles was found<br />

to be similar to that obtained from XRD through Scherer’s<br />

<strong>for</strong>mula.<br />

UV–VIS spectra <strong>of</strong> <strong>the</strong> films showed blue shift in absorption<br />

edge compared with bulk CdS. The nanocrystals size<br />

was observed in <strong>the</strong> range <strong>of</strong> 3.826–8 nm.<br />

References<br />

Figure 4<br />

sample b.<br />

XRD <strong>of</strong> powder CdS nanoparticales <strong>for</strong> sample <strong>for</strong><br />

<strong>the</strong> cubic crystal system. The XRD peaks are found to be<br />

broad indicating fine size <strong>of</strong> <strong>the</strong> sample grains. The XRD pattern<br />

<strong>of</strong> a typical CdS sample exhibits prominent broad peaks at<br />

2h values <strong>of</strong> 26.7°, 44° <strong>and</strong> 52° which could be indicated as<br />

scattering from <strong>the</strong> (111), (220), <strong>and</strong> (311) cubic phase CdS<br />

plans, respectively, suggesting that <strong>the</strong> nanoparticles are in cubic<br />

(Zinc blend phase) <strong>for</strong>m <strong>and</strong> are in good agreement with<br />

<strong>the</strong> reported data on CdS (Rodrgues et al., 2008; Wang<br />

et al., 2001). No peaks attributable to o<strong>the</strong>r phases were observed.<br />

The broadening <strong>of</strong> <strong>the</strong> diffraction peak provides in<strong>for</strong>mation<br />

about crystallite size. As <strong>the</strong> width increases, <strong>the</strong><br />

particle size decreases <strong>and</strong> vice versa (Banerjee et al., 2000).<br />

From <strong>the</strong> position <strong>of</strong> different peaks <strong>and</strong> by <strong>the</strong> Bragg<br />

condition,<br />

nk ¼ 2d sin h<br />

ð12Þ<br />

where n is <strong>the</strong> order <strong>of</strong> diffraction, k <strong>the</strong> wavelength <strong>of</strong> <strong>the</strong> incident<br />

X-rays, d <strong>the</strong> distance between <strong>the</strong> plans parallel to <strong>the</strong><br />

axis <strong>of</strong> <strong>the</strong> incident beam <strong>and</strong> h is <strong>the</strong> diffraction angle, d-spacing<br />

has been evaluated, <strong>the</strong> obtained value is (3.139 A˚ ).<br />

Nanoparticle lattice constant is calculated using <strong>the</strong> following<br />

<strong>for</strong>mula (Kittel, 1996).<br />

1=d 2 ¼ðh 2 þ k 2 þ l 2 Þ=a 2 ð13Þ<br />

where (a) is <strong>the</strong> lattice constant, <strong>and</strong> (h,k,l) miller indices, (a)<br />

was calculated to be (0.59 nm) <strong>for</strong> our sample, which matches<br />

with <strong>the</strong> earlier reported lattice constant <strong>for</strong> cubical zinc blend<br />

structures <strong>of</strong> CdS nanoparticles (Rodrgues et al., 2008).<br />

The average size <strong>of</strong> <strong>the</strong> crystallites (D) has been calculated<br />

using Scherer’s equation as (Cullity, 1972)<br />

D ¼ Kk=b cosðhÞ<br />

ð14Þ<br />

where <strong>the</strong> constant K is a shape factor usually =0.94, k is <strong>of</strong><br />

X-ray wavelength (0.15418 nm), b is <strong>the</strong> full-width at halfmaximum<br />

(FWHM) <strong>of</strong> <strong>the</strong> peak which has maximum intensity<br />

<strong>and</strong> h is <strong>the</strong> Bragg’s angle. The estimated X-ray domain size <strong>of</strong><br />

this sample was 6.27 nm derived from FWHM <strong>of</strong> peak corresponding<br />

to 2h 26.7° <strong>for</strong> sample (b).<br />

Alivisatos, A.P., 1996. Perspectives on <strong>the</strong> physics chemistry <strong>of</strong><br />

semicoductor nanocrysts. J. Phys. Chem. 100 (31),<br />

13226–13239.<br />

Banerjee, R., Jayakrishnan, R., Ayyub, P., 2000. Effect <strong>of</strong> <strong>the</strong> sizeinduced<br />

structural trans<strong>for</strong>mation on <strong>the</strong> b<strong>and</strong> gap in CdS<br />

nanoparticles. J. Phys. Condens. Matt. 12, 10647–10654.<br />

Brus, L.E., 1984. Electron-electron <strong>and</strong> electron-hole interactions in<br />

small semiconductor crystallites: <strong>the</strong> size dependence <strong>of</strong> <strong>the</strong> lowest<br />

excited electronic state. J. Chem. Phys. 80, 4403–4409.<br />

Brus, L.E., 1986. Time dependent calculation <strong>of</strong> <strong>the</strong> absorption<br />

spectrum <strong>of</strong> a photo dissociating system with two interacting<br />

excited electronic states. J. Chem. Phys. 90, 2555–2560.<br />

Cullity, B.D., 1972. Elements <strong>of</strong> X-ray Diffraction. Addison-Wesley,<br />

Reading, MA, p. 102.<br />

Dongre, J.K., Vikas, N., Ramrakhiani, M., 2009. Structural, optical<br />

<strong>and</strong> photoelectrochemical characterization <strong>of</strong> CdS nanowire syn<strong>the</strong>sized<br />

by chemical bath deposition <strong>and</strong> wet chemical etching.<br />

Appl. Surf. Sci. 255, 6115–6120.<br />

Dunan, X., Huang, Y., Agarwal, R., Lieber, CM., 2003. Singlenanowire<br />

electrically driven lasers. Nature 421, 241–246.<br />

Enriques, J., Ma<strong>the</strong>w, X., 2003. Influence <strong>of</strong> <strong>the</strong> thickness on<br />

structural, optical <strong>and</strong> electrical properties <strong>of</strong> chemical bath<br />

deposited CdS thin films. Solar Energy Mater. Solar Cell 76,<br />

313–332.<br />

Ghosh, P.K., Maiti, U.N., Chattopadhyay, 2006. Structural <strong>and</strong><br />

optical characterization <strong>of</strong> CdS nano fibers syn<strong>the</strong>sized by Dcsputtering<br />

technique. Mater. Lett. 60, 2881–2885.<br />

Grohs, J., Apanasevich, S., Jung, P.I., 1994. Noise-induced switching<br />

<strong>and</strong> stochastic resonance in optically nonlinear CdS crystals. Phys.<br />

Rev. A 49, 2199.<br />

Kittel, C., 1996. Introduction to Solid Stat Physics. Wiley, New York,<br />

Chapter 2.<br />

Kotkata, M.F., Masoud, A.E., Mohamamed, M.B., Mahmoud, E.A.,<br />

2009. Syn<strong>the</strong>sis <strong>and</strong> structural characterization <strong>of</strong> CdS nanoparticles.<br />

Physics E 41, 1457–1465.<br />

Raghvendra, S.Y., Priya, M., Rupali, M., Manvendra, K., Avinash,<br />

C.P., 2010. Growth mechanism <strong>and</strong> optical property <strong>of</strong> CdS<br />

nanoparticles syn<strong>the</strong>sized using amino-acid histidine as chelating<br />

agent under sonochemical process. Ultrason. Sonochem. 17,<br />

116–122.<br />

Rodrgues, P., Muñoz-Aguirre, N., San-Martin, E., Gonzalez, G.,<br />

2008. Formation <strong>of</strong> CdS nanoparticles using starch as capping<br />

agent. Appl. Surf. Sci. 255, 740–742.<br />

Santos, B.S., Farias, P.M.A., Fontes, A., Brasil, A.G., Jovino, C.N.,<br />

Neto, A.G.G.C., Silva, D.C.N., Menezes, F.D., Ferreira, R., 2008.<br />

Semiconductor nanocrystal obtained by colloidal chemistry <strong>for</strong><br />

biological application. Appl. Surf. Sci. 255, 796–798.


Syn<strong>the</strong>sis, structure, <strong>and</strong> optical properties <strong>of</strong> CdS thin films nanoparticles prepared by chemical bath technique 31<br />

Schmitt-Rink, S., Chemla, D.S., Miller, D.A.B., 1989. Linear <strong>and</strong><br />

nonlinear optical properties <strong>of</strong> semiconductor quantum wells. Adv.<br />

Phys. 38, 89–188.<br />

Tauc, T., Abeies, F., 1970. Optical Properties <strong>of</strong> solids. IOP Publishing<br />

Ltd, North Holl<strong>and</strong>, Amsterdam, p. 903.<br />

Ujjal, K., Gautam, Ram Seshadri Rao, C.N.R., 2003. A solvo<strong>the</strong>rmal<br />

route to CdS nanocrystals. Chem. Phys. Lett. 375, 560–564.<br />

Wang, G.Z., Wang, Y.W., Chen, W., Liang, C.H., Li, C.H., Zhang,<br />

L.D., 2001. Facile syn<strong>the</strong>sis route to CdS nanocrystals at room<br />

temperature. Mater. Lett. 48, 269–275.<br />

Xiaoxia, J., Fei, C., Hao, X., Ligong, Y., Weiming, Q., Minmin, S.,<br />

Mang, W., Hongzheng, C., 2010. Template-free syn<strong>the</strong>sis <strong>of</strong><br />

vertically aligned CdS nanoroads <strong>and</strong> its application in hybrid<br />

solar cells. Sol. Energy Mater. Sol. Cells 94, 338–344.<br />

Yao, Jian-Xi, Zhao, Gao-Ling, Han, Gao-Rong, 2003. Effect <strong>of</strong> <strong>the</strong><br />

ratio <strong>of</strong> thiourea to Cd 2+ on <strong>the</strong> properties <strong>of</strong> CdS nanoparticles.<br />

Microelectron Eng 66, 115–120.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 32-36<br />

تحديد بيرمثامين في المتحضرات الصيدالنية عن طريق المطيافئة<br />

باستخدام نافثوكوينون<br />

1 – 2<br />

عبداهلل احمد البشير<br />

، علوية حسين الحسين الوقيع<br />

ص.ب 321<br />

قسم الكيمياء،‏<br />

كلية العلوم،‏ جامعة الخرطوم،‏<br />

الخرطوم<br />

، السودان<br />

المخلص:‏<br />

في هذه الدراسة تم وصف طريقة تمتاز بالدقة والبساطة لتحديد بيرمثامين في المستحضرات الصيدالنية.‏<br />

تعتمد الطريقة على تكوين مركب ملون نتيجة لتفاعل بيرمثامين مع<br />

–<br />

2-1<br />

مئوية.‏ درجة 06<br />

الطول الموجي<br />

384<br />

لالمتصاصية والتركيز مطاعة<br />

المعايرة ص<br />

نافثوكوينون في درجة حرارة<br />

تمت متابعة التفاعل عن طريق المطيافية الضوئية بقياس الزيادة في االمتصاصية عند<br />

نانوميتر بدالة زمنية.‏<br />

‏)ممتثلة(‏<br />

عند<br />

في المدى<br />

–<br />

الظروف المثلى للتفاعل كانت العالقة بين قانون بيرز<br />

36<br />

12<br />

606142<br />

+<br />

60763<br />

=<br />

ج مع معامل االرتباط<br />

مايكرو جرام/مل ومعادلة االنحدار للبيانات<br />

)60..0(<br />

وامتصاصية مولية بمقدار<br />

*5.8<br />

لتر مول 4 16<br />

1-<br />

ملليتر على التوالي.‏<br />

-1. سم<br />

كانت النسبة المئوية لبيرمثامين للدفعة<br />

وكان الحد من الكشف النوعي والكمي<br />

4025<br />

وقد طبقت الطريقة المقترحة بنجاح لتحديد بيرمثامين في<br />

16084 و<br />

هي 26<br />

+<br />

-16103<br />

طريقة األداء العالية للفصل الكروماتوغرافي السائل الرسمية.‏<br />

.%6015<br />

مايكرو جرام لكل<br />

أقراص الدواء مع دقة جيدة.‏<br />

وكانت النتائج في اتفاق جيد مع<br />

A.A. Elbashir, A.H.E. Elwagee


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 32–36<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Spectrophotometric determination <strong>of</strong> pyrimethamine<br />

(PYM) in pharmaceutical <strong>for</strong>mulation using<br />

1,2-naphthoquinone-4-sulfonate (NQS)<br />

Abdalla A. Elbashir *, Alawia H.E. Elwagee<br />

University <strong>of</strong> Khartoum, Faculty <strong>of</strong> Science, Chemistry Department, P.O. Box 321, Khartoum, Sudan<br />

Available online 24 January 2012<br />

KEYWORDS<br />

UV–visible<br />

spectrophotometry;<br />

Pyrimethamine;<br />

NQS;<br />

Pharmaceutical <strong>for</strong>mulation<br />

Abstract A simple <strong>and</strong> sensitive spectrophotometric method <strong>for</strong> <strong>the</strong> quantitative analysis <strong>of</strong> pyrimethamine<br />

(PYM) in pharmaceutical <strong>for</strong>mulations has been described. The method is based on <strong>the</strong><br />

<strong>for</strong>mation <strong>of</strong> colored product between PYM <strong>and</strong> 1,2-naphthoquinone-4-sulfonate (NQS) at 60 °C.<br />

The reaction is followed spectrophotometrically by measuring <strong>the</strong> increase in absorbance at 483 nm<br />

as a function <strong>of</strong> time. Under <strong>the</strong> optimized reaction condition, Beer’s law correlation <strong>for</strong> <strong>the</strong> absorbance<br />

(A) with PYM concentration (C) was obeyed in <strong>the</strong> range 12–40 lgmL 1 <strong>the</strong> regression<br />

equation <strong>for</strong> <strong>the</strong> calibration data was A = 0.704 + 0.0132C, with correlation coefficient (0.996).<br />

The molar absorptivity (e) was 5.8 · 10 3 L mol<br />

1 cm 1 . The limits <strong>of</strong> detection <strong>and</strong> quantification<br />

were 3.25 <strong>and</strong> 10.83 lgmL 1 , respectively. The proposed method was successfully applied to <strong>the</strong><br />

determination <strong>of</strong> PYM in pharmaceutical tablets with good accuracy <strong>and</strong> precision; <strong>the</strong> percentage<br />

<strong>for</strong> PYM was 101.4 ± 1.47% <strong>for</strong> batch 20 <strong>and</strong> 100.4 ± 0.51% <strong>for</strong> batch 13. The results were in<br />

good agreement with those obtained with <strong>the</strong> <strong>of</strong>ficial high per<strong>for</strong>mance liquid chromatography<br />

(HPLC) method.<br />

ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

* Corresponding author.<br />

E-mail address: hajaae@yahoo.com (A.A. Elbashir).<br />

1815-3852 ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.12.003<br />

Production <strong>and</strong> hosting by Elsevier<br />

Pyrimethamine (PYM), 5-(4-chlorophenyl)-6-ethyl-2,4-pyrimidineamine<br />

(Fig. 1) is a drug widely used in <strong>the</strong> treatment <strong>of</strong><br />

parasitic diseases such as malaria <strong>and</strong> toxoplasmosis (Bosch-<br />

Driessen et al., 2002).<br />

The mechanism <strong>of</strong> action <strong>of</strong> PYM is <strong>the</strong> inhibition <strong>of</strong> dihydr<strong>of</strong>olate<br />

reductase (DHFR), an essential enzyme responsible <strong>for</strong> <strong>the</strong><br />

conversion <strong>of</strong> folic acid into folinic acid in <strong>the</strong> nucleic acid biosyn<strong>the</strong>sis<br />

(Anderson, 2005). Some major drawbacks <strong>of</strong> PYR <strong>the</strong>rapy<br />

include a relatively weak inhibitory activity <strong>and</strong> severe side effects<br />

such as nausea <strong>and</strong> neutropenia, which are caused by <strong>the</strong> low<br />

selectivity toward <strong>the</strong> parasite enzyme (Katlama et al., 1996).<br />

Literature survey reveals that various methods have been<br />

reported <strong>for</strong> <strong>the</strong> analysis <strong>of</strong> PYM in pharmaceutical <strong>and</strong> bio-


Spectrophotometric determination <strong>of</strong> pyrimethamine (PYM) 33<br />

N<br />

NH 2<br />

Cl<br />

<strong>of</strong> NaOH (0.2 M) in 100 mL volumetric flask, <strong>and</strong> adjusted by<br />

<strong>the</strong> pH meter. O<strong>the</strong>r buffer solutions <strong>of</strong> different pH values<br />

were also prepared. Amifan tablets were kindly donated by<br />

AMIPHARMA Laboratories Ltd. (Sudan, Khartoum).<br />

Milli-Q water was used <strong>for</strong> preparing all solutions used.<br />

H 2 N<br />

N<br />

2.3. Preparation <strong>of</strong> st<strong>and</strong>ard <strong>and</strong> sample solution<br />

Figure 1<br />

logical samples such as microbiological method (Weidekamm<br />

et al., 1982), gas–liquid chromatography (Cala et al., 1972;<br />

Jones et al., 1981; Midskov, 1984b), thin layer chromatography<br />

(DeAngelis et al., 1975), spectrophotometry (Schmidt<br />

et al., 1953; Sastry et al., 1986; Berzas Nevado et al., 1993;<br />

Khalil et al., 2000; Onah <strong>and</strong> Odeiani, 2002; Zayed et al.,<br />

2005; Nagaraja et al., 2010), fluorimetry (Parimo, 1988) <strong>and</strong><br />

HPLC(Midskov, 1984a,b; Bergqvist <strong>and</strong> Eriksson, 1985;<br />

Timm <strong>and</strong> Weidekamm, 1982; Edstein, 1948a,b) individually<br />

<strong>and</strong> in combination dosage <strong>for</strong>m with o<strong>the</strong>r drugs.<br />

Spectrophotometry is considered <strong>the</strong> most convenient analytical<br />

technique, because <strong>of</strong> its inherent simplicity, low cost,<br />

<strong>and</strong> wide availability in most quality control laboratories.<br />

Spectrophotometric methods have been reported <strong>for</strong> PYM.<br />

These methods were associated with some major drawbacks<br />

such as laborious multiple extraction steps in <strong>the</strong> analysis by<br />

ion-pair based methods (Khalil et al., 2000; Nagaraja et al.,<br />

2010) Fur<strong>the</strong>rmore, <strong>the</strong> analytical reaction was long <strong>and</strong> thus<br />

<strong>the</strong> procedure was time-consuming (Onah <strong>and</strong> Odeiani, 2002).<br />

1,2-Naphthoquinone-4-sulfonate (NQS) has been used <strong>for</strong><br />

<strong>the</strong> determination <strong>of</strong> many compounds containing primary<br />

amine group (Gallo-Martinez et al., 1998; Wang et al., 2004;<br />

Saurina <strong>and</strong> Herna´ndez-Cassuo, 1993). Use <strong>of</strong> NQS as a colored<br />

reagent <strong>for</strong> <strong>the</strong> determination <strong>of</strong> PYM by spectrophotometry<br />

has not been reported yet. There<strong>for</strong>e, <strong>the</strong> present work<br />

was devoted to study <strong>the</strong> reaction between PYM <strong>and</strong> NQS<br />

<strong>and</strong> employment <strong>of</strong> <strong>the</strong> reaction in <strong>the</strong> development <strong>of</strong> a simple<br />

method <strong>for</strong> <strong>the</strong> determination <strong>of</strong> PYM in dosage <strong>for</strong>m.<br />

2. Material <strong>and</strong> methods<br />

Chemical structure <strong>of</strong> PYM.<br />

2.3.1. PYM st<strong>and</strong>ard solutions<br />

An accurately weighed 10 mg <strong>of</strong> PYM was dissolved in methanol,<br />

transferred into a 10 mL st<strong>and</strong>ard flask <strong>and</strong> completed to<br />

<strong>the</strong> mark with methanol. This stock solution was fur<strong>the</strong>r diluted<br />

with <strong>the</strong> same solvent to obtain working solutions in<br />

<strong>the</strong> range 6–60 lgmL 1 .<br />

2.3.2. Tablets sample solution<br />

Twenty tablets were weighed, <strong>and</strong> finely powdered. An accurately<br />

weighed quantity <strong>of</strong> <strong>the</strong> powdered tablets equivalent to<br />

4.25 mg <strong>of</strong> PYM was transferred into a 25 mL calibrated flask,<br />

<strong>and</strong> dissolved in methanol. The prepared solutions were diluted<br />

quantitatively with methanol to obtain a suitable concentration<br />

<strong>for</strong> <strong>the</strong> analysis.<br />

2.3.3. General recommended procedure<br />

Accurately measured 1 mL <strong>of</strong> PYM solution containing 12–<br />

40 lgmL 1 was transferred into a 10 mL volumetric flask.<br />

3 mL <strong>of</strong> buffer solution pH (13.0) was added, followed by<br />

1 mL <strong>of</strong> NQS solution (0.5%, w/v). The reaction solution<br />

was allowed to proceed at 60 °C <strong>for</strong> 15 min. The reaction mixture<br />

was completed to volume with water, <strong>and</strong> <strong>the</strong> resulting<br />

solution was measured at 483 nm against reagent blank.<br />

2.4. Determination <strong>of</strong> PYM by HPLC<br />

According to <strong>the</strong> United States Pharmacopoeia, PYM was<br />

determined in two batches number (batch number 20 <strong>and</strong><br />

13). The analysis was per<strong>for</strong>med on a Phenomenex C18-column;<br />

5 lm (250 mm 4.6 mm i.d.) with a guard column<br />

3<br />

2.1. Instrumentation<br />

All absorbance measurements were made with a Double beam<br />

UV-1800 (SHIMADZU, Japan) ultraviolet–visible spectrophotometer<br />

provided with matched 1-cm quartz cells <strong>and</strong> also<br />

temperature controller was used <strong>for</strong> <strong>the</strong> spectrophotometric<br />

measurements. pH meter model pH211 (HANNA, Italy).<br />

Thermostatically controlled water bath type RE 220 (LAU-<br />

DA, Germany).<br />

Absorbance (Arb.<br />

1.00<br />

0.50<br />

1<br />

2<br />

2.2. Reagents <strong>and</strong> materials<br />

Pyrimethamine (PYM) (AMIPHARMA Laboratories Ltd.,<br />

Khartoum) were obtained <strong>and</strong> used as received; its purity<br />

was 99.7%. A solution <strong>of</strong> 0.5% (w/v) <strong>of</strong> 1,4-naphthoquinone-4-sulfonate<br />

(NQS) (Aldrich chemical Co., St. Louis,<br />

USA) was prepared by dissolving 125 mg in 25 mL double distilled<br />

water. The solution was freshly prepared <strong>and</strong> protected<br />

from light during use. Buffer solution <strong>of</strong> pH 13.0 was prepared<br />

by mixing 25 mL solution <strong>of</strong> KCl (0.2 M) <strong>and</strong> 66 mL solution<br />

0.00<br />

200.0 300.0 400.0 500.0 600.0 700.0<br />

Wavelength (nm)<br />

Figure 2 Absorption spectra <strong>of</strong> Pyrimethamine (20 lgml<br />

1 )<br />

against methanol (1). NQS (0.5% w/v) against water (2). And<br />

<strong>the</strong> reaction product <strong>of</strong> primethamine (30 lgml<br />

1 ) with NQS<br />

against reagent blank (3).


34 A.A. Elbashir, A.H.E. Elwagee<br />

Absorbance<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

NQS (% w/v)<br />

Figure 3 Effect <strong>of</strong> NQS concentration on <strong>the</strong> reaction <strong>of</strong> PYM<br />

with NQS. PYM (40 lg/ml): 1 ml; buffer solution (pH 13.0); 3 ml;<br />

temperature 60 °C; reaction time: 15 min.<br />

(4.0 mm · 3.0 mm i.d.). The mobile phase consisting <strong>of</strong> 80%<br />

glacial acetic acid (1:100), 20% acetonitrile <strong>and</strong> 500 lL triethylamine<br />

was delivered as an isocratic elution at a flow rate <strong>of</strong><br />

2 mL/min <strong>and</strong> 10 lL <strong>of</strong> <strong>the</strong> sample was injected. Be<strong>for</strong>e use<br />

<strong>the</strong> mobile phase was degassed by an ultrasonic bath <strong>and</strong> filtered<br />

by a Millipore vacuum filter system equipped with a<br />

0.45 ml HV filter.<br />

3. Results <strong>and</strong> discussion<br />

3.1. Optimization<br />

The absorption spectrum <strong>of</strong> <strong>the</strong> reaction product between<br />

NQS <strong>and</strong> PYM with an absorption maximum at 480 nm is<br />

shown in Fig. 2. Clearly from this figure a broad absorption<br />

b<strong>and</strong> at longer wavelengths is obtained <strong>for</strong> <strong>the</strong> reaction between<br />

NQS <strong>and</strong> PYM.<br />

The optimum conditions <strong>for</strong> <strong>the</strong> development <strong>of</strong> method<br />

were established by varying <strong>the</strong> parameters one at a time while<br />

keeping <strong>the</strong> o<strong>the</strong>rs fixed <strong>and</strong> observing <strong>the</strong> effect produced on<br />

<strong>the</strong> absorbance <strong>of</strong> <strong>the</strong> colored product. In order to establish<br />

experimental conditions, <strong>the</strong> effect <strong>of</strong> various parameters such<br />

as concentration <strong>of</strong> NQS, pH, temperature, <strong>and</strong> time <strong>of</strong> heating<br />

were studied.<br />

The effect <strong>of</strong> NQS concentration was studied over <strong>the</strong> range<br />

0.1–1.5 w/v% as shown in Fig. 3. Increasing <strong>the</strong> concentration<br />

<strong>of</strong> NQS results in more products up to an amount <strong>of</strong> 0.5%<br />

Table 1 Parameters <strong>for</strong> <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> proposed<br />

method.<br />

Parameter<br />

Value<br />

Measurement wavelength (nm) 483<br />

Linear range (lg mL 1 ) 12–40<br />

Intercept 0.704<br />

St<strong>and</strong>ard deviation <strong>of</strong> <strong>the</strong> intercept 0.014<br />

Slope 0.013<br />

St<strong>and</strong>ard deviation <strong>of</strong> <strong>the</strong> slope 0.001<br />

Correlation coefficient (r) 0.996<br />

Limit <strong>of</strong> detection, LOD (lgmL 1 ) 3.25<br />

Limit <strong>of</strong> quantification, LOQ (lg mL 1 ) 10.83<br />

Molar absorptivity, e (1 mol<br />

1 cm 1 ) 5.8 · 10 3<br />

after which <strong>the</strong> absorbance remained almost constant. There<strong>for</strong>e<br />

a concentration <strong>of</strong> 0.5% NQS was considered optimum.<br />

The influences <strong>of</strong> pH on <strong>the</strong> absorbance <strong>of</strong> product I was<br />

investigated in <strong>the</strong> range 1.0 to 14. At pH 1.0–7.0, <strong>the</strong><br />

absorbance <strong>of</strong> <strong>the</strong> product is close to 0, indicating that under<br />

high acidity, PYM does not react with NQS. The possible<br />

reason may be that <strong>the</strong> amino group ( NH 2 ) <strong>of</strong> PYM is<br />

protonated (pk a = 7.26 G.S. La´zaro et al., 2008) <strong>and</strong> converted<br />

into protonated amine salt ð NH þ 3<br />

Þ. So it loses nucleophilic<br />

capability <strong>for</strong> 4-sodium sulfonate <strong>of</strong> NQS, <strong>and</strong> <strong>the</strong><br />

nucleophilic substitution reaction cannot take place easily.<br />

At pH > 10.0, <strong>the</strong> absorbance <strong>of</strong> <strong>the</strong> solution increases rapidly<br />

up to pH 13.0. It may be that protonated amine salt<br />

ð NH þ 3 Þ <strong>of</strong> PYM turns into amino group ( NH 2) again<br />

when <strong>the</strong> acidity <strong>of</strong> <strong>the</strong> solution becomes low. The higher<br />

<strong>the</strong> pH, <strong>the</strong> more effectively <strong>the</strong> protonated amino group removes<br />

<strong>the</strong> proton, <strong>and</strong> more easily <strong>the</strong> nucleophilic substitution<br />

reaction happens. At pH 13.0, <strong>the</strong> absorbance reaches<br />

its maximum; in o<strong>the</strong>r words, <strong>the</strong> degree <strong>of</strong> <strong>the</strong> nucleophilic<br />

substitution reaction is also maximal. At pH > 13.0, <strong>the</strong><br />

absorbance <strong>of</strong> solution decreases sharply again. Presumably<br />

it may be that <strong>the</strong> increase <strong>of</strong> hydroxide ion holds back<br />

<strong>the</strong> nucleophilic substitution reaction between PYM <strong>and</strong><br />

<strong>the</strong> chromogenic reagent. Consequently, <strong>the</strong> absorbance <strong>of</strong><br />

<strong>the</strong> solution reduces. In order to keep <strong>the</strong> high sensitivity<br />

<strong>for</strong> <strong>the</strong> determination <strong>of</strong> PYM, pH 13.0 was selected <strong>for</strong><br />

optimal experimental conditions. Reaction <strong>of</strong> NQS with<br />

compound bearing primary amines at pH 13.0 was reported<br />

(Li <strong>and</strong> Zhang, 2008).<br />

The effect <strong>of</strong> temperature on <strong>the</strong> reaction was studied in <strong>the</strong><br />

range 20–80 °C. About 60 °C was found to be optimal <strong>for</strong><br />

maximum color development.<br />

O<br />

N<br />

NH 2<br />

Cl<br />

+<br />

O<br />

O<br />

N<br />

NH<br />

O<br />

Cl<br />

+ NaHSO 3<br />

H 2<br />

N<br />

N<br />

SO 3<br />

Na<br />

H 2<br />

N<br />

N<br />

Figure 4<br />

Scheme <strong>for</strong> <strong>the</strong> reaction pathway <strong>of</strong> PYM with NQS.


Spectrophotometric determination <strong>of</strong> pyrimethamine (PYM) 35<br />

Table 2<br />

Recovery studies <strong>for</strong> <strong>the</strong> determination <strong>of</strong> PYM, by <strong>the</strong> proposed method.<br />

Sample No. +SD Sample content (lgmL 1 ) Pyr. added (lgmL 1 ) Found Recovery (%)<br />

1 10 14 14.0 100.0 ± 0.01<br />

2 – 18 18.3 101.7 ± 0.03<br />

3 – 26 26.1 100.5 ± 0.01<br />

4 – 32 42.8 101.9 ± 0.09<br />

The influence <strong>of</strong> <strong>the</strong> time <strong>of</strong> heating was also investigated in<br />

<strong>the</strong> range 5–30 min. The experimental results show that heating<br />

in <strong>the</strong> range 15–20 min gave <strong>the</strong> optimal values in kinetic<br />

studies. The color product was stable <strong>for</strong> at least two days at<br />

room temperature.<br />

From <strong>the</strong> above experiments, <strong>the</strong> optimized conditions used<br />

<strong>for</strong> <strong>the</strong> assay were: NQS concentration 0.5% w/v, buffer (pH<br />

13.0), reaction time 20 min <strong>and</strong> temperature 60 °C.<br />

Under <strong>the</strong> optimum conditions, <strong>the</strong> stoichiometry <strong>of</strong> <strong>the</strong> reaction<br />

between PYM <strong>and</strong> NQS was studied by <strong>the</strong> Job’s (1964)<br />

method. The symmetrical bell shape <strong>of</strong> Job’s plot indicated that<br />

<strong>the</strong> ratio <strong>of</strong> PYM:NQS is 1:1. Based on this ratio, <strong>the</strong> reaction<br />

pathway was proposed to proceed as shown in Fig. 4.<br />

3.2. Analytical methods validation<br />

As can be seen from Table 1, linear relationship was found between<br />

absorbance at k max (483) <strong>and</strong> <strong>the</strong> concentration <strong>of</strong> <strong>the</strong><br />

PYM in <strong>the</strong> range 12–40 lg mL 1 . The regression equation<br />

was found as A = 0.0132C + 0.704 (r 2 = 0.996). The limits<br />

<strong>of</strong> detection (LOD) <strong>and</strong> limit <strong>of</strong> quantitation (LOQ) were<br />

determined using <strong>the</strong> <strong>for</strong>mula:LOD or LOQ = KS.D.a/b,<br />

where k = 3 <strong>for</strong> LOD <strong>and</strong> 10 <strong>for</strong> LOQ, SDa is <strong>the</strong> st<strong>and</strong>ard<br />

deviation <strong>of</strong> <strong>the</strong> intercept, <strong>and</strong> b is <strong>the</strong> slope.<br />

The accuracy <strong>of</strong> <strong>the</strong> proposed method was carried out by<br />

applying st<strong>and</strong>ard addition technique. A different amount <strong>of</strong><br />

st<strong>and</strong>ard solution was added to a known concentration <strong>of</strong><br />

<strong>the</strong> drug sample. The average percent recoveries obtained in<br />

range 100.04–101.9. Table 2.<br />

Robustness was examined by evaluating <strong>the</strong> influence <strong>of</strong><br />

small variation <strong>of</strong> method variables including <strong>the</strong> concentration<br />

<strong>of</strong> analytical reagent <strong>and</strong> reaction time on <strong>the</strong> per<strong>for</strong>mance<br />

<strong>of</strong> <strong>the</strong> proposed methods. In <strong>the</strong>se experiments, one<br />

parameter was changed whereas <strong>the</strong> o<strong>the</strong>rs were kept unchanged,<br />

<strong>and</strong> <strong>the</strong> recovery percentage was calculated each<br />

time. It was found that small variation <strong>of</strong> method variables<br />

did not significantly affect <strong>the</strong> procedures; recovery values<br />

were 98.43 101.40 (Table 3).<br />

3.3. Application to <strong>the</strong> pharmaceutical dosage <strong>for</strong>ms<br />

Table 3 Influence <strong>of</strong> small variation in <strong>the</strong> assay conditions<br />

on <strong>the</strong> analytical per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> proposed spectrophotometric<br />

method <strong>for</strong> <strong>the</strong> determination <strong>of</strong> pyr. using NQS<br />

reagent.<br />

Parameters<br />

Recovery (% ± SD)<br />

Recommended conditions 101.4 ± 1.5<br />

NQS concentration (%, w/v) 0.45 100.2 ± 0.1<br />

NQS concentration (%, w/v) 0.55 99.7 ± 0.1<br />

Buffer (pH) 12.75 100.8 ± 0.1<br />

Buffer (pH) 13.25 99.7 ± 0.3<br />

Temperature (°C) 58 99.6 ± 0.2<br />

Temperature (°C) 60 99.9 ± 0.1<br />

Reaction time (min) 14 98.4 ± 0.2<br />

Reaction time (min) 100.5± 0.1<br />

PYM tablets were subjected to <strong>the</strong> analysis by <strong>the</strong> proposed as<br />

well as with <strong>the</strong> <strong>of</strong>ficial HPLC method (United States pharmacopeia,<br />

2006) <strong>and</strong> <strong>the</strong> obtained results were statistically<br />

compared with each o<strong>the</strong>r. The label claim percentage was<br />

101.40 ± 1.47 <strong>and</strong> 102.38 ± 0.51 <strong>for</strong> batch 20 <strong>and</strong> batch 13<br />

respectively (Table 4). With respect to t- <strong>and</strong> F-tests, no significant<br />

differences were found between <strong>the</strong> calculated <strong>and</strong> <strong>the</strong>oretical<br />

values <strong>of</strong> both <strong>the</strong> proposed <strong>and</strong> <strong>the</strong> reported methods at<br />

95% confidence level. This indicated similar accuracy <strong>and</strong><br />

precision in <strong>the</strong> analysis <strong>of</strong> PYM in tablets. Common tablet<br />

excipients such as talc, lactose, starch, avisil, gelatine <strong>and</strong><br />

magnesium stearate did not interfere with <strong>the</strong> assay.<br />

4. Conclusions<br />

The present paper described <strong>the</strong> evaluation <strong>of</strong> NQS as an analytical<br />

reagent in <strong>the</strong> development <strong>of</strong> simple, sensitive, <strong>and</strong><br />

accurate spectrophotometric methods, <strong>for</strong> <strong>the</strong> determination<br />

<strong>of</strong> PYM in pharmaceutical <strong>for</strong>mulations. The described method<br />

is superior to <strong>the</strong> previously reported spectrophotometric<br />

methods in terms <strong>of</strong> simplicity <strong>and</strong> sensitivity. The proposed<br />

method has comparable analytical per<strong>for</strong>mances <strong>and</strong> is devoid<br />

<strong>of</strong> any potential interference. This gives <strong>the</strong> advantage <strong>of</strong> flexibility<br />

in per<strong>for</strong>ming <strong>the</strong> analysis on any available instrument.<br />

There<strong>for</strong>e, this method can be recommended <strong>for</strong> <strong>the</strong> routine<br />

analysis <strong>of</strong> PYM in quality control laboratories.<br />

Table 4<br />

Analysis <strong>of</strong> PYM containing dosage <strong>for</strong>ms by <strong>the</strong> proposed <strong>and</strong> <strong>of</strong>ficial HPLC methods (United States Pharmacopoeia).<br />

Dosage <strong>for</strong>m Recovery % + RSD (n =5) t-value f-value<br />

Proposed<br />

Official<br />

AMIFAN batch 20 101.4 ± 1.5 102.5 ± 1.4 1.21 1.09<br />

AMIFAN batch 13 100.4 ± 0.5 99.7 ± 0.5 2.40 1.18<br />

The tabulated values <strong>for</strong> t <strong>and</strong> f at 95% confidence limit are 2.78 <strong>and</strong> 6.26, respectively.


36 A.A. Elbashir, A.H.E. Elwagee<br />

References<br />

Anderson, A.C., 2005. Targeting DHFR in parasitic protozoa. Drug<br />

Discov. Today 10, 121–128.<br />

Bergqvist, Y., Eriksson, M., 1985. Simultaneous determination <strong>of</strong><br />

pyrimethamine <strong>and</strong> sulphadoxine in human plasma by highper<strong>for</strong>mance<br />

liquid chromatography. Trans. R. Soc. Trop. Med.<br />

Hyg. 79, 297–301.<br />

Berzas Nevado, J.J., Lemus Gallego, J.M., Castaneda Penalvo, G.,<br />

1993. Spectral ratio derivative spectrophotometric determination <strong>of</strong><br />

sulphaquinoxaline <strong>and</strong> pyrimethamine in veterinary <strong>for</strong>mulations.<br />

J. Pharm. Biomed. Anal. 11, 601–607.<br />

Bosch-Driessen, L.H., Verbraak, F.D., Suttorp-Schulten, M.S.A., van<br />

Ruyven, R.L.J., Klok, A.M., Hoyng, C.B., Rothova, A., 2002. A<br />

prospective, r<strong>and</strong>omized trial <strong>of</strong> pyrimethamine <strong>and</strong> azithromycin<br />

vs pyrimethamine <strong>and</strong> sulfadiazine <strong>for</strong> <strong>the</strong> treatment <strong>of</strong> ocular<br />

toxoplasmosis. Am. J. Ophthalmol. 134, 34–40.<br />

Cala, P.C., Trenner, N.R., Buhs, R.P., Downing Jr., G.V., Smith, J.L.,<br />

V<strong>and</strong>enheuvel III, W.J.A., 1972. Gas chromatographic determination<br />

<strong>of</strong> pyrimethamine in tissue. J. Agric. Food. Chem. 20, 334–337.<br />

DeAngelis, R.L., Simmons, W.S., Nichol, C.A., 1975. Quantitative<br />

thin layer chromatography <strong>of</strong> pyrimethamine <strong>and</strong> related<br />

diaminopyrimidines in body fluids <strong>and</strong> tissues. J. Chromatogr.<br />

106, 41–49.<br />

Edstein, M., 1984a. Quantification <strong>of</strong> antimalarial drugs. I. Simultaneous<br />

measurement <strong>of</strong> sulphadoxine. N4-acetylsulphadoxine <strong>and</strong><br />

pyrimethamine in human plasma. J. Chromatogr. B Biomed. Appl.<br />

305, 502–507.<br />

Edstein, M., 1984b. Quantification <strong>of</strong> antimalarial drugs II. Simultaneous<br />

measurement <strong>of</strong> dapsone, monoacetyldapsone <strong>and</strong> pyrimethamine<br />

in human plasma. J. Chromatogr. B Biomed. Appl. 307,<br />

426–431.<br />

Gallo-Martinez, L., Sevillano-Cabeza, A., Camp´ıns-Falc, P., Bosch-<br />

Reig, F., 1998. A new derivatization procedure <strong>for</strong> <strong>the</strong> determination<br />

<strong>of</strong> cephalexin with 1,2-naphthoquinone 4-sulphonate in<br />

pharmaceutical <strong>and</strong> urine samples using solid-phase extraction<br />

cartridges <strong>and</strong> UV–visible detection. Anal. Chim. Acta 370,<br />

115–123.<br />

Job, P., 1964. Advanced Physicochemical Experiments, second ed.<br />

Oliner <strong>and</strong> Boyd, Edinburgh, p. 54.<br />

Jones, C.R., Ryle, P.R., Wea<strong>the</strong>rley, B.C., 1981. Measurement <strong>of</strong><br />

pyrimethamine in human plasma by gas–liquid chromatography. J.<br />

Chromatogr. 224, 492–495.<br />

Khalil, S.M., Mohamed, G.G., Zayed, M.A., Elqudaby, H.M., 2000.<br />

Spectrophotometric determination <strong>of</strong> chloroquine <strong>and</strong> pyrimethamine<br />

through ion-pair <strong>for</strong>mation with molybdenum <strong>and</strong> thiocyanate.<br />

Microchem. J. 64, 181–186.<br />

Katlama, C., De Wit, S., O’Doherty, E., van Glabeke, M., Clumeck,<br />

N., 1996. Pyrimethamine–clindamycin vs. pyrimethamine–sulfadiazine<br />

as acute <strong>and</strong> long-term <strong>the</strong>rapy <strong>for</strong> toxoplasmic encephalitis<br />

in patients with AIDS. Clin. Infect. Dis. 22, 268–275.<br />

Lázaro, G.S., Meneses Jr., A.L., Lopes de Macedo, O.F., Gimenez,<br />

I.d.F., da Costa Jr., N.B., Barreto, L.S., Almeida, L.E., 2008.<br />

Interaction <strong>of</strong> pyrimethamine <strong>and</strong> sulfadiazine with ionic <strong>and</strong><br />

neutral micelles: electronic absorption <strong>and</strong> fluorescence studies.<br />

Colloids Surf. A: Physicochem. Eng. Aspects 324, 98–104.<br />

Li, Q., Zhang, H., 2008. A novel spectrophotometric method <strong>for</strong> <strong>the</strong><br />

determination <strong>of</strong> aminophylline in pharmaceutical samples in <strong>the</strong><br />

presence <strong>of</strong> methanol. Spectrochim. Acta Part A 70, 284–289.<br />

Midskov, C., 1984a. Rapid gas chromatographic determination <strong>of</strong><br />

pyrimethamine in human plasma <strong>and</strong> urine. J. Chromatogr. B<br />

Biomed. Appl. 306, 388–393.<br />

Midskov, C., 1984b. High-per<strong>for</strong>mance liquid chromatographic assay<br />

<strong>of</strong> pyrimethamine, sulfadoxine <strong>and</strong> its N4-acetyl metabolite in<br />

serum <strong>and</strong> urine after ingestion <strong>of</strong> Suldox. J. Chromatogr. B<br />

Biomed. Appl. 308, 217–227.<br />

Nagaraja, P., Shrestha, A.K., Shivakumar, A., Gowda, A.K., 2010.<br />

Spectrophotometric determination <strong>of</strong> chloroquine, pyrimethamine<br />

<strong>and</strong> trimethoprim by ion pair extraction in pharmaceutical <strong>for</strong>mulation<br />

<strong>and</strong> urine. J. Food Drug Anal. 18, 239–248.<br />

Onah, J.O., Odeiani, J.E., 2002. Simultaneous spectrophotometric<br />

determination <strong>of</strong> sulfadoxine <strong>and</strong> pyrimethamine in pharmaceutical<br />

<strong>for</strong>mulations. J. Pharm. Biomed. Anal. 30, 851–857.<br />

Parimo, P., 1988. Determination <strong>of</strong> pyrimethamine in drug preparation<br />

by fluorimetry. Indian J. Pharm. Sci. 50, 114–117.<br />

Sastry, B.S., Venkata Rao, E., Tumuru, M.K., Sastry, C.S.P., 1986. A<br />

new spectrophotometric method <strong>for</strong> <strong>the</strong> estimation <strong>of</strong> primaquine<br />

using MBTH. Indian J. Pharm. Sci. 48, 190–192.<br />

Saurina, J., Hernández-Cassuo, S., 1993. Continuous-flow spectrophotometric<br />

determination <strong>of</strong> amino acids with 1,2-naphthoquinone-4-sulphonate<br />

reagent. Anal. Chim. Acta 283, 414–420.<br />

Schmidt, L.H., Hughes, H.B., Schmidt, I.G., 1953. The pharmacological<br />

properties <strong>of</strong> 2, 4-diamino-5-p-chlorophenyl-6-ethylpyrimidine,<br />

daraprim. J. Pharmacol. Exp. Ther. 107, 92–130.<br />

Timm, U., Weidekamm, E., 1982. Determination <strong>of</strong> pyrimethamine in<br />

human plasma after administration <strong>of</strong> fansidar or fansidar-mefloquine<br />

by means <strong>of</strong> high-per<strong>for</strong>mance liquid chromatography with<br />

fluorescence detection. J. Chromatogr. 230, 107–114.<br />

United States Pharmacopoeia, 2006, 29-NF23, Pharmacopoeial Convention:<br />

Rockville, MD; Vol. 727, 2030.<br />

Wang, H.Y., Xu, L.X., Xiao, Y., Han, J., 2004. Spectrophotometric<br />

determination <strong>of</strong> dapsone in pharmaceutical products using sodium<br />

1, 2-naphthoquinone-4-sulfonic as <strong>the</strong> chromogenic reagent. Spectrochim.<br />

Acta Part A 60, 2933–2939.<br />

Weidekamm, E., Plozza-Nottebrock, H., Forgo, I., Dubach, U.C.,<br />

1982, B. World Health Organ 60, 115.<br />

Zayed, M.A., Shaban, M.K., Hoda, M.El., 2005. Spectrophotometric<br />

study <strong>of</strong> <strong>the</strong> reaction mechanism between DDQ p- <strong>and</strong> iodine r-<br />

acceptors <strong>and</strong> chloroquine <strong>and</strong> pyrimethamine drugs <strong>and</strong> <strong>the</strong>ir<br />

determination in pure <strong>and</strong> in dosage <strong>for</strong>ms. Spectrochim. Acta Part<br />

A 62, 461–465.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 37- 44<br />

/<br />

دراسة حركية راتنج م 6 ثاني أكسيد التيتاني وم<br />

عن طريق التحليل بالقياس الوزني الحراري المسح التفاضلي الحراري<br />

لتحسين صالبة راتنج<br />

/<br />

4<br />

4<br />

3<br />

باتريس بورسون ، يانيك قد ار ، فريدريك جوشام ،<br />

2<br />

بن يوسف بومدين<br />

1<br />

مراد لعرج ،<br />

1<br />

جامعة معسكر ، كلية العلوم والتكنولوجيا،‏ معهد العلوم والتقنيات<br />

صندوق البريد<br />

363<br />

وحدة البحث ‏"المواد والطاقات المتجددة"‏<br />

صندوق البريد<br />

طريق المامونية،‏ معسكر‎20222‎‏،‏ الجزائر<br />

،110<br />

مخبر المواد الضوئية والفوتونية واالنضمة<br />

قطب بالستيكي الشرق<br />

2<br />

، جامعة تلمسان،‏ كلية العلوم،‏ معهد الفيزياء<br />

تلمسان<br />

،13222<br />

الجزائر<br />

3<br />

، جامعة بول فرالن ماتز،‏<br />

،3132<br />

53522<br />

4<br />

،<br />

فرنسا ، سان تافولد<br />

فرنسا<br />

الملخص:‏<br />

الهدف من هذا البحث هو الحصول على إيبوكسي راتنج بأفضل الخصائص باستخدام ‏)التحليل بالقياس<br />

الوزني الحراري<br />

/<br />

المسح التفاضلي الحراري(.‏ االستقرار الحراري والخصائص الحركية لإلبوكسي راتنج<br />

باالستخدام غير المتساوي للحرارة<strong>the</strong>rmogravimetry <strong>the</strong>rmogravimetry/derivative وذلك<br />

من أجل سلسلة من النسب المئوية المختلفة<br />

Tio2-PC500<br />

وهي كالتالي:‏<br />

%5 ،%2 ،%1<br />

تم تقدير مقدار متغير القيمة الحركية بطرق التكامل و التقريب.‏<br />

أشارت النتائج إلى أن هذه الخصائص تعتمد على النسب المختلفة لثاني أكسيد التيتانيوم<br />

%11. و<br />

وفقا Tio 2<br />

لمنحنيات قياس ‏)الوزني الحراري(‏ التي تظهر أن طاقة التنشيط ‏)طاقة الحفز(‏ تتزايد مع تزايد النسب<br />

المئوية لجسيمات ثاني أكسيد التيتانيوم ( 2 ،)Tio و راتنج االبوكسي التحليل بمجهر المسح االلكتروني<br />

أوفي بأن توزيع جسيمات ثاني أكسيد التيتانيوم<br />

Tio 2<br />

كان بشكل منتظم ومتجانس ضمن المادة ‏)إيبوكسي<br />

راتنج(‏ هذا من جهة ومن جهة أخرى فالخاصية الميكانيكية التي هي الصالبة تحسنت مع زيادة النسب<br />

لجسيمات<br />

.Tio 2<br />

L. Merad et al.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 37–44<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Kinetic study <strong>of</strong> <strong>the</strong> RTM6/TiO 2 by DSC/TGA<br />

<strong>for</strong> improved hardness <strong>of</strong> resin<br />

L. Merad a,b, *, P. Bourson c , Y. Guedra d , F. Jochem d , B. Benyoucef b<br />

a Universite´ de Mascara, Faculte´ des Sciences et Technologie, De´partement des Sciences et Techniques, BP: 763,<br />

Route de Mamounia, Mascara 29000, Algeria<br />

b Unite´ de Recherche «Mate´riaux et Energies Renouvelables», URMER, Universite´ de Tlemcen, Faculte´ des Sciences,<br />

BP: 119, Tlemcen 13000, Algeria<br />

c Laboratoire Mate´riaux Optiques, Photoniques et Syste`mes, Universite´ Paul Verlaine-Metz, Supelec, UMR CNRS 7132,<br />

Metz, France<br />

d Poˆle de Plasturgie de l’Est, Saint Avold 57500, France<br />

Available online 9 January 2012<br />

KEYWORDS<br />

DSC;<br />

TG/DTG;<br />

RTM6;<br />

TiO 2 ;<br />

Kinetic parameter;<br />

Mechanical property<br />

Abstract The aim <strong>of</strong> this paper is to obtain an epoxy resin with best properties such as good cure<br />

<strong>of</strong> polymer (by using DSC <strong>and</strong> TGA). The <strong>the</strong>rmal stability <strong>and</strong> kinetic parameters <strong>of</strong> epoxy resin<br />

RTM6 using non-iso<strong>the</strong>rmal <strong>the</strong>rmogravimetry/derivative <strong>the</strong>rmogravimetry (TG/DTG) analysis<br />

with a series <strong>of</strong> different ratios <strong>of</strong> TiO 2 -PC500 1%, 2%, 5% <strong>and</strong> 10% with epoxy resin were evaluated.<br />

The kinetic parameter was evaluated by integral <strong>and</strong> approximation methods. Results<br />

obtained indicated that <strong>the</strong>se parameters were dependent on different ratios <strong>of</strong> TiO 2 . According<br />

to <strong>the</strong> <strong>the</strong>rmogravimetric curves it is shown that <strong>the</strong> activation energy at high <strong>of</strong> higher conversion<br />

increases with increasing <strong>the</strong> percentage <strong>of</strong> TiO 2 particles <strong>and</strong> epoxy resin. The SEM analysis suggests<br />

that TiO 2 particles are uni<strong>for</strong>mly distributed within <strong>the</strong> material, besides <strong>the</strong> mechanical property<br />

<strong>of</strong> materials are found to <strong>the</strong> addition <strong>of</strong> TiO 2 .<br />

ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

* Corresponding author at: Université de Mascara, Faculté des<br />

Sciences et Technologie, Département des Sciences et Techniques, BP:<br />

763, Route de Mamounia, Mascara 29000, Algeria. Tel.: +213 553 883<br />

884.<br />

E-mail address: laarej_merad@yahoo.com (L. Merad).<br />

1815-3852 ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.12.002<br />

Production <strong>and</strong> hosting by Elsevier<br />

1. Introduction<br />

Epoxy/TiO 2. was prepared by a solution mixture method, in<br />

which epoxy resin <strong>and</strong> nano-TiO 2 powder were mixed (Hung<br />

et al., 2006). Epoxy resins are widely used in most industrial<br />

applications, such as preparation <strong>of</strong> composites. The kinetics<br />

<strong>of</strong> epoxy resin cure has been widely investigated in <strong>the</strong> literature<br />

under conventional <strong>the</strong>rmal processing conditions<br />

(Navabpour et al., 2006).<br />

Resin transfer moulding (RTM) is rapidly gaining acceptance<br />

as one <strong>of</strong> <strong>the</strong> most promising manufacturing routes <strong>for</strong><br />

composite structures such as <strong>the</strong> aerospace <strong>and</strong> automotive<br />

industries. However, relatively limited in<strong>for</strong>mation is available


38 L. Merad et al.<br />

on <strong>the</strong> chemistry <strong>and</strong> cure characteristics <strong>of</strong> <strong>the</strong> types <strong>of</strong> <strong>the</strong>rmosetting<br />

resins used in such applications (Karkanas et al., 1996).<br />

The aim <strong>of</strong> this study is to describe <strong>the</strong> kinetic investigation<br />

<strong>of</strong> a curing <strong>the</strong>rmoset resin system. A lot <strong>of</strong> experimental techniques<br />

are suitable <strong>for</strong> following <strong>the</strong> rates <strong>and</strong> extents <strong>of</strong> cure<br />

reactions in <strong>the</strong>rmosets. Among <strong>the</strong>m <strong>the</strong>rmal gravimetric<br />

analysis may be considered as one <strong>of</strong> <strong>the</strong> most interesting<br />

techniques <strong>for</strong> macrokinetic analysis <strong>of</strong> cure reactions <strong>and</strong> a<br />

detailed investigation <strong>of</strong> <strong>the</strong>rmal decomposition <strong>of</strong> epoxy<br />

resins containing a commercial TiO 2 PC500 from Millennium<br />

at different percentages <strong>of</strong> 1%, 2%, 5% <strong>and</strong> 10%, <strong>for</strong><br />

evaluating <strong>the</strong> <strong>the</strong>rmal stability <strong>and</strong> to determine <strong>the</strong> <strong>the</strong>rmal<br />

decomposition kinetic parameter (activation energy) <strong>and</strong> to<br />

measure <strong>the</strong> mechanical property (hardness).<br />

2. Experimental<br />

2.1. Reagents<br />

The materials used in this work were <strong>of</strong> a commercially<br />

available grade <strong>of</strong> <strong>the</strong> diglycidyl e<strong>the</strong>r <strong>of</strong> bisphenol A<br />

((4-(2,3-epoxypropoxy)phenyl)propane) abbreviated as<br />

DGEBA. It was used under its commercial presentation<br />

(Dow Chemical Company; DER 332). The cure agent was<br />

4,4 0 -DiaminoDiphenylSulfone (DDS).<br />

Titanium dioxide TiO 2 -PC500 from Millenium Inorganic<br />

Chemicals (anatase > 99%, Surface area 250 m 2 ), crystallite<br />

mean size = (5–10 nm) was used as received.<br />

2.2. Apparatus<br />

2.2.1. DSC<br />

Dynamic scans were per<strong>for</strong>med using a heat-flux DSC (Mettler<br />

Toledo TC11) under nitrogen purge. The instrument was calibrated<br />

with indium.<br />

2.2.2. SEM<br />

The scanning electron microscopic (SEM) studies were per<strong>for</strong>med<br />

on a Hitachi S800-FE operated at 30 kV.<br />

2.3. Methods<br />

2.3.1. DSC<br />

Samples <strong>of</strong> <strong>the</strong> mixture <strong>of</strong> epoxy resin <strong>and</strong> curing agent were<br />

introduced in a furnace maintained at <strong>the</strong> temperature chosen<br />

<strong>for</strong> <strong>the</strong> experiment (100, 135 <strong>and</strong> 150 °C). They were successively<br />

removed <strong>and</strong> after different times <strong>the</strong>y were elapsed (typically<br />

between 1 <strong>and</strong> 6 h with a step <strong>of</strong> 1 h) <strong>and</strong> submitted to a<br />

DSC analysis with a heating rate <strong>of</strong> 10 °C min 1 from 30 to<br />

350 °C. These scans allowed determining <strong>the</strong> heat <strong>of</strong> reaction<br />

DH residual generated by <strong>the</strong> curing <strong>of</strong> <strong>the</strong> remaining epoxy resin<br />

not polymerized in <strong>the</strong> furnace.<br />

A scan per<strong>for</strong>med directly on a sample <strong>of</strong> <strong>the</strong> mixture epoxy<br />

resin/curing agent without heat treatment was allowed to<br />

determine <strong>the</strong> heat <strong>of</strong> reaction DH total generated by <strong>the</strong> complete<br />

polymerization process.<br />

2.3.2. TGA<br />

2.3.2.1. Sample preparation. The epoxy samples were prepared<br />

by <strong>the</strong> following three steps:<br />

1. Heating <strong>the</strong> epoxy resin in an oven at 40 °C.<br />

2. Adding <strong>the</strong> TiO 2 at different percentage 1%, 2%, 5% <strong>and</strong><br />

10%.<br />

3. Heating samples at 135 °C <strong>for</strong> 6 h.<br />

The <strong>the</strong>rmal property <strong>of</strong> Epoxy resin/TiO 2 sample was investigated<br />

by TG/DTG under N 2 environment. The analyses were<br />

carried out using heating rates <strong>of</strong> 5.0, 10.0, 20.0 <strong>and</strong><br />

30.0 °C min 1 <strong>for</strong> each experiment with approximately<br />

20.0 mg up to 850 °C.<br />

3. Kinetic methods<br />

3.1. Thermal analysis<br />

The DSC plots were also fitted using <strong>the</strong> equation described by<br />

Karkanas et al. (1996). The reaction rates <strong>for</strong> this work are calculated<br />

from <strong>the</strong> DSC using <strong>the</strong> following equations:<br />

2.2.3. TGA<br />

The <strong>the</strong>rmogravimetry analysis (TGA) was carried out on a<br />

SETARAM 92-12 apparatus under an N 2 atmosphere.<br />

a ¼ DH t<br />

DH Tot<br />

da<br />

dt ¼ 1dDH t<br />

DH tot dt<br />

ð1Þ<br />

ð2Þ<br />

Figure 1 Chemical structures <strong>and</strong> cure reaction <strong>of</strong> DGEBA by DDS (Farquharson et al., 2007).


Kinetic study <strong>of</strong> <strong>the</strong> RTM6/TiO 2 by DSC/TGA <strong>for</strong> improved hardness <strong>of</strong> resin 39<br />

Table 1 Total heat <strong>of</strong> reaction <strong>of</strong> RTM6 resin at different<br />

heating rates.<br />

Heating rate (°C min 1 ) 1 2 5 10 20 30<br />

DH total (J g 1 ) 439.29 435.32 437.00 434.05 432.89 439.57<br />

where DH t is <strong>the</strong> partial area under DSC trace up to time t <strong>and</strong><br />

DH tot is <strong>the</strong> total enthalpy <strong>of</strong> reaction measured as <strong>the</strong> area under<br />

<strong>the</strong> heat flow against time <strong>for</strong> DSC.<br />

The DSC plots were also fitted using <strong>the</strong> equation described<br />

by Karkanas et al. (1996) <strong>and</strong> Puglia et al. (2003).<br />

@a<br />

@t ¼ðk 1 þ k 2 a m Þð1 aÞ n ð3Þ<br />

@a<br />

@t ¼ k 1ð1 aÞ n 1<br />

þ k 2 a m ð1 aÞ n 2<br />

ð4Þ<br />

where k 1 <strong>and</strong> k 2 are <strong>the</strong> rate constants, m <strong>and</strong> n are <strong>the</strong> reaction<br />

orders.<br />

In <strong>the</strong> non-iso<strong>the</strong>rmal experiments carried out with a<br />

<strong>the</strong>rmobalance, <strong>the</strong> sample mass is measured as function <strong>of</strong><br />

temperature (see Fig. 1).<br />

The calculation <strong>of</strong> kinetic data is based on <strong>the</strong> kinetic Eq.<br />

(5):<br />

@a<br />

@t ¼ kan<br />

where a is <strong>the</strong> amount <strong>of</strong> sample undergoing reaction, n is <strong>the</strong><br />

reaction order, <strong>and</strong> k is <strong>the</strong> specific rate constant. The temperature<br />

dependence <strong>of</strong> k is expressed by Arrhenius Eq. (6):<br />

<br />

k ¼ A exp<br />

E a<br />

RT<br />

<br />

where A is <strong>the</strong> Arrhenius constant, E a is <strong>the</strong> activation energy,<br />

<strong>and</strong> R is <strong>the</strong> gas constant.<br />

The activation energy can be determined by Kissinger’s<br />

method without a precise knowledge <strong>of</strong> <strong>the</strong> reaction mechanism,<br />

using <strong>the</strong> following Eq. (7).<br />

<br />

b<br />

ln ¼ ln AR h i<br />

1 E<br />

þ ln nð1 aÞn ð7Þ<br />

E<br />

T 2 max<br />

RT max<br />

ð6Þ<br />

where T max is <strong>the</strong> temperature corresponding to <strong>the</strong> inflection<br />

point <strong>of</strong> <strong>the</strong> <strong>the</strong>rmodegradation curves which correspond to<br />

<strong>the</strong> maximum reaction rate, a max is <strong>the</strong> conversion at T max<br />

<strong>and</strong> n is <strong>the</strong> reaction order. Taking into account <strong>the</strong> Kissinger’s<br />

approximation which states that:<br />

f 0 ða max Þ¼nð1 a max Þ n 1 ffi const ð8Þ<br />

The activation energy can determined from a plot <strong>of</strong><br />

lnðb=T 2 max Þ against 1/T max.<br />

4. Results <strong>and</strong> discussion<br />

Table 1 shows <strong>the</strong> enthalpy <strong>of</strong> cure <strong>for</strong> DSC curing <strong>for</strong> iso<strong>the</strong>rmal<br />

temperature after curing using DSC.<br />

Fig. 2 shows <strong>the</strong> plots <strong>of</strong> conversion <strong>and</strong> reaction rate <strong>for</strong><br />

<strong>the</strong> iso<strong>the</strong>rmal curing <strong>of</strong> RTM6 cured using DSC. The conversions<br />

<strong>and</strong> reaction rates were obtained using <strong>the</strong> DSC curves<br />

<strong>and</strong> Eqs. (2) <strong>and</strong> (3).<br />

The curves <strong>of</strong> reaction rate on time were fitted to <strong>the</strong> kinetics<br />

Eq. (4). The equation was modified to account <strong>for</strong> <strong>the</strong> diffusion<br />

effect, which occurs when <strong>the</strong> resin is trans<strong>for</strong>med from <strong>the</strong><br />

rubbery to glassy state (Navabpour et al., 2006).<br />

The time interval to reach that maximum value is different<br />

<strong>for</strong> each cure temperature <strong>and</strong> shifts to longer times <strong>for</strong> lower<br />

cure temperatures.<br />

All <strong>the</strong> above observations lead to <strong>the</strong> conclusion that <strong>the</strong><br />

cure <strong>of</strong> <strong>the</strong> specific epoxy-amine system follows a complex<br />

reaction mechanism, with autocatalytic phenomena occurring<br />

during <strong>the</strong> early stages <strong>of</strong> <strong>the</strong> cure.<br />

The reaction schemes <strong>for</strong> epoxies are relatively well established<br />

<strong>and</strong> mainly involve primary <strong>and</strong> secondary amino group<br />

addition to <strong>the</strong> epoxy group, <strong>for</strong> normal curing conditions.<br />

Under extreme conditions <strong>of</strong> high cure temperatures, e<strong>the</strong>rification<br />

may also occur. These reactions may be catalysed by<br />

any impurities present in <strong>the</strong> resin, or by <strong>the</strong> hydroxyl <strong>and</strong><br />

tertiary amine products <strong>for</strong>med, resulting in autocatalysis<br />

(Shoichiro et al., 2005).<br />

Table 2 summarizes <strong>the</strong> parameters obtained from fitting<br />

<strong>the</strong> experimental data to <strong>the</strong> Eqs. (4) <strong>and</strong> (5). Values <strong>of</strong> preexponential<br />

factor <strong>and</strong> activation energy were calculated from<br />

Figure 2 (a) Fractional conversion <strong>for</strong> iso<strong>the</strong>rmal Cure at 100 °C <strong>for</strong> different time <strong>of</strong> reticulation. (b) Reaction rates <strong>for</strong> dynamic cure at<br />

different times <strong>of</strong> cure <strong>for</strong> RTM6 at 100 °C.


40 L. Merad et al.<br />

Table 2<br />

Parameters obtained from fitting <strong>the</strong> iso<strong>the</strong>rmal curing results using DSC.<br />

Cure temperature (°C) k 1 (10 5 s 1 ) k 2 (10 3 s 1 ) m n n 1 n 2<br />

Eq. (4)<br />

@a<br />

@t ¼ðk 1 þ k 2 a m Þð1 aÞ n<br />

100 2.21 0.53 0.95 0.59 – –<br />

135 3.52 0.92 1.09 0.66 – –<br />

150 4.30 1.35 1.11 0.79 – –<br />

@a<br />

Eq. (5)<br />

@t ¼ k 1ð1 aÞ n1 þ k 2 a m ð1 aÞ n2<br />

100 2.15 0.51 0.95 – 0.52 0.66<br />

135 3.43 0.89 1.07 – 0.58 0.73<br />

150 4.11 1.28 1.05 – 0.71 0.86<br />

<strong>the</strong> temperature dependence <strong>of</strong> k 1 <strong>and</strong> k 2 using <strong>the</strong> Arrhenius<br />

equation. Values <strong>of</strong> E 1 <strong>and</strong> E 2 <strong>for</strong> <strong>the</strong> conventionally cured<br />

samples are in agreement with those obtained by Karkanas<br />

<strong>and</strong> Partridge. The values <strong>of</strong> A 1 <strong>and</strong> A 2 were, however, much<br />

smaller than <strong>the</strong> values obtained by <strong>the</strong>m. As in <strong>the</strong>ir analysis<br />

<strong>the</strong>y did not correct <strong>the</strong> kinetics models <strong>for</strong> diffusion control,<br />

<strong>the</strong> fits to <strong>the</strong> experimental data were not as good as in this<br />

work, <strong>and</strong> this might explain <strong>the</strong> observed differences in<br />

pre-exponential factors (see Fig. 3).<br />

A 1 ¼ 22420 s 1 ; E 1 ¼ 71:l kJ mol 1<br />

ð4Þ<br />

A 2 ¼ 10256 s 1 ; E 2 ¼ 55:65 kJ mol 1<br />

A 1 ¼ 25820 s 1 ; E 1 ¼ 73:6 kJ mol 1<br />

A 2 ¼ 25460 s 1 ; E 2 ¼ 61:84 kJ mol 1<br />

4.1. SEM<br />

For appreciation dispersion <strong>of</strong> Nanoparticles TiO 2 .<br />

As shown in Figs. 4 <strong>and</strong> 5 <strong>of</strong> SEM, <strong>the</strong> epoxy resin has a<br />

smooth <strong>and</strong> flat surface in without TiO 2 , with addition <strong>of</strong><br />

percentage <strong>of</strong> TiO 2 it is observed that a relatively little amount<br />

<strong>of</strong> TiO 2 particles are attached to <strong>the</strong> surface <strong>of</strong> resin with a<br />

good dispersion.<br />

The SEM analysis suggests that TiO 2 particles are uni<strong>for</strong>mly<br />

distributed within <strong>the</strong> materials.<br />

The non-iso<strong>the</strong>rmal kinetic study <strong>of</strong> weight loss during a<br />

<strong>the</strong>rmal decomposition process <strong>of</strong> epoxy resin containing<br />

ð5Þ<br />

TiO 2 at 1%, 2%, 5% <strong>and</strong> 10%. Two different methods, all<br />

based on Arrhenius kinetic <strong>the</strong>ory, were used <strong>for</strong> <strong>the</strong> kinetic<br />

analysis <strong>of</strong> <strong>the</strong> TG/DTG data: one based on differential<br />

method <strong>and</strong> o<strong>the</strong>r based on integral method. In all <strong>of</strong> <strong>the</strong>se<br />

methods, calculations were per<strong>for</strong>med to estimate <strong>the</strong> kinetic<br />

parameter activation energy.<br />

For obtaining <strong>the</strong> kinetic in<strong>for</strong>mation, such as <strong>the</strong> activation<br />

energy, <strong>the</strong> TGA study has been conducted with <strong>the</strong><br />

variation <strong>of</strong> <strong>the</strong> heating rates.<br />

Fig. 6(a) shows <strong>the</strong> TGA <strong>the</strong>rmograms <strong>of</strong> epoxy resin<br />

containing different percentage <strong>of</strong> TiO 2 1%, 2%, 5% <strong>and</strong><br />

10% at a constant heating rate 10 °C min 1 .<br />

Fig. 6(b) shows <strong>the</strong> TGA <strong>the</strong>rmograms <strong>of</strong> epoxy resin<br />

containing a 1% <strong>of</strong> TiO 2 , corresponding to dynamic experiments<br />

carried out at different heating rates (5, 10, 20, <strong>and</strong><br />

30 °C min 1 ).<br />

The corresponding differential (DTG) curves <strong>of</strong> this sample<br />

are shown in Figs. 7 <strong>and</strong> 8. The <strong>the</strong>rmal decomposition process<br />

in two steps degradation, probably corresponding to epoxy<br />

resin two step corresponding to <strong>the</strong> degradation <strong>of</strong> e<strong>the</strong>r group<br />

structures in <strong>the</strong> polymer matrix (Santos et al., 2002; Shoichiro<br />

et al., 2005; Hansmann et al., 2003).<br />

The non-iso<strong>the</strong>rmal kinetic study <strong>of</strong> weight loss during a<br />

<strong>the</strong>rmal decomposition process <strong>of</strong> RTM6/TiO 2 samples is<br />

extremely complex because <strong>of</strong> <strong>the</strong> presence <strong>of</strong> two components<br />

<strong>and</strong> <strong>the</strong>ir consecutive reactions. Two different methods, all<br />

based on Arrhenius kinetic <strong>the</strong>ory, were used <strong>for</strong> <strong>the</strong> analysis<br />

<strong>of</strong> TG/DTG data, one on integral method <strong>and</strong> <strong>the</strong> o<strong>the</strong>r based<br />

on approximation method. In all <strong>the</strong>se methods, calculations<br />

Figure 3 (a) Reaction rates <strong>for</strong> dynamic cure at different times <strong>of</strong> cure <strong>for</strong> RTM6 at 135 °C. (b) Reaction rates <strong>for</strong> dynamic cure at<br />

different times <strong>of</strong> cure <strong>for</strong> RTM6 at 150 °C.


Kinetic study <strong>of</strong> <strong>the</strong> RTM6/TiO 2 by DSC/TGA <strong>for</strong> improved hardness <strong>of</strong> resin 41<br />

Figure 4 (a) SEM image <strong>of</strong> RTM6 + 1% TiO 2 , (b) SEM image <strong>of</strong> RTM6 + 2% TiO 2 .<br />

Figure 5 (a) SEM image <strong>of</strong> RTM6 + 5% TiO 2 , (b) SEM image <strong>of</strong> RTM6 + 10% TiO 2 .<br />

Figure 6 (a) TGA <strong>the</strong>rmograms <strong>of</strong> RTM6 with TiO 2 constant heating rate <strong>of</strong> 10 °C min 1 , (b) TGA <strong>the</strong>rmograms <strong>of</strong> RTM6 with 1% at<br />

a <strong>of</strong> TiO 2 at different heating rates.<br />

were per<strong>for</strong>med to estimate <strong>the</strong> kinetic parameter as activation<br />

energy (Ng et al., 1999).<br />

Using <strong>the</strong> Kissinger Eq. (11), lines <strong>of</strong> lnðb=T 2 maxÞ versus 1/<br />

T max <strong>for</strong> each stage <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal degradation were plotted<br />

<strong>for</strong> all samples. Fig. 9(a) shows <strong>the</strong> representative plots <strong>for</strong><br />

each stage <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal degradation <strong>of</strong> epoxy resin at 1%<br />

<strong>of</strong> TiO 2 . The calculated decomposition activation energies<br />

<strong>for</strong> epoxy step <strong>of</strong> all samples are listed in Table 2. The<br />

activation energies <strong>for</strong> epoxy resins contain a different percentage<br />

<strong>of</strong> TiO 2 as compared to <strong>the</strong>m.<br />

The all steps mainly involve <strong>the</strong> degradation <strong>of</strong> carbonyl<br />

groups in <strong>the</strong> resin matrix. However, <strong>the</strong> activation energies<br />

at higher conversions increase with increasing <strong>the</strong> percentage<br />

<strong>of</strong> TiO 2 .<br />

Ano<strong>the</strong>r procedure <strong>for</strong> calculating <strong>the</strong> activation energy is<br />

taking <strong>the</strong> Flynn–Wall–Ozawa equation. At given value <strong>of</strong><br />

<strong>the</strong> conversion, <strong>the</strong> activation energy can be obtained from a<br />

logarithmic plot <strong>of</strong> heating rates as a function <strong>of</strong> <strong>the</strong> reciprocal<br />

<strong>of</strong> temperature, since <strong>the</strong> slope <strong>of</strong> such a line is given by 0.4567<br />

E/R. For <strong>the</strong> present work, <strong>the</strong> conversion values <strong>of</strong> 50% <strong>and</strong><br />

98% were used. The fitting lines <strong>of</strong> different samples at <strong>the</strong><br />

selected conversion values are shown in Fig. 9. All <strong>of</strong> <strong>the</strong><br />

calculated activation energies are listed in Table 3. The activation<br />

energy at different conversions increases with increasing<br />

<strong>the</strong> percentage <strong>of</strong> TiO 2 (Lu et al., 2004).<br />

The experiment realized with different heating rates indicates<br />

<strong>the</strong> same mechanisms with variation kinetic parameter<br />

values. The kinetic parameter obtained by integral <strong>and</strong><br />

approximation methods presented good correlation. In<br />

general, <strong>the</strong> values obtained by <strong>the</strong> Kissinger method were high<br />

<strong>for</strong> <strong>the</strong> first step than <strong>the</strong> values obtained by <strong>the</strong><br />

Flynn–Wall–Ozawa method <strong>and</strong> <strong>for</strong> <strong>the</strong> second step <strong>the</strong> values<br />

obtained by Kissinger were small than <strong>the</strong> values obtained by<br />

<strong>the</strong> Flynn–Wall–Ozawa method. In <strong>the</strong> present study, <strong>the</strong> two


42 L. Merad et al.<br />

Figure 7 (a) TGA <strong>the</strong>rmograms <strong>of</strong> RTM6 with 2% <strong>of</strong> TiO 2 at different heating rates, (b) TGA <strong>the</strong>rmograms <strong>of</strong> RTM6 with 5% <strong>of</strong> TiO 2<br />

at different heating rates.<br />

<strong>of</strong> a viscous flow. The blends undergo melting <strong>and</strong> noncross-linked<br />

reagents leave <strong>the</strong> samples. Maybe <strong>the</strong> rate <strong>of</strong> <strong>the</strong>ir<br />

escape inversely depends on <strong>the</strong> viscosity. Of course, catalytic<br />

reactions with a diffusion control are possible as well. The<br />

diffusion coefficient is inversely proportional to <strong>the</strong> viscosity.<br />

When nano-TiO 2 particles are dispersed in epoxy resin, <strong>the</strong><br />

interaction between larger surface areas <strong>of</strong> particles <strong>and</strong> substrate<br />

will help reduce <strong>the</strong> activity <strong>of</strong> substrate bond. This<br />

interaction improves <strong>the</strong> hardness <strong>of</strong> materials such as <strong>the</strong><br />

mechanical property <strong>of</strong> <strong>the</strong> epoxy resin/TiO 2 . It can be seen<br />

from Fig. 10 that when <strong>the</strong> concentration <strong>of</strong> nanosized TiO 2<br />

powder increases, <strong>the</strong> hardness <strong>of</strong> materials will be improved<br />

(see Tables 4 <strong>and</strong> 5).<br />

5. Conclusions<br />

Figure 8 DTG curve <strong>of</strong> a sample at a constant heating rate <strong>of</strong><br />

10 °C min 1 .<br />

methods show good agreement when used to determine <strong>the</strong><br />

decomposition activation energies at certain conversion values.<br />

The activation energy <strong>for</strong> <strong>the</strong> first step <strong>of</strong> <strong>the</strong> decomposition<br />

is very low (about 25 kJ/mol or 6 kcal/mol). It is too low <strong>for</strong><br />

<strong>the</strong> overwhelming majority <strong>of</strong> high-temperature reactions. It<br />

seems that such energy could be attributed to activation energy<br />

A combination <strong>of</strong> nth order <strong>and</strong> autocatalytic reaction kinetics<br />

was applied to fit data from dynamic <strong>and</strong> iso<strong>the</strong>rmal DSC<br />

scans <strong>of</strong> a commercial RTM resin. A unique set <strong>of</strong> kinetic<br />

parameters was obtained <strong>for</strong> <strong>the</strong> dynamic case, suggesting a<br />

constant reaction mechanism throughout <strong>the</strong> range <strong>of</strong> <strong>the</strong><br />

heating rates used. In <strong>the</strong> iso<strong>the</strong>rmal case, <strong>the</strong> kinetic parameters<br />

required to achieve a good fit were different from those<br />

found in <strong>the</strong> dynamic runs; in particular, <strong>the</strong> reaction orders<br />

had to be allowed to vary with cure temperature. The <strong>the</strong>rmal<br />

Figure 9 (a) Plot <strong>of</strong> lnðb=T 2 max Þ versus 1/T max <strong>of</strong> RTM6 with 1% <strong>of</strong> TiO 2 <strong>for</strong> calculating <strong>the</strong> activation (b) Plots <strong>of</strong> logb versus 1/T <strong>of</strong><br />

RTM6 with 1% <strong>of</strong> TiO 2 <strong>for</strong> calculating <strong>the</strong> activation energies by Kissinger method Flynn–Wall–Ozawa.


Kinetic study <strong>of</strong> <strong>the</strong> RTM6/TiO 2 by DSC/TGA <strong>for</strong> improved hardness <strong>of</strong> resin 43<br />

Table 3<br />

Calculated decomposition activation energies <strong>for</strong> every stage <strong>of</strong> all samples by Kissinger method.<br />

Samples First step Second step<br />

Temperature range (°C) D m (%) T (°C) Temperature range (°C) D m (%) T (°C)<br />

RTM6 + 1%TiO 2 280–500 63.44 410.10 500–834.12 26.42 650.11<br />

RTM6 + 2%TiO 2 280–500 65.43 415.78 500–834.12 28.67 654.67<br />

RTM6 + 5%TiO 2 280–500 68.45 425.76 500–834.12 30.45 699.98<br />

RTM6 + 10%TiO 2 280–500 74.76 435.56 500–834.12 33.56 673.45<br />

loss rates were altered by <strong>the</strong> TiO 2 nanocharges. The kinetic<br />

parameters obtained by approximation <strong>and</strong> integral methods<br />

were satisfactory <strong>and</strong> present good correlation.<br />

This experiment attempts to process materials, using epoxy<br />

resin <strong>and</strong> nanosized TiO 2 powder, <strong>the</strong> hardness will increase<br />

with <strong>the</strong> increase <strong>of</strong> concentration <strong>of</strong> TiO 2 .<br />

References<br />

Figure 10<br />

TiO 2 .<br />

Hardness <strong>of</strong> epoxy/TiO 2 on different concentration <strong>of</strong><br />

stability <strong>of</strong> epoxy resin containing nanocharges TiO 2 was evaluated<br />

by <strong>the</strong>rmogravimetric curves <strong>and</strong> activation energy obtained<br />

from <strong>the</strong>rmogravimetric data. The results obtained<br />

indicated that <strong>the</strong> activation energies at higher conversions increase<br />

with increasing <strong>the</strong> percentage <strong>of</strong> TiO 2 . The degradation<br />

activation energies, decomposition temperatures <strong>and</strong> weight<br />

Farquharson, S., Smith, W., Rose, J., Shaw, M., 2007. Correlations<br />

between molecular (Raman) <strong>and</strong> macroscopic (rheology) data <strong>for</strong><br />

process monitoring <strong>of</strong> <strong>the</strong>rmoset composite. JPAC SM process<br />

Analytical Chemistry, 45–53.<br />

Hansmann, H., 2003. Composite, Compendium, ASM h<strong>and</strong>book/<br />

Extraction Epoxy resins.<br />

Hung, K.S., Nien, Y.H., Chen, J.S., Shieh, T.R., Chen, J.W., 2006.<br />

Syn<strong>the</strong>sis <strong>and</strong> properties <strong>of</strong> epoxy/TiO 2 composite materials.<br />

Polymer Composite 27, 195–200.<br />

Karkanas, P.I., Partridge, I.K., Attwood, D., 1996. Modelling <strong>the</strong> cure<br />

<strong>of</strong> a commercial epoxy resin <strong>for</strong> applications in resin transfer<br />

moulding. Polymer International 41, 183–191.<br />

Lu, L., Lai, M.O., Yan, M.C., Ye, L., 2004. Nanostructured high<br />

strengh Mg–5%Al–x%Nd alloys prepared by mechanical alloying.<br />

Revue Advanced Material Science 6, 28–32.<br />

Navabpour, P., Degamber, B., Fern<strong>and</strong>o, G., Mann, T., Day, R., 2006.<br />

Comparison <strong>of</strong> <strong>the</strong> curing kinetics <strong>of</strong> <strong>the</strong> RTM6 epoxy resin system<br />

Table 4<br />

Calculated decomposition activation energies <strong>for</strong> every stage <strong>of</strong> all samples by Kissinger method.<br />

Samples Region Conversion a T max (K) (b =10°C.min 1 ) Activation Energy E a (kJ/mol) Correlation coefficient r<br />

1% TiO 2 1 Step 0.00–0.50 0.00–0.50 673 21 0.995<br />

Step 0.50–0.98 0.50–0.98 953 155 0.998<br />

2% TiO 2 1 Step 0.00–0.50 0.00–0.50 675.67 23 0.998<br />

2 Step 0.50–0.98 0.50–0.98 960.34 157 0.997<br />

5% TiO 2 1 Step 0.00–0.50 0.00–0.50 678.56 25 0.993<br />

2 Step 0.50–0.98 0.50–0.98 967.78 161 0.995<br />

10% TiO 2 1 Step 0.00–0.50 0.00–0.50 683.56 29 0.996<br />

2 Step 0.50–0.98 0.50–0.98 971.56 168 0.998<br />

Table 5<br />

Calculated decomposition activation energies <strong>for</strong> every stage <strong>of</strong> all samples by Flynn–Wall–Ozawa method.<br />

Samples Region Conversion Activation Energy<br />

E a (kJ/mol)<br />

1% TiO 2 1 Step 0.00–0.50 0.00–0.50 29 0.995<br />

2 Step 0.50–0.98 0.50–0.98 146 0.998<br />

2% TiO 2 1 Step 0.00–0.50 0.00–0.50 25 0.998<br />

2 Step 0.50–0.98 0.50–0.98 153 0.997<br />

5% TiO 2 1 Step 0.00–0.50 0.00–0.50 28 0.993<br />

2 Step 0.50–0.98 0.50–0.98 159 0.995<br />

10% TiO 2 1 Step 0.00–0.50 0.00–0.50 31 0.996<br />

2 Step 0.50–0.98 0.50–0.98 170 0.998<br />

Correlation<br />

coefficient r


44 L. Merad et al.<br />

using differential scanning calorimetry <strong>and</strong> a microwave-heated<br />

calorimeter. <strong>Journal</strong> <strong>of</strong> <strong>Applied</strong> Polymer Science 99, 3658–3668.<br />

Ng, C.B., Scbadler, L.S., Siegel, R.W., 1999. Syn<strong>the</strong>sis <strong>and</strong> mechanical<br />

properties <strong>of</strong> TiO 2 -epoxy nanocomposite. Nanostructured Materials<br />

12, 507–510.<br />

Puglia, D., Valentini, L., Armentano, I., Kenny, J.M., 2003. Effects <strong>of</strong><br />

single-walled carbon nanotube incorporation on <strong>the</strong> cure reaction<br />

<strong>of</strong> epoxy resin <strong>and</strong> its detection by raman spectroscopy. Diamond<br />

<strong>and</strong> Related Materials 12, 827–832.<br />

Santos, J.C.O., Dos Santos, I.M.G., Souza, A.G., Prasad, S., Dos<br />

Santos, A.V., 2002. Thermal stability <strong>and</strong> kinetic study on <strong>the</strong>rmal<br />

decomposition <strong>of</strong> commercial edible oils by <strong>the</strong>rmogravimetry.<br />

<strong>Journal</strong> <strong>of</strong> Food Science 67 (4), 1393–1398.<br />

Shoichiro, Y., Ito, T., Shinoda, K., Ikake, H., Hagiwara, T.,<br />

Sawaguchi, T., Kurita, K., Seno, M., 2005. Properties <strong>and</strong><br />

microstructures <strong>of</strong> epoxy resin/TiO 2 <strong>and</strong> SiO 2 hybrids. Polymer<br />

International 54, 354–361.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 45-49<br />

تنقية وقود الديزل الحيوي باستخدام الكاربون المنشط المحضر من بقايا الشاي المستنفذ<br />

عبدالرحمن باسل فاضل،‏<br />

محمد مجبل ذياب،‏<br />

عبدالقادر يوسف عبدالقادر<br />

قسم<br />

الكيمياء،‏ كليه<br />

جامعة العلوم،‏<br />

الموصل،‏ الموصل،‏<br />

العراق<br />

الملخص:‏<br />

تضمنت<br />

الدراسة الحالية<br />

تحضير<br />

تفاعل انتقال االسترة المحفز بالقاعدة.‏<br />

استرات<br />

النتائج<br />

المثيل(‏<br />

المستحصلة<br />

هالم السليكا.‏<br />

الناتجة وذلك<br />

أظهرت<br />

المثيل وخواص احتراقية<br />

وقود الديزل الحيوي<br />

باستخدام<br />

‏)استرات المثيل(‏<br />

بعد فصل الناتج العرضي<br />

الكربون<br />

مع نموذج الديزل الحيوي المنقى<br />

النتائج<br />

أفضل<br />

أن<br />

المستنفذ و استخدامه لنفس الغرض<br />

تنقية الديزل الحيوي باستخدام<br />

مقارنة بطرق التنقية<br />

مرة أخرى.‏<br />

من زيت القلي المستنفذ<br />

‏)الكليسيرول(‏<br />

تم تنقية<br />

المنشط المحضر من بقايا الشاي المستنفذ.‏<br />

باستخدام طريقة الغسل بالماء،‏<br />

األخرى<br />

وأظهرت<br />

الكربون<br />

المستخدمة.‏<br />

النتائج<br />

أعطى المنشط<br />

من خالل<br />

الديزل الحيوي)‏<br />

قورنت ولقد<br />

وطريقة التنقية باستخدام<br />

حصيلة من استرات<br />

كما تم إعادة تنشيط الكربون المنشط<br />

أيضاً‏ أن الكربون<br />

المنشط<br />

المستنفذ المعاد<br />

تشيطه هو األخر قد أعطى حصيلة أعلى وخواص احتراقية أفضل مقارنة بطرق التنقية األخرى المستخدمة.‏<br />

A.Fadhil et al.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 45–49<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Purification <strong>of</strong> biodiesel using activated carbons<br />

produced from spent tea waste<br />

Abdelrahman B. Fadhil *, Mohammed M. Dheyab, Abdul-Qader Y. Abdul-Qader<br />

Department <strong>of</strong> Chemistry, College <strong>of</strong> Science, Mosul University, Mosul, Iraq<br />

Available online 30 January 2012<br />

KEYWORDS<br />

Biodiesel;<br />

Waste cooking oil;<br />

Spent tea waste;<br />

Activated carbons;<br />

Fuel properties<br />

Abstract Waste cooking oil was converted into biodiesel through base catalyzed transesterification.<br />

After separating <strong>the</strong> glycerol, <strong>the</strong> crude methyl esters were purified using activated carbons<br />

produced from spent tea waste. Yield <strong>and</strong> fuel properties <strong>of</strong> <strong>the</strong> produced biodiesels were compared<br />

with those purified by using silica gel <strong>and</strong> conventional method namely water washing method. The<br />

study revealed that using activated carbons <strong>for</strong> <strong>the</strong> purification <strong>of</strong> biodiesel resulted in higher yield<br />

<strong>and</strong> better fuel properties compared to those purified using silica gel <strong>and</strong> water washing method.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> spent activated carbon was regenerated <strong>and</strong> reused <strong>for</strong> <strong>the</strong> same purpose. However,<br />

<strong>the</strong> results showed that <strong>the</strong> yield <strong>and</strong> fuel properties <strong>of</strong> those purified using <strong>the</strong> regenerated<br />

activated carbon were also better than those purified using silica gel <strong>and</strong> water washing method.<br />

ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

* Corresponding author.<br />

E-mail address: abdelrahmanbasil@yahoo.com (A.B. Fadhil).<br />

1815-3852 ª 2012 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.12.001<br />

Production <strong>and</strong> hosting by Elsevier<br />

The production <strong>of</strong> biodiesel from edible oils competes with <strong>the</strong><br />

use <strong>of</strong> l<strong>and</strong> <strong>for</strong> food production. Moreover, <strong>the</strong> price <strong>of</strong> edible<br />

plant <strong>and</strong> vegetable oils is usually higher than petro diesel.<br />

Thus, finding a cheaper feedstock such as waste cooking oil<br />

<strong>for</strong> biodiesel production reduces <strong>the</strong> cost <strong>of</strong> biodiesel production<br />

since <strong>the</strong> feedstock costs constitutes approximately 70–<br />

95% <strong>of</strong> <strong>the</strong> overall cost <strong>of</strong> biodiesel production. Hence, <strong>the</strong><br />

use <strong>of</strong> waste cooking oils <strong>and</strong> non-edible oils should be given<br />

higher priority over <strong>the</strong> edible oils as biodiesel feedstock<br />

(Chhetri et al., 2008; Canakci, 2007). The purity level <strong>of</strong> <strong>the</strong><br />

biodiesel has strong influence on its fuel properties. Especially,<br />

<strong>the</strong> amount <strong>of</strong> glycerides <strong>and</strong> triglycerides present in <strong>the</strong> fuel<br />

can cause serious problems in application. Ano<strong>the</strong>r factor that<br />

must be taken into account is that <strong>the</strong> fuel must be almost free<br />

<strong>of</strong> water, alcohol, glycerin <strong>and</strong> catalyst; thus, <strong>the</strong> ester layer<br />

has to be treated. There<strong>for</strong>e, <strong>the</strong> refining step <strong>of</strong> <strong>the</strong> products<br />

obtained by transesterification is very important (Karaosmanoglu<br />

et al., 1996; Predojevic, 2008).<br />

In this study, <strong>the</strong> production <strong>of</strong> biodiesel from waste cooking<br />

oil through base catalyzed transesterification was investigated.<br />

After separating <strong>the</strong> glycerol, <strong>the</strong> crude methyl esters<br />

were purified using activated carbons produced from spent<br />

tea waste. The results were compared with those purified by<br />

using silica gel <strong>and</strong> water washing methods. Properties <strong>of</strong> <strong>the</strong><br />

produced fuels were measured <strong>and</strong> compared with those purified<br />

using o<strong>the</strong>r methods. Fur<strong>the</strong>rmore, <strong>the</strong> spent activated


46 A.B. Fadhil et al.<br />

carbon was regenerated <strong>and</strong> reused again <strong>for</strong> <strong>the</strong> same<br />

purpose.<br />

2. Materials <strong>and</strong> methods<br />

2.1. Preparation <strong>of</strong> carbon adsorbents<br />

Tea is <strong>the</strong> second drink after water in Iraq. There<strong>for</strong>e, large<br />

amounts <strong>of</strong> tea are consumed, accumulated <strong>and</strong> discarded.<br />

Such biowaste could be an attractive precursor <strong>for</strong> activated<br />

carbon (AC) preparation. Spent tea waste (STW) was collected<br />

from local c<strong>of</strong>fee shops within <strong>the</strong> city <strong>of</strong> Mosul, north <strong>of</strong> Iraq.<br />

STW was washed thoroughly with tap water <strong>and</strong> by distillated<br />

water several times, <strong>the</strong>n it was dried in an oven at 50 °C <strong>for</strong><br />

5 h. The dried STW was sieved using a 20–40 mesh sieve,<br />

<strong>and</strong> <strong>the</strong> particles <strong>of</strong> 30–40 mesh were used as a precursor <strong>for</strong><br />

activated carbon (AC) production. Two types <strong>of</strong> activated carbons<br />

were prepared from STW as follows:<br />

For batches, 20 g <strong>of</strong> <strong>the</strong> dried STW was placed into a quartz<br />

tube, <strong>and</strong> <strong>the</strong> tube was in turn placed into an electrical tubular<br />

furnace. The furnace was heated gradually until a temperature<br />

<strong>of</strong> 600 °C was reached. The activation was conducted at this<br />

temperature <strong>for</strong> 120 min, to produce <strong>the</strong>rmally activated carbon<br />

(AC TH ). The second type was prepared through placing<br />

20 g <strong>of</strong> <strong>the</strong> dried STW into a stainless steel tube which was<br />

placed into an electrical tubular furnace. The sample was<br />

heated gradually in a flow <strong>of</strong> steam until a temperature <strong>of</strong><br />

600 °C was attained. The activation was per<strong>for</strong>med at this temperature<br />

<strong>for</strong> 120 min to produce (AC ST ). The yield <strong>of</strong> <strong>the</strong> produced<br />

carbons was calculated as following:<br />

Yield% ¼ W ACproduced<br />

W STWused<br />

100<br />

Silica gel was <strong>the</strong>rmally activated at 105 °C <strong>for</strong> 5 h <strong>and</strong> was<br />

kept in a sealed container to be used later.<br />

2.2. Assessment <strong>of</strong> <strong>the</strong> produced carbon adsorbents<br />

Surface area <strong>of</strong> <strong>the</strong> prepared activated carbons (ACs) was<br />

determined by <strong>the</strong>ir adsorptive capacity <strong>of</strong> iodine, referred to<br />

as iodine adsorption number (IAN). The quantity <strong>of</strong> iodine adsorbed<br />

per gram <strong>of</strong> <strong>the</strong> activated carbon was determined by<br />

titration against <strong>the</strong> st<strong>and</strong>ard solution <strong>of</strong> sodium thiosulphate<br />

according to ASTM (1999). Adsorption capacity <strong>for</strong> <strong>the</strong> prepared<br />

carbons was determined through <strong>the</strong>ir adsorption <strong>of</strong><br />

methylene blue (MB) from its aqueous solution. Surface properties<br />

<strong>of</strong> <strong>the</strong> produced carbons such as PH, total acidity <strong>and</strong><br />

oxygen surface groups were determined. The surface functional<br />

groups <strong>of</strong> <strong>the</strong> activated carbons were analyzed by a Fourier<br />

trans<strong>for</strong>m infrared (FTIR) spectroscope.<br />

2.3. Preparation <strong>of</strong> <strong>the</strong> raw oil<br />

Waste cooking oil (WCO) was collected from local restaurants<br />

within <strong>the</strong> city <strong>of</strong> Mosul, north <strong>of</strong> Iraq <strong>and</strong> used as a feedstock<br />

<strong>for</strong> biodiesel production. At first, 500 g <strong>of</strong> <strong>the</strong> oil was mixed<br />

with freshly activated MgSO 4 , <strong>and</strong> left overnight to eliminate<br />

any water content. Then <strong>the</strong> oil was filtered by using cloth filter<br />

to remove any solid impurities <strong>and</strong> MgSO 4 particles, <strong>and</strong> was<br />

kept in a sealed container to be used later. Mean molecular<br />

weight <strong>of</strong> <strong>the</strong> oil was determined according to <strong>the</strong> <strong>for</strong>mula presented<br />

by (Zhu et al., 2006):<br />

MW ¼ 56:1 1000 3=ðSV AVÞ ð2Þ<br />

where, SV is <strong>the</strong> saponification value <strong>and</strong> AV is <strong>the</strong> acid value.<br />

2.4. Transesterification <strong>of</strong> waste cooking oil<br />

Five hundred grams <strong>of</strong> <strong>the</strong> oil was poured into a 250 mL three<br />

necked round bottomed flask equipped with a mechanical stirrer,<br />

<strong>and</strong> a condenser, <strong>and</strong> placed in water bath. Freshly prepared<br />

catalyst solution (KOH = 0.75% w/w <strong>of</strong> oil dissolved<br />

in methanol in a ratio <strong>of</strong> 6:1 MeOH–oil) was introduced into<br />

<strong>the</strong> reactor. The mixture was refluxed <strong>for</strong> 1 h at (60 °C) with<br />

continuous stirring. After <strong>the</strong> reaction was over, <strong>the</strong> mixture<br />

was transferred into a separating funnel <strong>and</strong> left to settle <strong>for</strong><br />

24 h. Two layers were obtained, <strong>the</strong> upper was <strong>the</strong> methyl esters<br />

(ME) <strong>and</strong> <strong>the</strong> lower was <strong>the</strong> glycerol. Glycerol layer was<br />

discarded, <strong>and</strong> <strong>the</strong> methyl ester layer was distillated under vacuum<br />

to recover excess methanol. Finally, <strong>the</strong> methyl ester layer<br />

was kept <strong>for</strong> purification <strong>and</strong> assessment.<br />

2.5. Chemicals<br />

Methanol (reagent grade), acetone, glacial acetic acid, iodine,<br />

potassium iodide, sodium thiosulfate, starch, diethyl e<strong>the</strong>r, isopropyl<br />

alcohol, silica gel <strong>and</strong> <strong>for</strong>mic acid were purchased from<br />

BDH. Potassium <strong>and</strong> sodium hydroxide, <strong>and</strong> magnesium sulfate<br />

were supplied from Merck, whereas chlor<strong>of</strong>orm, n-hexane<br />

<strong>and</strong> hydrochloric acid were supplied from Fluka. Chemicals<br />

were used without any fur<strong>the</strong>r purification.<br />

2.6. Purification <strong>of</strong> biodiesel over activated carbons<br />

A chromatography column <strong>of</strong> (15 cm height <strong>and</strong> 1 cm i.d) was<br />

packed with glass wool, <strong>the</strong>n a bed (2 g = 5 cm) <strong>of</strong> activated<br />

carbon was introduced into <strong>the</strong> column. Next, crude methyl esters<br />

were transferred into <strong>the</strong> column <strong>and</strong> allowed to pass<br />

through <strong>the</strong> adsorbent bed with a flow rate <strong>of</strong> (15 drop/min).<br />

Percentage yield was calculated on a weight basis with respect<br />

to <strong>the</strong> methyl ester introduced into <strong>the</strong> column (Predojevic,<br />

2008). Silica gel was also used <strong>for</strong> <strong>the</strong> same purpose. Purification<br />

using (water washing) method was also adopted.<br />

Table 1<br />

Physicochemical properties <strong>of</strong> <strong>the</strong> raw oil.<br />

Property Test procedure Value<br />

Density @ 16 °C g/ml (D) ASTM D4052-91 0.9233<br />

Kine.Viscosity@ 40 °Cmm 2 /s(KV) ASTM D445 26.50<br />

Flash point °C (T F ) ASTM D93 244<br />

Pour point °C (PP) ASTM D2500 9<br />

Cloud point °C (CP) ASTM D2500 1<br />

Acid value mg KOH/g (AV) ASTM D664 2.82<br />

Iodine number mg I 2 /100 oil(IN) Paquot, 1979 110<br />

Refractive index @ 20 °C (RI) D1747-09 1.470<br />

Conradson carbon residue% (CCR) ASTM D4530 0.35<br />

Sapon. value mg KOH/g oil (SV) ASTM D5555-95 201<br />

Calculated cetane index (CCI) Krisnangkura, 1986 49.15<br />

Higher heating value (HHV) Demirbas, 2008 39.27


Purification <strong>of</strong> biodiesel using activated carbons produced from spent tea waste 47<br />

Table 2<br />

Characteristics <strong>of</strong> <strong>the</strong> prepared carbon adsorbents.<br />

Sample Yield % IAN mg I 2 /g MB mg/g PH Acidity m mol g 1 <strong>Basic</strong>ity m mol g 1<br />

AC ST 27 767 39.30 9 1.57 3.55<br />

AC TH 41 688 43.0 8 1.53 3.15<br />

SG – 478 – – –<br />

2.7. Properties assessment <strong>of</strong> <strong>the</strong> purified biodiesels<br />

Properties <strong>of</strong> <strong>the</strong> parent oil were measured according to <strong>the</strong><br />

ASTM st<strong>and</strong>ards listed in Table 1. Iodine number (IN) was<br />

measured according to <strong>the</strong> Hanus method (Paquot, 1979).<br />

Higher heating value (HHV) was determined depending on<br />

equations proposed by Demirbas (Demirbas, 2008). The calculated<br />

cetane index (CCI) is based on Krisnagkura equation<br />

(Krisnangkura, 1986):<br />

CCI ¼ 46:3 þð5458=SVÞ ð0:225INÞ ð3Þ<br />

Where, SV is <strong>the</strong> saponification value <strong>and</strong> IN is <strong>the</strong> iodine<br />

number.<br />

2.8. Regeneration <strong>of</strong> spent activated carbon<br />

Spent activated carbon (AC ST ) used <strong>for</strong> <strong>the</strong> purification <strong>of</strong><br />

crude methyl esters was regenerated to be reused <strong>for</strong> <strong>the</strong> purpose<br />

explained in (Section 2.6). Then, <strong>the</strong> yield <strong>and</strong> fuel properties<br />

<strong>of</strong> <strong>the</strong> purified methyl esters were determined <strong>and</strong><br />

compared with those purified by <strong>the</strong> au<strong>the</strong>ntic (AC ST ), silica<br />

gel <strong>and</strong> water washing method.<br />

3. Results <strong>and</strong> discussion<br />

3.1. Properties <strong>of</strong> <strong>the</strong> feed stock<br />

Each value <strong>of</strong> <strong>the</strong> measured properties was <strong>the</strong> result <strong>of</strong> at least<br />

two trials, only <strong>the</strong> mean was recorded. The average molecular<br />

weight obtained <strong>for</strong> WCO is 821. It is well known that base<br />

catalyzed transesterification (BCTE) is not suitable <strong>for</strong> oils <strong>of</strong><br />

high free fatty acid content (>1%), <strong>for</strong> it leads to catalyst<br />

deactivation <strong>and</strong> soap <strong>for</strong>mation. As a result, yield decreases<br />

(Sharma et al., 2008). However, reviewing <strong>the</strong> literature indicates<br />

little works about <strong>the</strong> production <strong>of</strong> BD from oils <strong>of</strong> high<br />

fatty acid content using BCTE (Phan <strong>and</strong> Phan, 2008; Araujo<br />

et al., 2011).<br />

3.2. Characterization <strong>of</strong> <strong>the</strong> adsorbents<br />

Yield, total acidity, PH, oxygen surface groups <strong>and</strong> iodine <strong>and</strong><br />

methylene blue adsorption numbers <strong>of</strong> <strong>the</strong> produced biochars<br />

were determined <strong>and</strong> presented in Table 2. Yield <strong>of</strong> <strong>the</strong> produced<br />

carbons was specified as <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> weight <strong>of</strong> final<br />

activated carbons to that <strong>of</strong> initial raw materials used <strong>for</strong> <strong>the</strong><br />

preparation. It can be seen from Table 2 that yield AC ST<br />

was lower than that produced through one step pyrolysis. This<br />

is because steam accelerates fur<strong>the</strong>r removal <strong>of</strong> <strong>the</strong> volatiles<br />

from <strong>the</strong> structure <strong>of</strong> <strong>the</strong> feedstock. As a result, <strong>the</strong> yield decreases.<br />

Iodine adsorption number was used as a function <strong>of</strong><br />

surface area <strong>of</strong> <strong>the</strong> produced carbons. Each 1.0 mg <strong>of</strong> iodine<br />

adsorbed equals to 1.0 m 2 <strong>of</strong> <strong>the</strong> activated carbon internal surface<br />

area (Egwaikhide et al., 2007). Iodine adsorption numbers<br />

<strong>of</strong> <strong>the</strong> adsorbents are listed in Table 2. It can be seen from this<br />

table that AC ST had higher surface area compared to AC TH .<br />

This is because steam activation helps to increase <strong>the</strong> porous<br />

structure through fur<strong>the</strong>r removal <strong>of</strong> volatiles. Consequently,<br />

<strong>the</strong> surface area increases. The adsorption <strong>of</strong> methylene blue<br />

is attributed to its meso porosity. MB values <strong>of</strong> <strong>the</strong> produced<br />

carbons were much lower than those <strong>of</strong> <strong>the</strong> IAN. This means<br />

that <strong>the</strong> produced carbons have micro porous structures. The<br />

values <strong>of</strong> PH showed that both AC ST <strong>and</strong> AC TH had a basic<br />

surface, but <strong>the</strong> surface <strong>of</strong> AC ST was more basic. This was also<br />

confirmed through <strong>the</strong> titration against a (0.06 M) solution <strong>of</strong><br />

HCl. The most important oxygen groups specified by FTIR<br />

spectroscope <strong>for</strong> <strong>the</strong> produced AC are presented in Table 3.<br />

3.3. Purification <strong>of</strong> biodiesel using <strong>the</strong> produced activated<br />

carbons<br />

The main purpose <strong>of</strong> this study was to use <strong>the</strong> produced activated<br />

carbons <strong>for</strong> biodiesel purification, <strong>and</strong> comparing its results<br />

with those purified by using silica gel <strong>and</strong> water washing<br />

methods. Yields <strong>of</strong> <strong>the</strong> produced BD fuels were specified by <strong>the</strong><br />

weight percentage <strong>of</strong> <strong>the</strong> purified BD relative to <strong>the</strong> original<br />

weight <strong>of</strong> <strong>the</strong> crude methyl esters introduced into <strong>the</strong> column.<br />

It can be seen from Tables 4 that using ACs <strong>for</strong> purification <strong>of</strong><br />

<strong>the</strong> crude methyl esters results in higher yields compared to<br />

using SG <strong>and</strong> water washing methods. In comparison to SG,<br />

activated carbon has higher surface area. Besides, it is well<br />

known that <strong>the</strong> adsorption takes place through physical or<br />

chemical interactions between <strong>the</strong> adsorbate <strong>and</strong> <strong>the</strong> adsorbent<br />

surface. Fur<strong>the</strong>rmore, <strong>the</strong> oxygen groups that exist on <strong>the</strong> surface<br />

<strong>of</strong> <strong>the</strong> adsorbent play an important role in <strong>the</strong> adsorption.<br />

As <strong>for</strong> <strong>the</strong> SG, it is well known that <strong>the</strong> only groups that exist<br />

in SG are silanol groups, while many oxygen groups can be<br />

found on <strong>the</strong> surface <strong>of</strong> activated carbon. This is why, purification<br />

using ACs is better. With regard to water washing method,<br />

excessive amounts <strong>of</strong> water are added with gentle shaking<br />

to remove impurities such as glycerol, unreacted methanol <strong>and</strong><br />

base (catalyst). Consequently; part <strong>of</strong> <strong>the</strong> esters is lost in <strong>the</strong><br />

<strong>for</strong>m <strong>of</strong> emulsion <strong>and</strong> soaps decreasing <strong>the</strong> yield. One <strong>of</strong> <strong>the</strong><br />

disadvantages <strong>of</strong> this method is that it produces large amounts<br />

Table 3 Fundamental IR absorption b<strong>and</strong>s <strong>of</strong> <strong>the</strong> produced<br />

carbons.<br />

B<strong>and</strong> cm 1 Possible assignment<br />

3425–3435 OH groups in aliphatic <strong>and</strong> phenolic structures<br />

2925 Represents aliphatic CH, CH 2 <strong>and</strong> CH 3 stretching<br />

modes<br />

1726 C‚O in ketones, aldehydes or carboxyl<br />

1599 VC‚O<br />

1450 C–O Stretching vibrations, C–O–C, O–H bending<br />

modes in carboxylic acids, carboxyl, lactones, esters,<br />

<strong>and</strong> e<strong>the</strong>rs.<br />

874 O–O stretching<br />

716 C‚O stretching


48 A.B. Fadhil et al.<br />

Table 4<br />

ACs.<br />

Property<br />

Yields <strong>and</strong> properties <strong>of</strong> biodiesel purified using <strong>the</strong><br />

WCO<br />

AC ST AC TH SG Washing by DW<br />

Yield% 97 95.50 93 88<br />

Density @ 16 °C g/ml 0.8755 0.8766 0.8800 0.8920<br />

KV @ 40 °Cmm 2 /sec 2.63 2.73 3.22 3.40<br />

AV mg KOH/g oil 0.092 0.144 0.247 0.301<br />

RI @ 20 °C 1.445 1.446 1.448 1.457<br />

(PP) °C 8 8 7 6<br />

T F °C 169 169 172 175<br />

HHV MJ/KG 40.66 40.71 40.93 41.11<br />

<strong>of</strong> highly polluting wastewater. It also increases <strong>the</strong> size <strong>and</strong><br />

cost <strong>of</strong> <strong>the</strong> separation equipment, resulting in yield loss, <strong>and</strong><br />

causes an environmental disposal problem (Saleh et al.,<br />

2010). Pighinelli et al. (2011) prepared ethyl ester from sunflower<br />

oil. They used three methods <strong>for</strong> purifying <strong>the</strong> produced<br />

ethyl esters including acidified water (5% <strong>of</strong> phosphoric acid),<br />

silica gel <strong>and</strong> distillation. The yields <strong>of</strong> <strong>the</strong> produced ethyl esters<br />

obtained by using <strong>the</strong>se purification methods were<br />

(84.4%, 84.6% <strong>and</strong> 92.3%), respectively. Predojevic (2008)<br />

prepared biodiesels from waste cooking. He used three different<br />

methods <strong>for</strong> <strong>the</strong> purification <strong>of</strong> <strong>the</strong> produced methyl esters<br />

including water washing method, washing by acidified water<br />

(5% H 3 PO 4 ) <strong>and</strong> silica gel. He found that purification by <strong>the</strong><br />

acidified water <strong>and</strong> silica gel methods resulted in higher yield<br />

(92%) compared to <strong>the</strong> water washing method (89%). There<strong>for</strong>e,<br />

one can say, that our h<strong>and</strong>ling was better than those applied<br />

by <strong>the</strong> a<strong>for</strong>ementioned studies; it resulted in higher yields.<br />

For BD to be used as a fuel in diesel engines, it should meet<br />

some specifications according to <strong>the</strong> ASTM st<strong>and</strong>ards or<br />

European st<strong>and</strong>ards. Thus, after <strong>the</strong> purification <strong>of</strong> <strong>the</strong> produced<br />

methyl esters by <strong>the</strong> suggested method, some essential<br />

properties were measured, <strong>and</strong> compared to those obtained<br />

by o<strong>the</strong>r methods. These properties were measured according<br />

to <strong>the</strong> ASTM st<strong>and</strong>ards as can be seen in Table 1; fuel properties<br />

<strong>of</strong> <strong>the</strong> produced fuels are given in Table 4.<br />

One <strong>of</strong> <strong>the</strong> most important properties <strong>of</strong> biodiesel is viscosity.<br />

This property should be low. Poor atomization <strong>of</strong> <strong>the</strong> fuel<br />

spray <strong>and</strong> less accurate operation <strong>of</strong> <strong>the</strong> fuel injectors is associated<br />

with high viscosity (Demirbas, 2009). It is obvious from<br />

Table 4 that <strong>the</strong> viscosity <strong>of</strong> <strong>the</strong> methyl esters purified using <strong>the</strong><br />

ACs was lower than that purified by SG <strong>and</strong> water washing<br />

method. This means that <strong>the</strong> ACs is an effective adsorbent in<br />

removing impurities, such as glycerol <strong>and</strong> soaps which accompany<br />

<strong>the</strong> biodiesel during its production, compared to SG <strong>and</strong><br />

water washing. The values were between (2.63 <strong>and</strong> 3.40 mm 2 /<br />

sec). These values were much lower than those recommended<br />

by <strong>the</strong> ASTM <strong>and</strong> <strong>the</strong> European st<strong>and</strong>ards. Density is ano<strong>the</strong>r<br />

important property <strong>of</strong> biodiesel. As in <strong>the</strong> case <strong>of</strong> <strong>the</strong> viscosity<br />

values, <strong>the</strong> density <strong>of</strong> <strong>the</strong> methyl esters purified using ACs were<br />

also lower than that purified using SG <strong>and</strong> water washing<br />

method. The values ranged from (0.8755 to 0.8920 g/mL).<br />

The acid value can be used as a guide in quality control <strong>of</strong><br />

fuels. Acid value <strong>for</strong> <strong>the</strong> produced methyl esters was lower<br />

than that <strong>of</strong> <strong>the</strong> parent oil. Methyl esters purified using ACs<br />

had lower acid values than those purified by using SG <strong>and</strong><br />

water washing method. Lower acid values <strong>of</strong> <strong>the</strong> methyl esters<br />

purified using ACs reflects <strong>the</strong> high refining degree compared<br />

to <strong>the</strong> methyl esters purified using SG <strong>and</strong> water washing<br />

method. The values ranged from (0.092 to 0.301 mg KOH/<br />

g). Refractive index (RI) values <strong>of</strong> <strong>the</strong> fuels were lower than<br />

that <strong>of</strong> <strong>the</strong> parent oil <strong>and</strong> ranged between (1.445 <strong>and</strong> 1.457).<br />

The flash point is <strong>the</strong> lowest temperature at which a fuel will<br />

ignite when exposed to an ignition source (Ghobadian<br />

et al.,2008). Flash point values <strong>of</strong> <strong>the</strong> methyl esters purified<br />

using <strong>the</strong> ACs were lower than those purified using SG <strong>and</strong><br />

water washing method. This is because purification using<br />

ACs leads to fur<strong>the</strong>r elimination <strong>of</strong> impurities such as unreacted<br />

triglycerides, glycerol <strong>and</strong> <strong>the</strong> catalyst, as well as higher<br />

ester content <strong>of</strong> <strong>the</strong>se samples is behind this phenomenon. The<br />

pour point values ranged from ( 6to 8). Such values could<br />

be a good indicator <strong>of</strong> <strong>the</strong> fact that BD fuels prepared in this<br />

study are suitable <strong>for</strong> use in cold wea<strong>the</strong>r conditions prevailing<br />

in Nor<strong>the</strong>rn Iraq in winter. The HHV values ranged from<br />

(40.66 to 41.11) million joules/Kg).<br />

3.4. Regeneration <strong>of</strong> spent activated carbon<br />

Some authors used adsorbents such as Magnesol, SG <strong>and</strong> ion<br />

exchangers <strong>for</strong> BD purification. Borrios <strong>and</strong> Skelton (2008)<br />

used Magnesol <strong>and</strong> ion exchanger resin <strong>for</strong> BD purification.<br />

Predojevic (2008) used SG <strong>for</strong> BD purification. He found that<br />

purification using SG resulted in higher yield <strong>and</strong> better fuel<br />

properties in comparison to water washing method. However,<br />

<strong>the</strong> problem with <strong>the</strong>se adsorbents is that <strong>the</strong>y cannot be recycled.<br />

Besides, it is hard to dispose <strong>of</strong> <strong>the</strong>ir wastes particularly at<br />

a larger scale (Saleh et al., 2010). One <strong>of</strong> <strong>the</strong> attractive characteristics<br />

<strong>of</strong> activated carbon is that it can be regenerated <strong>the</strong>re<strong>for</strong>e<br />

spent activated carbon was regenerated <strong>and</strong> denoted as<br />

(AC SR ). Yield <strong>and</strong> fuel properties <strong>of</strong> BD purified using (AC SR )<br />

are listed in Table 4. It was found that <strong>the</strong> yield <strong>and</strong> <strong>the</strong> fuel<br />

properties especially <strong>the</strong> acid value, kinematic viscosity <strong>and</strong><br />

flash point <strong>of</strong> BD purified using <strong>the</strong> AC SR were lower than<br />

Table 5 Yield <strong>and</strong> properties <strong>of</strong> <strong>the</strong> biodiesel purified using AC SR .<br />

Property<br />

WCO<br />

AC SR AC ST SG Washing by DW<br />

Yield% 94 97 93 88<br />

Density @ 16 °C g/ml 0.8865 0.8755 0.8800 0.8920<br />

KV @ 40 °Cmm 2 /sec 3.10 2.63 3.22 3.40<br />

AV mg KOH/g oil 0.195 0.092 0.247 0.301<br />

RI @ 20 °C 1.449 1.445 1.448 1.457<br />

(PP) °C 7 8 7 6<br />

T F °C 171 169 172 175<br />

HHV MJ/KG 40.89 40.66 40.93 41.11


Purification <strong>of</strong> biodiesel using activated carbons produced from spent tea waste 49<br />

those purified using <strong>the</strong> AC S as can be seen from Table 5. This<br />

can be attributed to <strong>the</strong> reduction <strong>of</strong> <strong>the</strong> active sites available<br />

<strong>for</strong> <strong>the</strong> adsorption. However, in comparison to methyl esters<br />

purified using SG <strong>and</strong> water washing method; purification<br />

using AC SR resulted in higher yield <strong>and</strong> better fuel properties.<br />

Thus, it can be said that AC or AC SR is a good adsorbent <strong>for</strong><br />

<strong>the</strong> purification <strong>of</strong> biodiesel in comparison to <strong>the</strong> SG or water<br />

washing method.<br />

4. Conclusions<br />

Activated carbons prepared from spent tea waste used <strong>for</strong> <strong>the</strong><br />

purification <strong>of</strong> crude biodiesel produced from waste cooking<br />

oil through base catalyzed transesterification. For comparison,<br />

silica gel <strong>and</strong> water washing were also used <strong>for</strong> <strong>the</strong> same purpose.<br />

The study showed that in general, using activated carbons<br />

<strong>for</strong> biodiesel purification resulted in higher yields <strong>and</strong><br />

better fuel properties compared to <strong>the</strong> above mentioned methods.<br />

Moreover, <strong>the</strong> fuel properties met <strong>the</strong> specified limits<br />

according to <strong>the</strong> ASTM st<strong>and</strong>ards. Fur<strong>the</strong>rmore, spent activated<br />

carbon was regenerated <strong>and</strong> reused <strong>for</strong> <strong>the</strong> same purpose.<br />

The results indicated that regenerated activated carbon<br />

was effective to produce a biodiesel fuel <strong>of</strong> higher yield <strong>and</strong><br />

better fuel properties compared to <strong>the</strong> o<strong>the</strong>r methods.<br />

References<br />

Araujo, B.Q., Nunes, R.C., De-Moura, C.V.R., De-moura, E.M.,<br />

Lopez-Cito, A.M., Junior, J.R., 2011. Syn<strong>the</strong>sis <strong>and</strong> characterization<br />

<strong>of</strong> beef tallow biodiesel. Energy Fuels 24, 4476–4480.<br />

ASTM, 1999. St<strong>and</strong>ard Test Method <strong>for</strong> Determination <strong>of</strong> Iodine<br />

Number <strong>of</strong> Activated Carbon, ASTM D 4607-94, Philadelphia,<br />

PA.<br />

Borrios, M., Skelton, R.L., 2008. Comparison <strong>of</strong> purification methods<br />

<strong>for</strong> biodiesel. Chemical Engineering <strong>Journal</strong> 144 (3), 459–465.<br />

Canakci, M., 2007. The potential <strong>of</strong> restaurant waste lipids as biodiesel<br />

feedstocks. Bioresource Technology 98, 183–190.<br />

Chhetri, A.B., Watts, K.C., Rafiqul Islam, M., 2008. Waste cooking oil<br />

as an alternate feedstock <strong>for</strong> biodiesel production. Energies 1, 3–18.<br />

Demirbas, A., 2008. Relationships derived from physical properties <strong>of</strong><br />

vegetable oil <strong>and</strong> biodiesel fuels. Fuel 87, 1743–1748.<br />

Demirbas, A., 2009. Production <strong>of</strong> biodiesel fuels from linseed oil<br />

using methanol <strong>and</strong> ethanol in non-catalytic SCF conditions.<br />

Biomass <strong>and</strong> Bioenergy 33 (1), 113–118.<br />

Egwaikhide, P.A., Akporhonor, E.E., Okieimen, F.E., 2007. Utilization<br />

<strong>of</strong> coconut fibre carbon in <strong>the</strong> removal <strong>of</strong> soluble petroleum<br />

fraction polluted water. International <strong>Journal</strong> <strong>of</strong> Physical Sciences<br />

2 (2), 047–049.<br />

Ghobadian, B., Rahimi, H., Hashjin, T.T., Khatamifar, M., 2008.<br />

Production <strong>of</strong> bioethanol <strong>and</strong> sunflower methyl ester <strong>and</strong> investigation<br />

<strong>of</strong> fuel blend properties. <strong>Journal</strong> <strong>of</strong> Agriculture, Science <strong>and</strong><br />

Technology 10, 225–232.<br />

Karaosmanoglu, F., Cigizoglu, K.B., Tuter, M., Ertekin, S., 1996.<br />

Investigation <strong>of</strong> <strong>the</strong> refining step <strong>of</strong> biodiesel production. Energy<br />

Fuels 10, 890–895.<br />

Krisnangkura, K., 1986. A simple method <strong>for</strong> estimation <strong>of</strong> cetane<br />

index <strong>of</strong> vegetable oil methyl esters. <strong>Journal</strong> <strong>of</strong> <strong>the</strong> American Oil<br />

Chemists’ Society 3, 552–553.<br />

Paquot, C., 1979. St<strong>and</strong>ard Methods <strong>for</strong> <strong>the</strong> Analysis <strong>of</strong> Oils, Fats <strong>and</strong><br />

Derivatives, sixth ed. Springer.<br />

Phan, A.N., Phan, T.M., 2008. Biodiesel production from waste<br />

cooking oils. Fuel 87, 3490–3496.<br />

Predojevic, Z.J., 2008. The production <strong>of</strong> biodiesel from waste frying<br />

oils: A comparison <strong>of</strong> different purification steps. Fuel 87, 3522–<br />

3528.<br />

Saleh, J., Dube, M.A., Tremblay, M.Y., 2010. Effect <strong>of</strong> soap,<br />

methanol, <strong>and</strong> water on glycerol particle size in biodiesel purification.<br />

Energy Fuels 24, 6179–6186.<br />

Sharma, Y.C., Singh, B., Upadhyay, S.N., 2008. Advancements in<br />

development <strong>and</strong> characterization <strong>of</strong> biodiesel: a review. Fuel 87,<br />

2355–2373.<br />

Pighinelli, A.L.M.T., Ferrari, R.A., Miguel, A.M.R.O., Park, K.J.,<br />

2011. High oleic sunflower biodiesel: quality control <strong>and</strong> different<br />

purification methods. Grasas Aceites 62 (2), 171–180.<br />

Zhu, H., Wu, Z., Chen, Y., Zhang, P., Duan, S., Liu, X., Mao, Z.,<br />

2006. Preparation <strong>of</strong> biodiesel catalyzed by solid super base <strong>of</strong><br />

calcium oxide <strong>and</strong> its refining process. Chin. J. Catal. 27, 391–396.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 50-55<br />

حيوية بكتيريا اللبن والتقيم الحسي في الزبادي الحيوي بالقرفة او الثوم والمحضره من<br />

حليب االبل والبقر<br />

أمل شوري و أحمد بابا<br />

30605<br />

قسم الكمياء الحيوية ،<br />

معهد علوم<br />

الحياة،‏<br />

كلية العلوم،‏<br />

جامعة مااليا<br />

كواللمبور،‏<br />

ماليزيا<br />

الملخص:‏<br />

أجريت الدراسة الحالية للتحقق من تأثير الخالصة المائية المحضرة من الثوم<br />

)Allium sativum(<br />

)Cinnamomum verum(<br />

على حيوية بكتيريا اللبن<br />

والقرفة<br />

Lactobacillus spp. (<br />

)Streptococcus <strong>the</strong>rmophilus<br />

12 ثالجة لمدة<br />

للزبادي.‏ تراوحت أعداد<br />

يوم تحت درجة حرارة<br />

4<br />

Lactobacillus spp.<br />

عدم وجود الخالصة المائية للثوم أو القرفة من<br />

و<br />

في الزبادي المحضر من حليب البقر واإلبل خالل فترة حفظه في<br />

درجات مئوية.‏ كما تم خالل هذه الدراسة تقييم الخصائص الحسية<br />

في الزبادي الطازج المحضر من حليب البقر في وجود أو<br />

10 6 X 2.4<br />

إلى<br />

cfu/ml 10 6 X 2.1<br />

في اليوم األول من<br />

البدء في الدراسة.‏ ولم تتغير هذه القيمة بشكل معنوي طوال فترة التخزين المبرد التي استمرت لمدة<br />

أما بالنسبة ألعداد<br />

للثوم والقرفة فقد كانت<br />

12<br />

Lactobacillus spp.<br />

cfu/ml 10 6 X 13.2<br />

البكتيريا بشكل معنوي،‏ بعد إضافة الخالصة المائية للقرفة والثوم ، إلى<br />

يوم.‏<br />

في الزبادي المحضر من حليب اإلبل بدون الخالصة المائية<br />

في اليوم األول من البدء في الدراسة،‏ وازدادت أعداد<br />

و<br />

10 6 X 26.9 10 6 X 19.2<br />

cfu/ml<br />

على التوالي.‏<br />

الخالصة المائية.‏ أما بالنسبة ألعداد بكتيريا<br />

في حين أن أعداد هذه البكتيريا انخفضت بشكل خطي في التخزين المبرد بدون<br />

Streptococcus <strong>the</strong>rmophilus<br />

في الزبادي المحضر من<br />

حليب البقر أو حليب اإلبل،‏ سواء بوجود أو في عدم وجود الخالصة المائية،‏ فقد تراوحت من<br />

1.4<br />

cfu/ml 21 8 X 6.3<br />

مع تزايد األعداد في اليوم<br />

24<br />

إلى<br />

من التخزين المبرد.‏ وفيما يتعلق بالخصائص الحسية<br />

فلم توجد اختالفات في الطعم مثل الحموضة أو المرارة أو الحالوة بين كال المجموعتين من الزبادي.‏ إال أن<br />

وجود الخالصة المائية للثوم في زبادي حليب البقر خفضت بشكل معنوي جودة الرائحة إلى<br />

مقارنة بزبادي حليب اإلبل<br />

2.3±0.7<br />

.)5.5±1.0(<br />

A.B. Shori, A.S. Baba


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (2012) 11, 50–55<br />

University <strong>of</strong> Bahrain<br />

<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong> <strong>for</strong><br />

<strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences<br />

www.elsevier.com/locate/jaaubas<br />

www.sciencedirect.com<br />

ORIGINAL ARTICLE<br />

Viability <strong>of</strong> lactic acid bacteria <strong>and</strong> sensory evaluation<br />

in Cinnamomum verum <strong>and</strong> Allium sativum-bio-yogurts<br />

made from camel <strong>and</strong> cow milk<br />

Amal Bakr Shori *, Ahmad S. Baba<br />

Biomolecular Research Group, Division <strong>of</strong> Biochemistry, Institute <strong>of</strong> Biological Sciences, Faculty <strong>of</strong> Science,<br />

University <strong>of</strong> Malaya, 50603 Kuala Lumpur, Malaysia<br />

Available online 15 December 2011<br />

KEYWORDS<br />

Yogurt;<br />

S. <strong>the</strong>rmophilus;<br />

Lactobacillus spp;<br />

Allium sativum;<br />

Cinnamomum verum<br />

Abstract The present study investigate <strong>the</strong> effect <strong>of</strong> herbal water extract prepared from Allium sativum<br />

<strong>and</strong> Cinnamomum verum on <strong>the</strong> viability <strong>of</strong> lactic acid bacteria (Lactobacillus spp <strong>and</strong> Streptococcus<br />

<strong>the</strong>rmophilus) in cow- <strong>and</strong> camel-milk yogurts during 21 day refrigerated storage. The<br />

organoleptic properties <strong>of</strong> fresh-yogurts were evaluated. Lactobacillus spp count <strong>for</strong> fresh cow<br />

milk-yogurts (0 day) in both present <strong>and</strong> absent <strong>of</strong> C. verum <strong>and</strong> A. sativum was ranged from 1.4<br />

·10 6 to 2.1 · 10 6 cfu/mL. These values were not significantly changed throughout <strong>the</strong> 21 days <strong>of</strong><br />

refrigerated storage. Lactobacillus spp count in fresh plain camel milk- yogurt was 13.2 · 10 6 cfu/<br />

mL whereas fresh C. verum- <strong>and</strong> A. sativum-camel milk- yogurts had higher Lactobacillus spp<br />

counts (19.2 · 10 6 <strong>and</strong> 26.9 · 10 6 cfu/mL respectively; p < 0.05). However, refrigerated storage<br />

to 21 days resulted in linear decrease in Lactobacillus spp counts. Fur<strong>the</strong>rmore, S. <strong>the</strong>rmophilus<br />

counts in fresh cow- <strong>and</strong> camel- milk yogurts in ei<strong>the</strong>r absent or present <strong>of</strong> C. verum or A. sativum<br />

ranged from 2.4 to 3.6 · 10 8 cfu/mL <strong>and</strong> <strong>the</strong>se values increased by day 14 <strong>of</strong> storage. In organoleptic<br />

properties <strong>of</strong> yogurts no differences were observed in sourness, bitterness, <strong>and</strong> overall preference<br />

scores between <strong>the</strong> two groups <strong>of</strong> yogurts. The present <strong>of</strong> A. sativum in cow milk-yogurt reduced<br />

<strong>the</strong> aroma score to (2.3 ± 0.7, p < 0.05) compared to camel milk-yogurt (5.5 ± 1.0).<br />

ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by Elsevier B.V. All rights reserved.<br />

* Corresponding author.<br />

E-mail address: shori_7506@hotmail.com (A.B. Shori).<br />

1815-3852 ª 2011 University <strong>of</strong> Bahrain. Production <strong>and</strong> hosting by<br />

Elsevier B.V. All rights reserved.<br />

Peer review under responsibility <strong>of</strong> University <strong>of</strong> Bahrain.<br />

doi:10.1016/j.jaubas.2011.11.001<br />

Production <strong>and</strong> hosting by Elsevier<br />

1. Introduction<br />

Recently, <strong>the</strong> food biotechnology industry has developed a<br />

number <strong>of</strong> commercial products containing a single probiotic<br />

strain or bacterial associations <strong>of</strong> various complexities. Yogurt<br />

has been known <strong>for</strong> its nutraceutical, <strong>the</strong>rapeutic, <strong>and</strong> probiotic<br />

effects (Gu¨ ler-Akın <strong>and</strong> Akın, 2007). Also, lactic acid bacteria<br />

<strong>and</strong> its metabolites have shown to play an important role<br />

in improving microbiological quality <strong>and</strong> shelf-life <strong>of</strong> many<br />

fermented food products. Dairy products have long been consumed<br />

by consumers <strong>and</strong> provide a good example <strong>of</strong> bio-preservation<br />

(Zottola et al., 1994).


Viability <strong>of</strong> lactic acid bacteria <strong>and</strong> sensory evaluation in Cinnamomum verum <strong>and</strong> Allium sativum 51<br />

Today LAB is a focus <strong>of</strong> intensive international research <strong>for</strong><br />

its pivotal role in most fermented foods. <strong>Basic</strong>ally, <strong>for</strong> its ability<br />

to produce various anti-microbial compounds promoting probiotic<br />

properties (Temmerman et al., 2002) that includes antitumoral<br />

activity (De-Vuyst <strong>and</strong> Degeest, 1999; Østlie et al.,<br />

2003), reduction <strong>of</strong> serum cholesterol (Desmazeaud,1996; Jackson<br />

et al., 2002), alleviation <strong>of</strong> lactose intolerance (De Vrese<br />

et al., 2001), stimulation <strong>of</strong> <strong>the</strong> immune system (Isolauri et al.,<br />

2001), <strong>and</strong> stabilization <strong>of</strong> gut micr<strong>of</strong>lora (Gibson et al., 1997).<br />

Fur<strong>the</strong>rmore, LAB strains syn<strong>the</strong>size short chain fatty acids,<br />

vitamins, <strong>and</strong> exopolysaccharides (EPS) that are employed in<br />

<strong>the</strong> manufacturing <strong>of</strong> fermented milk to improve its texture<br />

<strong>and</strong> viscosity (Curk et al., 1996; Ruas-Madiedo et al., 2002).<br />

The main technological properties <strong>of</strong> yogurt bacteria in milk fermentation<br />

are acidification, texture enhancement, flavour production,<br />

<strong>and</strong> <strong>the</strong> final level <strong>of</strong> lactic acid which is <strong>the</strong> main<br />

product <strong>of</strong> <strong>the</strong> metabolic activity <strong>of</strong> starter cultures. However,<br />

<strong>the</strong> acidification rate during yogurt production depends on <strong>the</strong><br />

strains <strong>and</strong> <strong>the</strong>ir associations (Beal et al., 1999).<br />

Development <strong>of</strong> dairy products with new products <strong>and</strong> flavours<br />

has potential health benefits <strong>the</strong>reby increasing sales <strong>and</strong><br />

consumers satisfaction. Traditional preparation <strong>of</strong> yogurt may<br />

be beneficial by including o<strong>the</strong>r ingredients such as soya protein,<br />

vegetables, sweet potato, pumpkin <strong>and</strong> plum (Joo et al., 2001;<br />

Park et al., 2003) to enhance <strong>the</strong> flavour as well as <strong>the</strong> nutritional<br />

quality (Shori <strong>and</strong> Baba, 2011). However, traditional medicinal<br />

plants such as Allium sativum <strong>and</strong> Cinnamomum verum have<br />

been proved to provide important <strong>the</strong>rapeutic values. Besides,<br />

it is highly aromatic <strong>and</strong> possesses anti-microbial activities (Harris<br />

et al., 2001; Gende et al., 2008) that could affect <strong>the</strong> yogurts’<br />

LAB counts <strong>and</strong> <strong>the</strong>ir organoleptic properties. There<strong>for</strong>e, <strong>the</strong><br />

objective <strong>of</strong> <strong>the</strong> present research was to study <strong>the</strong> survival <strong>of</strong><br />

LAB in A. sativum <strong>and</strong> C. verum yogurts made from cow milk<br />

<strong>and</strong> camel milk <strong>and</strong> comparison to <strong>the</strong>ir respective plain yogurts<br />

during 21 day <strong>of</strong> refrigerated storage <strong>and</strong> evaluate <strong>the</strong> organoleptic<br />

properties <strong>of</strong> <strong>the</strong>se yogurts.<br />

2. Materials <strong>and</strong> methods<br />

2.1. Materials <strong>and</strong> chemicals<br />

Commercial fresh <strong>and</strong> pasteurized full cream cow milk (Dutch<br />

Lady, Malaysia) <strong>and</strong> camel milk (Al-Turath, Saudi <strong>Arab</strong>ia)<br />

were purchased from supermarket. Camel milk was frozen<br />

<strong>and</strong> used to make yogurt within 2 weeks from <strong>the</strong> date <strong>of</strong> pasteurization.<br />

The herbs used in <strong>the</strong> present study were C. verum<br />

bark purchased from local store in Saudi <strong>Arab</strong>ia <strong>and</strong> A. sativum<br />

powder (McCormick, Malaysia). Fur<strong>the</strong>r supplies incorporated<br />

in present study were commercially available yogurt<br />

bacteria mixture (Chris-Hansen, Denmark) <strong>and</strong> probiotic mixture<br />

(Bio-Life, Malaysia) in which one capsule contained 5 billion<br />

cfu <strong>of</strong> probiotic bacteria. The agars used in <strong>the</strong> present<br />

study were M.R.S Agar, M17 Agar obtained from Oxoid<br />

(Basingstoke, Hampshire, Engl<strong>and</strong>). Additionally, lactose<br />

monohyrate, C 12 H 22 O 11 ÆH 2 O was obtained from Systerm.<br />

2.2. Water extraction <strong>of</strong> herbs<br />

Ten grams <strong>of</strong> C. verum bark <strong>and</strong> A. sativum powder were<br />

mixed thoroughly with 100 mL <strong>of</strong> distilled H 2 O. The mixture<br />

was incubated overnight in a water bath at 70 °C (Julabo,<br />

Model Sw-21c or Haake Model SWD 20) followed by centrifugation<br />

(Eppend<strong>of</strong>t 5804 R; 10000 rpm) <strong>for</strong> 15 min at 4 °C. The<br />

clear supernatants were harvested <strong>and</strong> used as C. verum <strong>and</strong> A.<br />

sativum water extracts in <strong>the</strong> making <strong>of</strong> herbal yogurts (Behrad<br />

et al., 2009).<br />

2.3. Preparation <strong>of</strong> starter culture<br />

Starter culture <strong>for</strong> making yogurt was prepared by pre-heating<br />

<strong>of</strong> fresh <strong>and</strong> pasteurized full cream milk to 41 °C. A mixture<br />

<strong>of</strong> yogurt bacteria consisting <strong>of</strong> Lactobacillus acidophilus<br />

LA-5, Bifidobacterium bifidum Bb-12, Lactobacillus casei LC-<br />

01 <strong>and</strong> Streptococcus <strong>the</strong>rmophilus Th-4 in <strong>the</strong> ratio <strong>of</strong> 4:4:1:1<br />

<strong>and</strong> a capsule <strong>of</strong> probiotic mix containing L. bulgaricus, L.<br />

rhamnosus, B. infantis <strong>and</strong> B. longum in <strong>the</strong> ratio <strong>of</strong> 1:1:1:1<br />

were mixed thoroughly with <strong>the</strong> preheated milk prior to an<br />

overnight incubation at 41 °C. The yogurt <strong>for</strong>med was refrigerated<br />

(4 °C) <strong>and</strong> used as starter culture within 7 days (Rashid<br />

et al., 2007).<br />

2.4. Preparation <strong>of</strong> yogurts<br />

C. verum <strong>and</strong> A. sativum yogurts were prepared by mixing<br />

10 mL <strong>of</strong> each herbal-water extract with 85 mL <strong>of</strong> pasteurized<br />

full cream milk <strong>and</strong> 5 g <strong>of</strong> starter culture (Shah, 2003). The mixture<br />

was mixed thoroughly followed by incubation at 41 °C. The<br />

pH <strong>of</strong> <strong>the</strong> mixture was determined every 30 min until <strong>the</strong> pH <strong>of</strong><br />

yogurt reached 4.5 by using pH meter (Cyper Scan 510). At that<br />

moment, <strong>the</strong> incubation was terminated by placing <strong>the</strong> yogurts<br />

in ice-bath <strong>for</strong> 60 min. These yogurts were <strong>the</strong>n placed in <strong>the</strong><br />

refrigerator <strong>for</strong> up to 21 days. Control yogurts were prepared<br />

using <strong>the</strong> same procedures except 10 mL <strong>of</strong> distilled H 2 O was<br />

used in place <strong>of</strong> herbal-water extract.<br />

2.5. Microbial viable cell count (VCC) in yogurts<br />

2.5.1. Buffered peptone water<br />

Twenty grams <strong>of</strong> buffered peptone water was mixed with 1 L<br />

distilled water, <strong>the</strong> mixture was distributed into final tubes followed<br />

by autoclaved at 121 °C <strong>for</strong> 20 min. The pH <strong>of</strong> media at<br />

25 °C was 7.2 ± 0.2.<br />

2.5.2. Sample preparation<br />

Yogurt samples (1 mL) were individually mixed with 9 mL <strong>of</strong><br />

0.15% sterile buffered peptone water. The mixtures were thoroughly<br />

stirred <strong>and</strong> serial dilutions were prepared by using buffered<br />

peptone water.<br />

2.5.3. Enumeration <strong>of</strong> Lactobacillus spp using <strong>the</strong> pour plate<br />

method<br />

Lactobacillus spp was enumerated, particularly, as described<br />

by Kailasapathy et al. (2008). MRS agar was prepared by mixing<br />

MRS powder with water (62 g/1 L distilled H 2 O) <strong>and</strong> <strong>the</strong><br />

solution was autoclaved followed by cooling to 45 °C. The<br />

melted MRS agar (15 mL) was <strong>the</strong>n placed in a petri dish.<br />

Appropriately diluted yogurt (1 mL) was <strong>the</strong>n transferred in<br />

<strong>the</strong> molten MRS agar. The mixture was evenly mixed by gently<br />

tilting <strong>and</strong> swirling <strong>the</strong> dish. The plates were sealed with parafilm<br />

<strong>and</strong> were left at room temperature to allow <strong>the</strong> agar to


52 A.B. Shori, A.S. Baba<br />

solidify. Thereafter, <strong>the</strong> plates were inverted <strong>and</strong> placed in <strong>the</strong><br />

incubator (37 °C) <strong>for</strong> 48 h. Viable Lactobacillus spp count was<br />

calculated (Sivakumar <strong>and</strong> Kalaiarasu, 2010) as follows:<br />

CFU Number <strong>of</strong> colonies <strong>for</strong>med dilution factor <strong>of</strong> sample<br />

=mL ¼<br />

1mL <strong>of</strong> sample<br />

*CFU: colony <strong>for</strong>ming unit.<br />

2.5.4. Enumeration <strong>of</strong> S. <strong>the</strong>rmophilus using <strong>the</strong> spread count<br />

method<br />

S. <strong>the</strong>rmophilus was enumerated using M17 agar (Rybka <strong>and</strong><br />

Kailasapathy, 1995). The M17 agar powder was mixed with<br />

water (48.3 g in 950 mL distilled H 2 O) <strong>and</strong> <strong>the</strong> mixture was sterilized<br />

by autoclaving. The molten M17 agar was allowed to cool<br />

to 45 °C prior to <strong>the</strong> addition <strong>of</strong> sterilized lactose solution<br />

(50 mL, 10% w/v). The mixture was dispensed (15 mL) in a petri<br />

dish <strong>and</strong> <strong>the</strong> molten M17 agar was allowed to solidify at room<br />

temperature. Appropriately diluted yogurt (0.1 mL) was placed<br />

on <strong>the</strong> M17 agar <strong>and</strong> <strong>the</strong> sample was spread on <strong>the</strong> surface using<br />

a sterile spreader. The plates were incubated in inverted position<br />

at 37 °C <strong>for</strong> 48 h. Viable microbial count (S. <strong>the</strong>rmophilus) was<br />

calculated (Sivakumar <strong>and</strong> Kalaiarasu, 2010) as follows:<br />

CFU Number <strong>of</strong> colonies <strong>for</strong>med dilution factor <strong>of</strong> sample<br />

=mL ¼<br />

0:1mL <strong>of</strong> sample<br />

*CFU: colony <strong>for</strong>ming unit.<br />

2.6. Organoleptic properties<br />

Organoleptic properties on yogurt were running after 1 day <strong>of</strong><br />

refrigerated storage. Twelve participants were r<strong>and</strong>omly selected<br />

<strong>and</strong> identified <strong>the</strong>mselves as students <strong>and</strong> departmental<br />

staff. Their age range between 20 <strong>and</strong> 35 years <strong>and</strong> were engaged<br />

as untrained panels <strong>for</strong> <strong>the</strong> sensory evaluation. Each panel was<br />

presented with two groups <strong>of</strong> yogurt (cow-milk <strong>and</strong> camel-milk<br />

yogurts) each group contains three coded yogurt samples<br />

(10 mL <strong>for</strong> each). The first group contained<br />

plain-cow-milk yogurt, A. sativum-cow-milk yogurt, <strong>and</strong> C. verum-cow-milk<br />

yogurt. The second group contained plain-camelmilk<br />

yogurt, A. sativum-camel-milk yogurt, <strong>and</strong> C. verum-camelmilk<br />

yogurt. The evaluation was scored on 1–10 point hedonic<br />

scale (1–2 = extremely poor, 3–4 = poor, 5–6 = fair, 7–<br />

8 = good, 9–10 = excellent) according to taste (sour, sweet,<br />

<strong>and</strong> bitter), aroma <strong>and</strong> overall preference.<br />

3.1.1. Bacteria counts <strong>of</strong> Lactobacillus spp<br />

Lactobacillus spp counts were 1.4 · 10 6 , 2.1 · 10 6 , <strong>and</strong><br />

1.7 · 10 6 cfu/mL <strong>for</strong> fresh plain-, C. verum- <strong>and</strong> A. sativumcow-milk<br />

yogurts, respectively (Fig. 1). Lactobacillus spp<br />

counts increased to about 2.3 · 10 6 cfu/mL <strong>for</strong> all three yogurts<br />

by day 7 <strong>of</strong> storage with significant effect (p < 0.05) seen<br />

in plain-cow-milk yogurt. Lactobacillus spp counts in all three<br />

yogurts were almost similar during <strong>the</strong> 14 days <strong>of</strong> storage but<br />

<strong>the</strong> viable cell counts reduced gradually to 1.4 · 10 6 cfu/mL <strong>for</strong><br />

plain- <strong>and</strong> A. sativum-cow-milk yogurts <strong>and</strong> 1.7 · 10 6 cfu/mL<br />

<strong>for</strong> C. verum-cow-milk yogurt by day 21 <strong>of</strong> storage.<br />

In contrast, Lactobacillus spp counts in fresh camel-milk<br />

yogurts were about tenfold higher than in fresh cow-milk yogurts<br />

(Figs. 1 <strong>and</strong> 2). The viable cell count in plain-camel-milk<br />

yogurt was 13.2 · 10 6 cfu/mL; however, <strong>the</strong> addition <strong>of</strong> C. verum<br />

<strong>and</strong> A. sativum increased (p < 0.05) <strong>the</strong> counts to<br />

19.2 · 10 6 <strong>and</strong> 26.9 · 10 6 cfu/mL, respectively. There were<br />

small decreases in Lactobacillus spp counts in yogurts<br />

(p < 0.05, <strong>for</strong> plain-camel-milk yogurt) after 7 days refrigerated<br />

storage. However, pronounced reduction in Lactobacillus<br />

spp counts occurred in plain- <strong>and</strong> A. sativum-camel-milk<br />

yogurts over <strong>the</strong> 14 days with lowest count being 1.3 · 10 6<br />

<strong>and</strong> 1.7 · 10 6 cfu/mL, respectively, on day 21 <strong>of</strong> storage. Lactobacillus<br />

spp counts in C. verum-camel-milk yogurts reduced<br />

slowly during this period resulting in highest counts<br />

(4.3 · 10 6 cfu/mL) amongst <strong>the</strong> three types <strong>of</strong> camel-milk yogurts<br />

on day 21 <strong>of</strong> storage.<br />

3.1.2. Bacteria counts <strong>of</strong> Streptococcus <strong>the</strong>rmophilus<br />

S. <strong>the</strong>rmophilus counts in fresh cow- <strong>and</strong> camel-milk yogurts<br />

ranged 2.0–3.0 · 10 8 cfu/mL (Figs. 3 <strong>and</strong> 4). The viable cell<br />

counts increased with refrigerated storage to similar values<br />

<strong>for</strong> all plain-, A. sativum- <strong>and</strong> C. verum-cow-milk yogurts<br />

<strong>and</strong> reached <strong>the</strong> highest counts 4.30 · 10 8 , 4.90 · 10 8 <strong>and</strong><br />

5.30 · 10 8 cfu/mL, respectively, by day 14 <strong>of</strong> storage; followed<br />

by a small reduction to 3.7 · 10 8 , 4.50 · 10 8 <strong>and</strong> 4.70 · 10 8 cfu/<br />

mL, respectively, by day 21 <strong>of</strong> storage. In comparison, <strong>the</strong><br />

viable cell counts in camel-milk yogurts increased almost<br />

tw<strong>of</strong>old higher by day 14 <strong>of</strong> storage (9.5 · 10 8 , 11.7 · 10 8<br />

<strong>and</strong> 9.9 · 10 8 cfu/mL) <strong>for</strong> plain-, A. sativum- <strong>and</strong> C. verum-camel-milk<br />

yogurts, respectively. Extension <strong>of</strong> storage to day 21<br />

resulted in a decrease in viable S. <strong>the</strong>rmophilus counts to<br />

7.0 · 10 8 cfu/mL <strong>for</strong> both plain- <strong>and</strong> C. verum-camel-milk yogurts<br />

but not <strong>for</strong> A. sativum camel-milk yogurt which was<br />

2.7. Statistical analysis<br />

The experiment was designed according to a 2 · 3 factorial design.<br />

All experiments were per<strong>for</strong>med in three batches (n = 3) <strong>and</strong> <strong>the</strong><br />

average was taken. Data were expressed as mean ± st<strong>and</strong>ard error<br />

using one-way ANOVA by SPSSÒ version 17.0. Means were<br />

compared using Duncan’s multiple range tests, <strong>and</strong> statistical significance<br />

was st<strong>and</strong>ard by ANOVA at p < 0.05.<br />

3. Results<br />

3.1. Survival <strong>of</strong> lactic acid bacteria into plain <strong>and</strong> herbal yogurts<br />

Figure 1 Changes in bacterial counts <strong>of</strong> Lactobacillus spp<br />

(10 6 cfu/mL) during 21 day refrigerated storage (4 °C). C.<br />

verum-cow-milk yogurt, A. sativum-cow-milk yogurt versus<br />

control plain-cow-milk yogurt. Values are presented as<br />

mean ± SEM (n = 3). For C. verum-cow-milk yogurt (0 day)<br />

ANOVA showed a significant effect at 5% level.


Viability <strong>of</strong> lactic acid bacteria <strong>and</strong> sensory evaluation in Cinnamomum verum <strong>and</strong> Allium sativum 53<br />

Figure 2 Changes in bacterial counts <strong>of</strong> Lactobacillus spp<br />

(10 6 cfu/mL) during 21 day refrigerated storage (4 °C). C.<br />

verum-camel-milk yogurt, A. sativum-camel-milk yogurt versus<br />

control plain-camel-milk yogurt. Values are presented as<br />

mean ± SEM (n = 3). For both cow- <strong>and</strong> camel-milk yogurts in<br />

<strong>the</strong> presence <strong>of</strong> C. verum <strong>and</strong> A. sativum ANOVA showed a<br />

significant effect at 5% level during all periods <strong>of</strong> storage.<br />

12.5 · 10 8 cfu/mL. The addition <strong>of</strong> A. sativum- <strong>and</strong> C. verum in<br />

cow-milk yogurts showed no significant effect on <strong>the</strong> survival<br />

rate <strong>of</strong> S. <strong>the</strong>rmophilus compared to <strong>the</strong>ir control (plain yogurt).<br />

However, <strong>the</strong> addition <strong>of</strong> A. sativum in camel-milk yogurts<br />

showed increased (p < 0.05) in S. <strong>the</strong>rmophilus counts<br />

on 7 <strong>and</strong> 21 days compared to its control while, <strong>the</strong>re was no<br />

effect on S. <strong>the</strong>rmophilus counts in <strong>the</strong> presence <strong>of</strong> C. verum.<br />

3.2. Organoleptic properties <strong>of</strong> stored yogurts<br />

The sensory evaluations <strong>of</strong> cow- <strong>and</strong> camel-milk yogurts were<br />

shown in Table 1. No differences were observed in sourness,<br />

bitterness, <strong>and</strong> overall preference scores between <strong>the</strong> two<br />

groups <strong>of</strong> yogurts, both in <strong>the</strong> absence <strong>and</strong> presence <strong>of</strong> A. sativum<br />

or C. verum. The plain yogurt sweetness score was greater<br />

<strong>for</strong> cow-milk yogurt than <strong>the</strong> camel-milk yogurt. However, <strong>the</strong><br />

presence <strong>of</strong> A. sativum <strong>and</strong> C. verum effects on sweetness was<br />

reduced in cow-milk yogurt, but increased in camel-milk yogurt.<br />

The aroma score was slightly greater in cow-milk yogurt<br />

(6.1 ± 1.8) than in camel-milk yogurt (5.4 ± 1.4). The<br />

presence <strong>of</strong> A. sativum reduced aroma score in cow-milk<br />

Figure 3 Changes in bacteria counts <strong>of</strong> Streptococcus <strong>the</strong>rmophilus<br />

(10 8 cfu/mL) during 21 day refrigerated storage (4 °C). C.<br />

verum-cow-milk yogurt, A. sativum-cow-milk yogurt versus<br />

control plain-cow-milk yogurt. Values are presented as<br />

mean ± SEM (n = 3). For all treated yogurt ANOVA showed<br />

no significant effect at 5% level.<br />

Figure 4 Changes in bacteria counts <strong>of</strong> Streptococcus <strong>the</strong>rmophilus<br />

(10 8 cfu/mL) during 21 day refrigerated storage (4 °C). C.<br />

verum-camel milk yogurt A. sativum-camel-milk yogurt versus<br />

control plain-camel-milk yogurt. Values are presented as<br />

mean ± SEM (n = 3). For A. sativum-camel-milk yogurt at 7<br />

<strong>and</strong> 21 days ANOVA showed a significant effect at 5% level.<br />

yogurt (2.3 ± 0.7, p < 0.05) contrary to camel-milk yogurt<br />

(5.5 ± 1.0).<br />

4. Discussion<br />

In this present study, <strong>the</strong> viable counts <strong>of</strong> Lactobacillus spp<br />

<strong>for</strong> both types <strong>of</strong> yogurts confirmed to reduce during refrigerated<br />

storage (by day 14 <strong>for</strong> cow-milk yogurts <strong>and</strong> day 7<br />

<strong>for</strong> camel-milk yogurts). This result was in agreement with<br />

previous study that found refrigerated storage decreased<br />

<strong>the</strong> viable counts <strong>of</strong> Lactobacillus spp significantly by <strong>the</strong><br />

14th day <strong>of</strong> refrigerated storage (Shah <strong>and</strong> Ravula, 2001;<br />

Haynes <strong>and</strong> Playne, 2002; Kailasapathy <strong>and</strong> Sultana, 2003;<br />

Laniewska-Trokenheim et al., 2010). Additionally, <strong>the</strong> reduction<br />

<strong>of</strong> Lactobacillus spp counts could be associated with <strong>the</strong><br />

post-acidification <strong>of</strong> yogurt which causes a fur<strong>the</strong>r reduction<br />

in pH values (Shah, 2000; Omer <strong>and</strong> Eltinay, 2009; Eissa<br />

et al., 2010). However, in this present study, <strong>the</strong> pH <strong>of</strong><br />

cow-milk yogurts reduced at faster rates than camel-milk yogurts<br />

during refrigerated storage (data not shown). Thus, <strong>the</strong><br />

more rapid reduction <strong>of</strong> Lactobacillus spp counts in all camel-milk<br />

yogurts than cow-milk yogurts (Figs. 1 <strong>and</strong> 2)<br />

could be attributed to <strong>the</strong> higher antibacterial properties <strong>of</strong><br />

camel milk than cow milk (El Agamy et al., 1992).<br />

Conversely, <strong>the</strong> increase in <strong>the</strong> viability <strong>of</strong> S. <strong>the</strong>rmophilus<br />

in both cow-milk <strong>and</strong> camel-milk yogurts throughout <strong>the</strong> first<br />

14 days <strong>of</strong> refrigerated storage was in agreement with o<strong>the</strong>r<br />

previous studies (Birollo et al., 2000). To <strong>the</strong> best knowledge<br />

<strong>of</strong> <strong>the</strong> researchers, this is <strong>the</strong> first simultaneous report on <strong>the</strong><br />

survival <strong>of</strong> both Lactobacillus spp <strong>and</strong> S. <strong>the</strong>rmophilus during<br />

refrigerated storage which showed higher survival percentage<br />

<strong>of</strong> <strong>the</strong>se bacteria in cow-milk than in camel-milk yogurts. Fur<strong>the</strong>rmore,<br />

<strong>the</strong> significant drop in <strong>the</strong> viable cell counts <strong>of</strong> S.<br />

<strong>the</strong>rmophilus by day 21 <strong>of</strong> storage in both cow-milk <strong>and</strong> camel-milk<br />

yogurts may be attributed to <strong>the</strong> accumulation <strong>of</strong> organic<br />

acids (Østlie et al., 2003). However, <strong>the</strong> sustained<br />

survival <strong>of</strong> S. <strong>the</strong>rmophilus in A. sativum-camel-milk yogurt<br />

indicated a positive effect <strong>of</strong> its addition into camel milk during<br />

yogurt preparation. The reason is not clear. Thus, fur<strong>the</strong>r<br />

studies are required.<br />

Viable LAB was higher in camel-milk than in cow-milk yogurts<br />

<strong>and</strong> this may be partly explained by <strong>the</strong> higher free amino


54 A.B. Shori, A.S. Baba<br />

Table 1<br />

Mean taste panel scores <strong>for</strong> herbal yogurts versus control (plain yogurt) made from cow <strong>and</strong> camel milk.<br />

P-cow-milk Y a,b,c AS-cow-milk Y a,b,c CV-cow-milk Y a,b,c P-camel-milk Y a,b,c AS-camel-milk Y a,b,c CV-camel-milk Y a,b,c<br />

Sourness 5.83 ± 1.95 6.42 ± 1.73 5.67 ± 1.72 6.42 ± 1.93 5.92 ± 1.68 5.67 ± 1.15<br />

Sweetness 4.83 ± 1.19 3.42 ± 1.16 3.58 ± 1.83 3.83 ± 1.75 4.92 ± 1.38 4.83 ± 1.27<br />

Bitterness 2.92 ± 1.51 3.08 ± 1.88 2.42 ± 1.24 2.42 ± 1.31 2.17 ± 1.27 2.83 ± 1.64<br />

Aroma 6.08 ± 1.83 2.33 ± 0.65 6.33 ± 1.50 5.42 ± 1.44 5.50 ± 1.00 5.75 ± 1.48<br />

Overall preference 6.50 ± 1.45 5.08 ± 1.24 5.92 ± 1.56 6.17 ± 1.64 5.75 ± 1.71 6.00 ± 1.21<br />

a P = plain, AS = A. sativum, CV=C. verum <strong>and</strong> Y = yogurt.<br />

b First group (AS-cow-milk Y, CV-cow-milk Y versus P-cow-milk Y), second group (AS-camel-milk Y, CV-camel-milk Y versus P-camel-milk<br />

Y).<br />

c Values are presented as mean ± SEM, n = 12. Significant <strong>for</strong> aroma at AS-cow-milk Y.<br />

acids in camel milk than in cow milk (Mehaia <strong>and</strong> Al-Kanhal,<br />

1992), <strong>and</strong> higher milk protein proteolysis by L. delbrueckii spp<br />

bulgaricus in camel milk than in cow milk (Abu-Tarboush,<br />

1996). Both factors contribute to apparent higher digestibility<br />

<strong>of</strong> camel milk than cow milk which readily supported growth<br />

<strong>and</strong> metabolism <strong>of</strong> LAB during fermentation <strong>and</strong> refrigerated<br />

storage. There<strong>for</strong>e, <strong>the</strong> higher ‘mortality’ <strong>of</strong> Lactobacillus spp<br />

in camel-milk yogurts during refrigerated storage may not<br />

affect its functional values because <strong>the</strong> viable cell counts <strong>of</strong><br />

LAB on <strong>the</strong> 3rd week <strong>of</strong> storage in camel-milk yogurts were<br />

still higher than those in <strong>the</strong> 2nd week <strong>of</strong> storage <strong>for</strong> cow-milk<br />

yogurts.<br />

Fur<strong>the</strong>rmore, in this present study, <strong>the</strong> decrease in <strong>the</strong> aroma<br />

score <strong>for</strong> A. sativum-camel-milk yogurt could be explained<br />

via study conducted by Hansanugrum <strong>and</strong> Barringer (2010)<br />

which found that milk proved effective in <strong>the</strong> deodorization<br />

<strong>of</strong> AMS (allyl methyl sulphide) latter identified as responsible<br />

<strong>for</strong> <strong>the</strong> ‘garlic odour’ (Block, 2010). Moreover, <strong>the</strong> significant<br />

higher aroma score <strong>for</strong> A. sativum-camel-milk yogurt than A.<br />

sativm-cow-milk yogurt suggested that camel milk was more<br />

effective in <strong>the</strong> deodorization <strong>of</strong> AMS than cow milk.<br />

5. Conclusion<br />

A. sativum <strong>and</strong> C. verum enhanced Lactobacillus spp counts<br />

more in camel-milk yogurts than in cow-milk yogurts with respect<br />

to growth during fermentation except <strong>the</strong>y could not sustain<br />

Lactobacillus spp survival in camel-milk yogurts during<br />

refrigerated storage. However, <strong>the</strong>se herbs did not affect S.<br />

<strong>the</strong>rmophilus counts in camel- <strong>and</strong> cow-milk yogurts both during<br />

fermentation <strong>and</strong> refrigerated storage. The addition <strong>of</strong> A.<br />

sativum <strong>and</strong> C. verum did not affect <strong>the</strong> organoleptic properties<br />

<strong>of</strong> cow- <strong>and</strong> camel-milk yogurts although A. sativum may reduce<br />

<strong>the</strong> aroma score in <strong>the</strong> <strong>for</strong>mer but not in <strong>the</strong> latter.<br />

Acknowledgement<br />

We acknowledge <strong>the</strong> financial support <strong>of</strong> University <strong>of</strong> Malaya<br />

Research Grant (RG023-090BIO).<br />

References<br />

Abu-Tarboush, H.M., 1996. Comparison <strong>of</strong> associative growth <strong>and</strong><br />

proteolytic activity <strong>of</strong> yogurt starters in camel <strong>and</strong> cow whole<br />

milks. <strong>Journal</strong> <strong>of</strong> Dairy Science 79 (3), 366–371.<br />

Beal, C., Skokanova, J., Latrille, E., Martin, N., Corrieu, G., 1999.<br />

Combined effects <strong>of</strong> culture conditions <strong>and</strong> storage time on<br />

acidification <strong>and</strong> viscosity <strong>of</strong> stirred yogurt. <strong>Journal</strong> <strong>of</strong> Dairy<br />

Science 82, 673–681.<br />

Behrad, S., Yus<strong>of</strong>, M.Y., Goh, K.L., Baba, A.S., 2009. Manipulation<br />

<strong>of</strong> probiotics fermentation <strong>of</strong> yogurt by cinnamon <strong>and</strong> licorice:<br />

effects on yogurt <strong>for</strong>mation <strong>and</strong> inhibition <strong>of</strong> Helicobacter pylori<br />

growth in vitro. World Academy <strong>of</strong> Science, Engineering <strong>and</strong><br />

Technology, 60.<br />

Birollo, G.A., Reinheimer, J.A., Vinderola, C.G., 2000. Viability <strong>of</strong><br />

lactic acid micr<strong>of</strong>lora in different types <strong>of</strong> yogurt. Food Research<br />

International 33, 799–805.<br />

Block, E. (Ed.), 2010. Garlic <strong>and</strong> O<strong>the</strong>r Alliums: The Lore <strong>and</strong> <strong>the</strong><br />

Science. Royal Society <strong>of</strong> Chemistry, Cambridge, p. 477.<br />

Curk, M.C., Hubert, J.C., Bringel, F., 1996. Lactobacillus paraplantarum<br />

sp. now., a new species related to Lactobacillus<br />

plantarum. International <strong>Journal</strong> <strong>of</strong> Systematic Bacteriology 46,<br />

595–598.<br />

De Vrese, M., Steglman, A., Richter, B., Fenselau, S., Laue, C.,<br />

Scherezenmeir, J., 2001. Probiotics-compensation <strong>for</strong> lactase insufficiency.<br />

American <strong>Journal</strong> <strong>of</strong> Clinical Nutrition 73, 421–429.<br />

Desmazeaud, M., 1996. Les bactéries lactiques dans l’alimentation<br />

humaine: Utilisation et innocuite´ . Cahiers Agricultures 5, 331–343.<br />

De-Vuyst, L., Degeest, B., 1999. Heteropolysaccharides from lactic<br />

acid bacteria. FEMS Microbiology Reviews 23, 130–135.<br />

Eissa, E.A., Ahmed, I.A.M., Yagoub, A.E.A., Babiker, E.E., 2010.<br />

Physicochemical, microbiological <strong>and</strong> sensory characteristics <strong>of</strong><br />

yoghurt produced from goat milk. Livestock Research <strong>for</strong> Rural<br />

Development 22, 8.<br />

El Agamy, El Sayed I., Ruppanner, R., Ismail, A., Champagne,<br />

Claude P., Assaf, R., 1992. Antibacterial <strong>and</strong> antiviral activity <strong>of</strong><br />

camel milk protective proteins. <strong>Journal</strong> <strong>of</strong> Dairy Research 59, 169–<br />

175.<br />

Gende, L.B., Floris, I., Fritz, R., Eguaras, M.J., 2008. Antimicrobial<br />

activity <strong>of</strong> cinnamon (Cinnamomum zeylanicum) essential oil <strong>and</strong> its<br />

main components against Paenibacillus larvae from Argentine.<br />

Bulletin <strong>of</strong> Insectology 61 (1), 1–4.<br />

Gibson, G.R., Saveedra, J.M., Mac-Farlane, S., Mac-Farlane, G.T.,<br />

1997. Probiotics <strong>and</strong> intestinal infections. In: Fuller, R. (Ed.),<br />

Probiotic. 2: Applications <strong>and</strong> Practical Aspects. Chapman & Hall,<br />

New York, pp. 10–39.<br />

Güler-Akin, B., Akin, M.S., 2007. Effects <strong>of</strong> cysteine <strong>and</strong> different<br />

incubation temperatures on <strong>the</strong> micr<strong>of</strong>lora, chemical composition<br />

<strong>and</strong> sensory characteristics <strong>of</strong> bio-yogurt made from goat’s milk.<br />

Food Chemistry 100 (2), 788–793.<br />

Hansanugrum, A., Barringer, S.A., 2010. Effect <strong>of</strong> milk on <strong>the</strong><br />

deodorization <strong>of</strong> malodorous breath after garlic ingestion. <strong>Journal</strong><br />

<strong>of</strong> Food Science 6 (75), C549–C558.<br />

Harris, J.C., Cottrell, S.L., Plummer, S., Lioyd, D., 2001. Antimicrobial<br />

properties <strong>of</strong> Allium sativum (garlic). <strong>Applied</strong> Microbiology<br />

<strong>and</strong> Biotechnology 57, 282–286.<br />

Haynes, I.N., Playne, M.J., 2002. Survival <strong>of</strong> probiotic cultures in lowfat<br />

ice-cream. Australian <strong>Journal</strong> <strong>of</strong> Dairy Technology 57, 10–14.


Viability <strong>of</strong> lactic acid bacteria <strong>and</strong> sensory evaluation in Cinnamomum verum <strong>and</strong> Allium sativum 55<br />

Isolauri, E., Su¨ tas, Y., Kankaapäa, P., Arvilommi, H., Salminen, S.,<br />

2001. Probiotics: effects <strong>of</strong> immunity. American <strong>Journal</strong> <strong>of</strong> Clinical<br />

Nutrition 73, 444–450.<br />

Jackson, M.S., Bird, A.R., Mc-Orist, A.I., 2002. Comparison <strong>of</strong> two<br />

selective media <strong>for</strong> <strong>the</strong> detection <strong>and</strong> enumeration <strong>of</strong> lactobacilli in<br />

human faeces. <strong>Journal</strong> <strong>of</strong> Microbiological Methods 51, 313–321.<br />

Joo, S.J., Choi, K.J., Kim, K.S., Lee, J.W., Park, S.K., 2001.<br />

Characteristics <strong>of</strong> yogurt prepared with ‘jinpum’ bean <strong>and</strong> sword<br />

bean (Canavalin gladiata). International <strong>Journal</strong> <strong>of</strong> Postharvest<br />

Technology <strong>and</strong> Innovation 8, 308–312.<br />

Kailasapathy, K., Sultana, K., 2003. Survival <strong>and</strong> b-galactosidase<br />

activity <strong>of</strong> encapsulated <strong>and</strong> free Lactobacillus acidophilus <strong>and</strong><br />

Bifidobacterium lactis in ice-cream. Australian <strong>Journal</strong> <strong>of</strong> Dairy<br />

Technology 58, 223–227.<br />

Kailasapathy, K., Harmstorf, I., Philips, M., 2008. Survival <strong>of</strong><br />

Lactobacillus acidophilus <strong>and</strong> Bifidobacterium animalis spp. lactis<br />

in stirred fruit yogurts. <strong>Journal</strong> <strong>of</strong> LWT-Food Science <strong>and</strong><br />

Technology 41, 1317–1322.<br />

Laniewska-Trokenheim, Ł., Olszewska, M., Miksˇ-Krajnik, M., Zadernowsk,<br />

A., 2010. Patterns <strong>of</strong> survival <strong>and</strong> volatile metabolites <strong>of</strong><br />

selected Lactobacillus strains during long-term incubation in milk.<br />

<strong>Journal</strong> <strong>of</strong> Microbiology 48 (4), 445–451.<br />

Mehaia, M.A., Al-Kanhal, M.A., 1992. Taurine <strong>and</strong> o<strong>the</strong>r amino acids<br />

in milk <strong>of</strong> camel, goat, cow <strong>and</strong> man. Milchwissenschaft 47, 351–353.<br />

Omer, R.H., Eltinay, A.H., 2009. Changes in chemical composition <strong>of</strong><br />

camel’s raw milk during storage. Pakistan <strong>Journal</strong> <strong>of</strong> Nutrition 8,<br />

607–610.<br />

Østlie, Hilde M., Merete, H.H., Judith, A.N., 2003. Growth <strong>and</strong><br />

metabolism <strong>of</strong> selected strains <strong>of</strong> probiotic bacteria in milk.<br />

International <strong>Journal</strong> <strong>of</strong> Food Microbiology 87, 17–27.<br />

Park, Y.S., Kim, Y.S., Shin, D.W., 2003. Changes in physiochemical<br />

characteristics <strong>and</strong> microbial populations during storage <strong>of</strong> lactic<br />

acid bacterial fermented vegetable yogurt. Food Science <strong>and</strong><br />

Biotechnology 12, 654–658.<br />

Rashid, H., Togo, K., Ureda, M., Miyamoto, T., 2007. Probiotic<br />

characteristics <strong>of</strong> lactic acid bacteria isolated from traditional<br />

fermented milk ‘Dahi’ in Bangladesh. Pakistan <strong>Journal</strong> <strong>of</strong> Nutrition<br />

6, 647–652.<br />

Ruas-Madiedo, P., Tuinier, R., Kanning, M., Zoon, P., 2002. Role <strong>of</strong><br />

exopolysaccharides produced by Lactococcus lactis subsp. cremoris<br />

on <strong>the</strong> viscosity <strong>of</strong> fermented milks. International Dairy <strong>Journal</strong> 12,<br />

689–695.<br />

Rybka, S., Kailasapathy, K., 1995. The survival <strong>of</strong> culture bacteria in<br />

fresh <strong>and</strong> freeze-dried AB yogurts. Australian <strong>Journal</strong> <strong>of</strong> Dairy<br />

Technology 50 (2), 58–60.<br />

Shah, N.P., 2000. Probiotic bacteria: selective enumeration <strong>and</strong><br />

survival in dairy foods. <strong>Journal</strong> <strong>of</strong> Dairy Science 83, 894–907.<br />

Shah, N.P., 2003. Yogurt: <strong>the</strong> product <strong>and</strong> its manufacture. In:<br />

Caballero, B., Trugo, L.C., Finglas, P.M. (Eds.), Encyclopedia <strong>of</strong><br />

Food Science <strong>and</strong> Nutrition, second ed. Academic Press, London.<br />

Shah, N., Ravula, R., 2001. Freezing conditions frozen out. Dairy<br />

Industries International 10, 22–26.<br />

Shori, A.B., Baba, A.S., 2011. Antioxidant activity <strong>and</strong> inhibition <strong>of</strong><br />

key enzymes linked to type-2 diabetes <strong>and</strong> hypertension by<br />

Azadirachta indica-yogurt. <strong>Journal</strong> <strong>of</strong> Saudi Chemical Society.<br />

Sivakumar, N., Kalaiarasu, S., 2010. Microbiological approach <strong>of</strong><br />

curd samples collected from different locations <strong>of</strong> Tamilnadu India.<br />

International <strong>Journal</strong> <strong>of</strong> Current Research, 027–030.<br />

Temmerman, R., Pot, B., Huys, G., Swings, J., 2002. Identification <strong>and</strong><br />

antibiotic susceptibility <strong>of</strong> bacterial isolates from probiotic products.<br />

International <strong>Journal</strong> <strong>of</strong> Food Microbiology 81, 1–10.<br />

Zottola, E.A., Yessi, T.L., Ajao, D.B., Roberts, R.F., 1994. Utilization <strong>of</strong><br />

cheddar cheese containing Nisin as an antimicrobial agents in o<strong>the</strong>r<br />

foods. International <strong>Journal</strong> <strong>of</strong> Food Microbiology 24, 227–238.


<strong>Journal</strong> <strong>of</strong> <strong>the</strong> <strong>Association</strong> <strong>of</strong> <strong>Arab</strong> <strong>Universities</strong><br />

<strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Sciences (JAAUBAS)<br />

http://www.ees.elsevier.com/jaaubas<br />

GUIDES FOR AUTHORS<br />

1- Manuscripts submitted <strong>for</strong> publication should meet <strong>the</strong> following criteria:<br />

- Must be written in good English or <strong>Arab</strong>ic.<br />

- Must be original <strong>and</strong> within <strong>the</strong> scope <strong>of</strong> <strong>the</strong> <strong>Journal</strong>.<br />

- Must be in line with <strong>the</strong> journal instructions <strong>and</strong> have <strong>the</strong> correct style be<strong>for</strong>e being considered <strong>for</strong> review.<br />

- Must be approved by two or more reputed referees specialized in <strong>the</strong> respective field.<br />

2- Submission Procedure/ Electronic submission Submit your manuscript through <strong>the</strong> journal’s EES web-site:<br />

http://www.ees.elsevier.com/jaaubas/<br />

- Covering letter highlighting <strong>the</strong> main achievement <strong>of</strong> <strong>the</strong> work<br />

- A list <strong>of</strong> suggested reviewers specialized in <strong>the</strong> field <strong>of</strong> <strong>the</strong> study (At least 3 reviewers)<br />

- The manuscript along with <strong>the</strong> figures <strong>and</strong> tables etc. should be submitted as one file (WORD or PDF ).<br />

3- Preparation <strong>of</strong> <strong>the</strong> Manuscripts<br />

Authors are required to adhere to <strong>the</strong> following:<br />

- Manuscript should be double-spaced with at least 2.5 cm margins on both sides.<br />

- Manuscript should be arranged in <strong>the</strong> following order: Title, Authors name's, Author's Affiliations, Abstract, Keywords (at least 3),<br />

Introduction, Materials, Methods, Results <strong>and</strong> Discussion, Acknowledgment, Appendices, Figure's <strong>and</strong> Table's captions <strong>and</strong> References.<br />

- All pages should be numbered consecutively.<br />

- Title should be concise reflecting <strong>the</strong> manuscript's content.<br />

- Author's Affiliations labeled as: First Author a,* , Second Author b , etc .<br />

with: a first author affiliation, b second author affiliation on separate lines just after <strong>the</strong> Authors names.<br />

- Abstract should not exceed 300 words followed by <strong>the</strong> keywords (Maximum 6 keywords)<br />

- <strong>Arab</strong>ic abstract (250 words maximum)<br />

- Manuscripts should not exceed 15 pages, including appendices.<br />

- All units <strong>of</strong> measurement <strong>and</strong> laboratory values must be expressed in SI units.<br />

- Figures, Tables <strong>and</strong> Diagrams must be original, clear, <strong>and</strong> not exceeding 1218 cm <strong>of</strong> good quality <strong>and</strong> must be accompanied by <strong>the</strong>ir legends<br />

appearing on separate pages.<br />

- Photographs must be <strong>of</strong> high quality <strong>and</strong> as black <strong>and</strong> white prints.<br />

- Colored photos are only accepted on a limited basis, <strong>and</strong> authors wishing to include colored photos may be<br />

asked to pay <strong>the</strong> cost.<br />

- For submitted manuscripts, a separate page containing <strong>the</strong> title <strong>of</strong> <strong>the</strong> paper, author's names, affiliations, abstract, keywords <strong>and</strong> <strong>the</strong> address<br />

<strong>for</strong> <strong>the</strong> corresponding author must be provided.<br />

- For English text, a 12pts New Times Roman font should be used.<br />

- For <strong>Arab</strong>ic text, a 14pts Simplified <strong>Arab</strong>ic font should be used.<br />

- Abbreviation: Internationally agreed rules <strong>for</strong> nomenclature <strong>and</strong> abbreviations should be followed. Abbreviations should not be used within<br />

<strong>the</strong> title <strong>and</strong> <strong>the</strong> abstract except <strong>for</strong> SI units. Non-st<strong>and</strong>ardized abbreviations should be defined when first used in <strong>the</strong> text.<br />

- Equations must be explained. Equations must be numbered in consecutive order using <strong>Arab</strong>ic numerals between paren<strong>the</strong>ses flushed to <strong>the</strong><br />

right <strong>of</strong> <strong>the</strong> equation. They should be cited by <strong>the</strong>ir corresponding numbers within <strong>the</strong> text.<br />

- Scientific Names: Give Latin names in full, toge<strong>the</strong>r with <strong>the</strong> naming authority when first mentioned in <strong>the</strong> main text. Subsequently, <strong>the</strong> genus<br />

name may be abbreviated, except at <strong>the</strong> beginning <strong>of</strong> a sentence.<br />

- Acknowledgements should directly follow <strong>the</strong> text. They should be made in <strong>the</strong> following order: individuals, <strong>of</strong>ficial authorities, institutions,<br />

<strong>and</strong> organizations.<br />

- References: All references must be cited in <strong>the</strong> text. List <strong>of</strong> references should all be alphabetically <strong>and</strong> chronologically arranged using <strong>the</strong><br />

following style:<br />

An article in a <strong>Journal</strong>, e.g.: Alnaser, W.E., Al-Buflasa, H. <strong>and</strong> Isa, A. M., 1999. Investigation on Relation Between <strong>the</strong> Insulation <strong>and</strong><br />

Cosmic Radiation <strong>and</strong> The Effect on Global Warming. <strong>Journal</strong> <strong>of</strong> <strong>Arab</strong> <strong>Association</strong> <strong>for</strong> <strong>Basic</strong> <strong>and</strong> <strong>Applied</strong> Research 5, 25-36.<br />

A complete Book, e.g. Hager, W.H., 1992. Energy Dissipators <strong>and</strong> Hydraulic Jump. Kluwer Academic Publishers, Dordrecht, The<br />

Ne<strong>the</strong>rl<strong>and</strong>s.<br />

Article in an edited book, e.g Hamza, K.A., 1988. Vision Systems. In Jones, P.J., Smith, R. & Watson, E.P. (eds), Artificial Intelligence<br />

Reconsidered (2nd edition), New York: Wiley, 12-34.<br />

Conferences, Symposia, <strong>and</strong> Workshops, e.g.: Saeed, T. N., 1995. The prevalence <strong>of</strong> measles among pregnant women in Bahrain.<br />

Proceeding <strong>of</strong> <strong>the</strong> 2nd <strong>Arab</strong>ian Gulf Conference on Communicable Diseases, Manama, Kingdom <strong>of</strong> Bahrain, 1-3.<br />

Thesis <strong>and</strong> Dissertation, e.g.: Al-Wazzan, M.N., 1998. Microbiological <strong>and</strong> Chemical Properties <strong>of</strong> Indigenous Date Syrup in Bahrain. Ph.D.<br />

<strong>the</strong>sis, King Faisal University, Al-Ahsaa, KSA.<br />

Citations within <strong>the</strong> text, e.g.: In an earlier paper (Smith et al., 1986) argues that …., Or on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, Smith et al. (1988) have reported<br />

that .... , More than one reference e.g. (Smith et al., 1986; John et al., 1990). Citations within <strong>the</strong> text as: (Author et al, year).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!