Geology of Bedded Gypsum in the Gercus Formation - University of ...

Geology of Bedded Gypsum in the Gercus Formation - University of ... Geology of Bedded Gypsum in the Gercus Formation - University of ...

23.10.2014 Views

Geology of bedded Gypsum in the Gercus Formation (Early-Middle Eocene) in Dohuk area, Kurdistan Region, Northern Iraq. Mushir Mustafa Qadir Baziany mushirmustafa@geologist.com Department of Geology, College of Science, University of Sulaimani Abstract The Gercus Formation (Early Middle Eocene) crops out in north and northeastern Iraq within High Folded Zone. In the field, it is exposed as red siliciclastics successions of claystone and sandstone with occasional conglomerate, carbonate and evaporites lenses or tongues. In the studied area two main type of evaporites rocks are found. The first one is chemically deposited gypsum (or anhydrire) which has the granular alabasterine and fibrous satinspar texture, while the second type consists of fragmented and reworked gypsum (detrital gypsum), which is called as gypsarenite (gypsum sand-sized grains). The latter one is formed as an intraformational reworking of the previous deposited chemical gypsum by intense weathering in the cold and dry climate. The gypsarenite contain also angular detrital lignite (black bituminous). In this area, the gypsum beds occur as centimeter thick nodular or laminated beds that interbedded with either red claystone or marl. These beds are arranged in three and nine parasequences in the upper and middle part of the formation in Dohuk dam and Bakrman village respectively. The cyclicity of lithologic signals of the gypsum beds are discussed in the view of the sea level change and systems tract subdivision. The field study showed that the position of each lithology on the sea level curve was unexpected result as concerned to the previous studies which, indicated the evaporites, carbonates (or marl) and clastics as low, transgressive and highstand system tract respectively. In contrary to this, the present study showed that the position of these lithologies (on the sea level curve) in a highstand, transgressive and lowstand systems tract respectively. Accordingly, cycles begin with red claystone and gypsarenite as minor lowstand systems tract (or minor regression of sea level) and ends with evaporite as highstand systems tract (or transgression of sea level). These positions of the lithologies in the depositional system are based on the boundary conditions between the lithologies (beds). The regression and transgression (sea level fluctuations) are argued in term of relation with Milankovitch band of astronomical climate change which consists of eccentricity and precision of earth orbits around the sun and itself. During high eccentricity and precession orbits the sea level rises and the earth climate became warmer and both influx of seawater to the semi-coastal lake and evaporation increased, consequently evaporites are deposited in the peripheral lakes. But during combination of the low orbits the sea level fall occurred which accompanied with decrease of sea water influx and evaporation. This associated with dilution of the lake by fresh water from source areas, which deposited red claystone or gypsarenite. The construction and destruction interference of these orbital cycles generated many complete (ideal) and incomplete sedimentary cycles in the outcrop section of the basin periphery. ( االٜٛطني االٚطط - املبهش ) جٝٛيٛج‎١ٝ‎ طبكات ادتبع يف يتهٜٛٔ‏ ادتشنع مشاٍ‏ ششم ايعشام , ملٓطك‎١‎ دٖٛى , اقًِٝ‏ نٛسدطتإ‏ , مشير مصطفى قادر بازياني املًخص املبهش(‏ ف‎٢‎ مشاٍ‏ ‏ٚمشاٍ‏ ششم ايعشام ضُٔ‏ ‏ْطام ايطٝات ايعاي‎١ٝ‎ . تظٗش ايتهٜٛٔ‏ يف اذتكٌ‏ ‏ٜٛطني االٚطط تهٜٛٔ‏ ادتشنع تٓهشف تعاقبات فتات‎١ٝ‎ محشا‎٤‎ ايًٕٛ‏ يًصخٛس ايط‎١ٝٓٝ‎ ‏ٚايش‎١ًَٝ‎ ‏َع احتُاي‎١ٝ‎ تٛاجذ املذًَهات ‏ٚايصخٛس ايهاسبْٛات‎١ٝ‎ ‏ٚاملتبخشات رات ايشهٌ‏ ايعذطٞ‏ اٚ‏ يف ‏َٓطك‎١‎ ايذساط‎١‎ تالحظ ‏ْٛعإ‏ س‎٥‎‏ٝظٝإ‏ َٔ ايصخٛس املتبخشات‎١ٝ‎ . ايٓٛع االٍٚ‏ رات تشطٝب نُٝٝا‎٣ٚ‎ َٔ ادتبظِ‏ اٚ‏ االْٗاٜذساٜت رات ‏ْظٝخ ايبظرتٜين اذتبٝيب ٚ.... ايًٝفٞ‏ . بُٝٓا ايٓٛع ايجاْٞ‏ تتهٕٛ‏ َٔ ادتبظِ‏ ايفتاتٞ‏ ‏ٚاملعاد ‏ٚاييت تظ‎٢ُ‎ بادتبع االسٜٓاٜيت , اَا ايٓٛع ايجاْٞ‏ تهْٛت ‏ْتٝح‎١‎ اعاد‎٠‎ َٔ يظاْٞ‏ . - ( الا 1

<strong>Geology</strong> <strong>of</strong> bedded <strong>Gypsum</strong> <strong>in</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> (Early-Middle Eocene)<br />

<strong>in</strong> Dohuk area, Kurdistan Region, Nor<strong>the</strong>rn Iraq.<br />

Mushir Mustafa Qadir Baziany<br />

mushirmustafa@geologist.com<br />

Department <strong>of</strong> <strong>Geology</strong>, College <strong>of</strong> Science, <strong>University</strong> <strong>of</strong> Sulaimani<br />

Abstract<br />

The <strong>Gercus</strong> <strong>Formation</strong> (Early Middle Eocene) crops out <strong>in</strong> north and nor<strong>the</strong>astern Iraq with<strong>in</strong> High<br />

Folded Zone. In <strong>the</strong> field, it is exposed as red siliciclastics successions <strong>of</strong> claystone and sandstone with<br />

occasional conglomerate, carbonate and evaporites lenses or tongues. In <strong>the</strong> studied area two ma<strong>in</strong> type<br />

<strong>of</strong> evaporites rocks are found. The first one is chemically deposited gypsum (or anhydrire) which has <strong>the</strong><br />

granular alabaster<strong>in</strong>e and fibrous sat<strong>in</strong>spar texture, while <strong>the</strong> second type consists <strong>of</strong> fragmented and<br />

reworked gypsum (detrital gypsum), which is called as gypsarenite (gypsum sand-sized gra<strong>in</strong>s). The latter<br />

one is formed as an <strong>in</strong>traformational rework<strong>in</strong>g <strong>of</strong> <strong>the</strong> previous deposited chemical gypsum by <strong>in</strong>tense<br />

wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong> <strong>the</strong> cold and dry climate. The gypsarenite conta<strong>in</strong> also angular detrital lignite (black<br />

bitum<strong>in</strong>ous).<br />

In this area, <strong>the</strong> gypsum beds occur as centimeter thick nodular or lam<strong>in</strong>ated beds that <strong>in</strong>terbedded with<br />

ei<strong>the</strong>r red claystone or marl. These beds are arranged <strong>in</strong> three and n<strong>in</strong>e parasequences <strong>in</strong> <strong>the</strong> upper and<br />

middle part <strong>of</strong> <strong>the</strong> formation <strong>in</strong> Dohuk dam and Bakrman village respectively. The cyclicity <strong>of</strong> lithologic<br />

signals <strong>of</strong> <strong>the</strong> gypsum beds are discussed <strong>in</strong> <strong>the</strong> view <strong>of</strong> <strong>the</strong> sea level change and systems tract<br />

subdivision. The field study showed that <strong>the</strong> position <strong>of</strong> each lithology on <strong>the</strong> sea level curve was<br />

unexpected result as concerned to <strong>the</strong> previous studies which, <strong>in</strong>dicated <strong>the</strong> evaporites, carbonates (or<br />

marl) and clastics as low, transgressive and highstand system tract respectively. In contrary to this, <strong>the</strong><br />

present study showed that <strong>the</strong> position <strong>of</strong> <strong>the</strong>se lithologies (on <strong>the</strong> sea level curve) <strong>in</strong> a highstand,<br />

transgressive and lowstand systems tract respectively.<br />

Accord<strong>in</strong>gly, cycles beg<strong>in</strong> with red claystone and gypsarenite as m<strong>in</strong>or lowstand systems tract (or<br />

m<strong>in</strong>or regression <strong>of</strong> sea level) and ends with evaporite as highstand systems tract (or transgression <strong>of</strong> sea<br />

level). These positions <strong>of</strong> <strong>the</strong> lithologies <strong>in</strong> <strong>the</strong> depositional system are based on <strong>the</strong> boundary conditions<br />

between <strong>the</strong> lithologies (beds). The regression and transgression (sea level fluctuations) are argued <strong>in</strong><br />

term <strong>of</strong> relation with Milankovitch band <strong>of</strong> astronomical climate change which consists <strong>of</strong> eccentricity<br />

and precision <strong>of</strong> earth orbits around <strong>the</strong> sun and itself. Dur<strong>in</strong>g high eccentricity and precession orbits <strong>the</strong><br />

sea level rises and <strong>the</strong> earth climate became warmer and both <strong>in</strong>flux <strong>of</strong> seawater to <strong>the</strong> semi-coastal lake<br />

and evaporation <strong>in</strong>creased, consequently evaporites are deposited <strong>in</strong> <strong>the</strong> peripheral lakes. But dur<strong>in</strong>g<br />

comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> low orbits <strong>the</strong> sea level fall occurred which accompanied with decrease <strong>of</strong> sea water<br />

<strong>in</strong>flux and evaporation. This associated with dilution <strong>of</strong> <strong>the</strong> lake by fresh water from source areas, which<br />

deposited red claystone or gypsarenite. The construction and destruction <strong>in</strong>terference <strong>of</strong> <strong>the</strong>se orbital<br />

cycles generated many complete (ideal) and <strong>in</strong>complete sedimentary cycles <strong>in</strong> <strong>the</strong> outcrop section <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong> periphery.<br />

( االٜٛطني االٚطط - املبهش )<br />

جٝٛيٛج‎١ٝ‎<br />

طبكات ادتبع يف<br />

يتهٜٛٔ‏ ادتشنع<br />

مشاٍ‏ ششم ايعشام<br />

, ملٓطك‎١‎ دٖٛى , اقًِٝ‏ نٛسدطتإ‏ ,<br />

مشير مصطفى قادر بازياني<br />

املًخص<br />

املبهش(‏ ف‎٢‎ مشاٍ‏ ‏ٚمشاٍ‏ ششم ايعشام ضُٔ‏ ‏ْطام ايطٝات ايعاي‎١ٝ‎ . تظٗش ايتهٜٛٔ‏ يف اذتكٌ‏<br />

‏ٜٛطني االٚطط تهٜٛٔ‏ ادتشنع تٓهشف تعاقبات فتات‎١ٝ‎ محشا‎٤‎ ايًٕٛ‏ يًصخٛس ايط‎١ٝٓٝ‎ ‏ٚايش‎١ًَٝ‎ ‏َع احتُاي‎١ٝ‎ تٛاجذ املذًَهات ‏ٚايصخٛس ايهاسبْٛات‎١ٝ‎ ‏ٚاملتبخشات رات ايشهٌ‏ ايعذطٞ‏ اٚ‏<br />

يف ‏َٓطك‎١‎ ايذساط‎١‎ تالحظ ‏ْٛعإ‏ س‎٥‎‏ٝظٝإ‏ َٔ ايصخٛس املتبخشات‎١ٝ‎ . ايٓٛع االٍٚ‏ رات تشطٝب نُٝٝا‎٣ٚ‎ َٔ ادتبظِ‏ اٚ‏ االْٗاٜذساٜت رات ‏ْظٝخ ايبظرتٜين<br />

اذتبٝيب ٚ.... ايًٝفٞ‏ . بُٝٓا ايٓٛع ايجاْٞ‏ تتهٕٛ‏ َٔ ادتبظِ‏ ايفتاتٞ‏ ‏ٚاملعاد ‏ٚاييت تظ‎٢ُ‎ بادتبع االسٜٓاٜيت , اَا ايٓٛع ايجاْٞ‏ تهْٛت ‏ْتٝح‎١‎ اعاد‎٠‎<br />

َٔ<br />

يظاْٞ‏ .<br />

-<br />

( الا<br />

1


ايٓكٌ‏ يًحبظِ‏ املرتطب نُٝٝاٜٚا داخٌ‏ ايٛض طابكا ‏ٚرايو بٛاطط‎١‎ ايتح‎١ٜٛ‎ ايشذٜذ‎٠‎ يًُٓاخ ايباسد ‏ٚادتاف نُا حتتٟٛ‏ ادتبع االسٜٓاٜيت ع‎٢ً‎ فتات<br />

قريٟ‏ رات صٚاٜا حاد‎٠‎ . تتٛاجذ طبكات ادتبظِ‏ يف ‏ٖزٙ‏ املٓطك‎١‎ ع‎٢ً‎ شهٌ‏ عكذ رات مسو ال تضداد عٔ‏ طٓتُٝرت ‏ٚاحذ اٚ‏ طبكات سقٝك‎١‎ تتذاخٌ‏ اَا ‏َع<br />

ايصخٛس ايط‎١ٝٓٝ‎ اٚ‏ صًصاي‎١ٝ‎ . ‏ْظُت ‏ٖزٙ‏ ايطبكات َٔ ثالث تظع parasequences يف ادتض‎٤‎ ايعًٟٛ‏ ‏ٚايٛططٞ‏ يًتهٜٛٔ‏ يف طذ دٖٛى ‏ٚقش‎١ٜ‎ بانشَإ‏<br />

ع‎٢ً‎ ايتٛايٞ‏ دسطت ايذٚسات ايصخاس‎١ٜ‎ يطبكات ادتبظِ‏ تػريات ‏َظت‎٣ٛ‎ ططح ايبحشٚايتكظُٝات يالْظ‎١ُ‎ املظاس‎١ٜ‎ . اظٗشت ايذساط‎١‎ اذتك‎١ًٝ‎<br />

بإ‏ املٛاقع يهٌ‏ صخش‎١ٜ‎ ملٓحين ططح ايبحشغري ‏َتٛافك‎١‎ نُا ناْت ‏ٚاسد‎٠‎ يف ايذساطات ايظابك‎١‎ ‏ٚاييت تذٍ‏ بإ‏ املتبخشات ٚ ايهاسبْٛات‎١ٝ‎ ‏)اٚ‏ املاسٍ‏ ) ٚ<br />

ايفتات‎١ٝ‎ تتُجٌ‏ بايتكذّ‏ ايٛاط‎٤٢‎ ٚ االْظ‎١ُ‎ املظاس‎١ٜ‎ ايعاي‎١ٝ‎ ع‎٢ً‎ ايتٛايٞ‏ ‏ٚبعهع ريو اظٗشت ايذساط‎١‎ اذتاي‎١ٝ‎ بإ‏ ‏َٛاقع ايصخش‎١ٜ‎ ملٓحين ططح<br />

ايبحش متجٌ‏ االْظ‎١ُ‎ املظاس‎١ٜ‎ ايعاي‎١ٝ‎ ٚ االْظ‎١ُ‎ املظاس‎١ٜ‎ ايٛاط‎١٦‎ ع‎٢ً‎ ايتٛاىل ‏ٖٚذا ‏ٜع‎٢ٓ‎ بإ‏ ايذٚسات قذ بذات باذتحش ايط‎٢ٓٝ‎ االمحش ‏ٚادتبع<br />

االسٜٓاٜيت ‏ٚايت‎٢‎ متجٌ‏ االْظ‎١ُ‎ املظاس‎١ٜ‎ ايٛاط‎١٦‎ ‏ٚاْتٗت باملتبخشات ‏ٚايت‎٢‎ متجٌ‏ االْظ‎١ُ‎ املظاس‎١ٜ‎ ايعاي‎١ٝ‎ . ‏ٚقذ اعتُذ ‏ٖزا ايتضأَ‏ ع‎٢ً‎ ‏ٚضع‎١ٝ‎ ايعالق‎١‎<br />

بني حذٚد ايطبكات ‏.ٖٚزٙ‏ االْط‎١ُ‎ املظاس‎١ٜ‎ تتطابل ‏َع احض‎١َ‎ ‏َٝالْهٛفٝخ ارتاص‎١‎ بايتػريات املٓاخ‎١ٝ‎ ايه‎١ْٝٛ‎ ‏ٚايت‎٢‎ تتهٕٛ‏ َٔ ( and eccentricity<br />

) ‏ٚاملتعًك‎١‎ بذٚسإ‏ االسض حٍٛ‏ ايشُع ‏ٚدٚسإ‏ حٍٛ‏ ‏ْفظٗا . ‏ٚخالٍ‏ ‏ٚجٛد االسض ف‎٢‎ حاي‎١‎ ( and eccentricity<br />

‏ٜٛد‎٣‎ اىل استفاع ‏َظت‎٣ٛ‎ ططح ايبحش ‏ٚصٜاد‎٠‎ ف‎٢‎ حشاس‎٠‎ املٓاخ ‏ٚصٜاد‎٠‎ ف‎٢‎ تذ فل املٝاٙ‏ اىل ايالنٕٛ‏ ايشب‎١‎ املػًل<br />

مما ‏ٜٛد‎٣‎ اىل تشطٝب املتبخشات ‏.ٚبٓا‎٤‎ ع‎٢ً‎ ريو تضداد املتبخشات ف‎٢‎ حافات حٛض ايرتطٝب . ‏ٚف‎٢‎ حاي‎١‎ ‏ٚجٛد االسض ف‎٢‎ حاي‎١‎ ( and eccentricity<br />

) ايٛاط‎١٦‎ ‏ٜٛد‎٣‎ ريو اىل حذٚث اخنفاض ف‎٢‎ ‏َظت‎٣ٛ‎ ططح ايبحش مما ‏ٜٛدٟ‏ اىل تكًٌٝ‏ تذفل املٝا‎٠‎ حنٛ‏ ايالنٕٛ‏ شب٘‏<br />

املػًك‎١‎ ‏ٚبايتايٞ‏ ‏ٜٛدٟ‏ اىل اخنفاض تشطٝب املتبخشات.ٖٚزا ‏ٜرتافل ‏َع ختفٝف ‏َٝاٙ‏ ايالنٕٛ‏ بٛاطط‎١‎ املٝاٙ‏ ايعزب‎١‎ َٔ املٓاطل املصذس‎١ٜ‎ مما ‏ٜٛدٟ‏ اىل<br />

تشطٝب اذتحش ايط‎٢ٓٝ‎ االمحش ‏ٚادتبع االسٜٓاٜيت . ‏ْٚتٝح‎١‎ يتذاخٌ‏ ايذٚسات احملٛس‎١ٜ‎ ايش‎٥‎‏ٝظ‎١ٝ‎ فإ‏ ريو اد‎٣‎ اىل تهٕٛ‏ دٚسات نا‎١ًَ‎ منٛرج‎١ٝ‎ ‏ٚدٚسات غري<br />

‏َتها‎١ًَ‎ ‏ٚايت‎٢‎ تظٗش ف‎٢‎ املهاشف ايصخش‎١ٜ‎ ف‎٢‎ حاف‎١‎ اذتٛض.‏<br />

.<br />

,<br />

.<br />

.<br />

ٚ<br />

َٔ خالٍ‏<br />

precision <strong>of</strong> earth orbits<br />

)precision <strong>of</strong> earth orbits ايعاي‎١ٝ‎<br />

precision <strong>of</strong> earth orbits<br />

.<br />

Introduction<br />

The studied area is located with<strong>in</strong> Dohuk Governorate, <strong>in</strong> <strong>the</strong> High Folded Zone <strong>in</strong> nor<strong>the</strong>rn<br />

Iraq (Fig.1). The <strong>Gercus</strong> <strong>Formation</strong> was first described <strong>in</strong> sou<strong>the</strong>astern Turkey <strong>in</strong> <strong>the</strong> Gercüs<br />

region by T. H. Maxson <strong>in</strong> 1936 (<strong>in</strong> Bellen et al., 1959). <strong>Gercus</strong> <strong>Formation</strong> is a Middle Eocene<br />

unit on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> stratigraphic position which crops out <strong>in</strong> <strong>the</strong> High Folded Zone <strong>in</strong><br />

nor<strong>the</strong>rn Iraq. It stretches as narrow northwest-sou<strong>the</strong>ast belt from Dohuk to Darbandikhan area<br />

(Buday, 1980; Buday and Jassim, 1987; Jassim and G<strong>of</strong>f, 2006). The present study aimed to<br />

study <strong>the</strong> formation <strong>in</strong> Dohuk area where it conta<strong>in</strong>s bedded gypsums. The study concerned<br />

ma<strong>in</strong>ly with <strong>the</strong> relations between <strong>the</strong> three ma<strong>in</strong> lithologic constituents (clastics, carbonate and<br />

evaporite) as concerned to environment and sea level changes.<br />

The <strong>Formation</strong> ma<strong>in</strong>ly consists <strong>of</strong> alternation <strong>of</strong> clastic rocks <strong>of</strong> claystone, sandstone, marl and<br />

calcareous shale with occurrence <strong>of</strong> conglomerate. Lenticles <strong>of</strong> gypsum, especially near <strong>the</strong> top.<br />

Rare lignite <strong>in</strong> sandstone near base, rock salt occurs sporadically (Bellen et al., 1959; Jassim et<br />

al., 1984). Bolton (1958) described <strong>Gercus</strong> <strong>Formation</strong> from Halabja area as Lower Eocene at<br />

base and Middle Eocene at top <strong>of</strong> <strong>the</strong> formation. Jassim et al (1975) <strong>in</strong>dicated that block<br />

subsidence controlled sedimentation <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong> Darbandikhan area. Al-Rawi (1980)<br />

studied <strong>the</strong> petrology and sedimentology <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong> Shaqlawa and Darbandikhan<br />

areas. Al-Rawi (1983) studied <strong>the</strong> orig<strong>in</strong> <strong>of</strong> red pigment and he mentioned that <strong>the</strong> <strong>Gercus</strong><br />

<strong>Formation</strong> <strong>in</strong> nor<strong>the</strong>astern Iraq consist a fluvial sequence <strong>of</strong> associated red and drab beds<br />

deposited under an arid to semi-arid climate. Basi (1984) studied <strong>the</strong> petrography <strong>of</strong> <strong>Gercus</strong><br />

<strong>Formation</strong> from <strong>the</strong> Shikhan-Sersang area, near Swaratuka town and he mentioned that <strong>the</strong><br />

formation consists <strong>of</strong> red claystone, siltstone, conglomerate, marls and limestone which<br />

deposited <strong>in</strong> shallow mar<strong>in</strong>e environment <strong>of</strong> relatively higher sal<strong>in</strong>ity. Al-Qayim and Al-<br />

Shaibani (1991) suggested that sediments <strong>in</strong> <strong>Gercus</strong> <strong>Formation</strong> are deposited <strong>in</strong> clastic<br />

dom<strong>in</strong>ated tidal flat. Ameen (1998) divided <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> on <strong>the</strong> basis <strong>of</strong> ma<strong>in</strong><br />

lithological distribution <strong>in</strong>to three parts, lower, middle and upper parts. Tek<strong>in</strong> (2001) mentioned<br />

occurrence <strong>of</strong> lam<strong>in</strong>ated gypsum and celenite <strong>in</strong> a shallow <strong>in</strong>ner-lagoonal environment <strong>in</strong> <strong>the</strong><br />

Middle-Late Eocene Bozbel <strong>Formation</strong> <strong>in</strong> east-central Turkey. Al-Barz<strong>in</strong>jy (2005) comb<strong>in</strong>ed <strong>the</strong><br />

formation with <strong>the</strong> unit three (conglomerate) <strong>of</strong> <strong>the</strong> Red Bed Series and <strong>in</strong>ferred that both<br />

deposited <strong>in</strong> one foreland bas<strong>in</strong> <strong>in</strong> proximal and distal area <strong>of</strong> <strong>the</strong> bas<strong>in</strong> respectively.<br />

2


Ameen (2006) studied <strong>the</strong> sequence stratigraphy <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong> Sulaimaniya area,<br />

NE. Iraq, and he mentioned that <strong>the</strong> whole formation consist <strong>of</strong> major lowstands system tract<br />

with<strong>in</strong> stratigraphic record <strong>of</strong> Tertiary. Jassim and G<strong>of</strong>f (2006) mentioned that <strong>the</strong> <strong>Gercus</strong><br />

<strong>Formation</strong> is a typical red molasse sequence derived from uplifted areas <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn and<br />

nor<strong>the</strong>astern.<br />

In <strong>the</strong> peripheral area <strong>the</strong> share <strong>of</strong> sandstone, red claystone and limestone <strong>in</strong>crease <strong>in</strong> expense<br />

<strong>of</strong> evaporites and green marls. The present study is concerned with <strong>the</strong> geology <strong>of</strong> lensoidal<br />

gypsum beds <strong>in</strong> <strong>the</strong> upper and middle part <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong> Dohuk area. The study ma<strong>in</strong>ly<br />

depends on field observation <strong>in</strong> addition to th<strong>in</strong> section. This <strong>in</strong>cludes record<strong>in</strong>g <strong>of</strong> <strong>the</strong> lateral<br />

and vertical lithologic changes and nature <strong>of</strong> <strong>the</strong> boundary between beds.<br />

Geological Sett<strong>in</strong>g<br />

The studied area is located with<strong>in</strong> Dohuk Governorate, near <strong>the</strong> Dohuk dam with (GPS<br />

read<strong>in</strong>g 36 o 52 - 43 = N and 42 o 59 - 79 = E) and extend to Bakirman Village at <strong>the</strong> <strong>in</strong>tersection (36 o<br />

53 - 52 = N and 43 o 40 - 02 = E) <strong>in</strong> nor<strong>the</strong>rn Iraq (Fig.1). Two section are sampled both <strong>of</strong> which is<br />

located with<strong>in</strong> <strong>the</strong> High Folded Zone to <strong>the</strong> south <strong>of</strong> North-Thrust Zone, <strong>in</strong> northwestern part<br />

<strong>of</strong> Zagros Fold-Thrust Belt. The first one selected at sou<strong>the</strong>astern plunge <strong>of</strong> Chiayi Spi anticl<strong>in</strong>e<br />

which plunged near <strong>the</strong> Dohuk dam while <strong>the</strong> second is exposed at <strong>the</strong> northwestern plunge <strong>of</strong><br />

Sharm<strong>in</strong> anticl<strong>in</strong>e. The Mid-Late Eocene <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> was deposited <strong>in</strong> a strongly<br />

subsid<strong>in</strong>g bas<strong>in</strong> to <strong>the</strong> SW <strong>of</strong> an emergent uplift dur<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al phase <strong>of</strong> subduction and closure<br />

<strong>of</strong> <strong>the</strong> remnant Neo-Tethys ocean and <strong>in</strong> a relatively broad trough (foredeep) along <strong>the</strong> nor<strong>the</strong>ast<br />

marg<strong>in</strong> <strong>of</strong> <strong>the</strong> Middle Eocene bas<strong>in</strong> and it derived from uplifted areas <strong>in</strong> N and NE (Jassim and<br />

G<strong>of</strong>f, 2006). While Barz<strong>in</strong>jy (2005) assigned it as equivalent <strong>of</strong> unit three <strong>of</strong> Red Bed Series and<br />

deposited as coastal and fluvial sediments <strong>of</strong> <strong>the</strong> Zagros Foreland Bas<strong>in</strong>.<br />

The <strong>Gercus</strong> <strong>Formation</strong> comprises a mixed clastic, carbonate and evaporites sequences <strong>in</strong> <strong>the</strong><br />

studied area especially at <strong>the</strong> upper and middle, but <strong>in</strong> general it consists <strong>of</strong> upwards f<strong>in</strong><strong>in</strong>g<br />

cyclo<strong>the</strong>ms <strong>of</strong> carbonate-rich sandstone, siltstone, marls and conglomerates toge<strong>the</strong>r with a few<br />

th<strong>in</strong> micrite carbonate beds and a lens <strong>of</strong> gypsum. It occurs along a relatively narrow NW-SE<br />

trend<strong>in</strong>g belt that extends from eastern Iran and extends to northwest wards <strong>in</strong>to sou<strong>the</strong>astern<br />

Turkey through nor<strong>the</strong>ast and nor<strong>the</strong>rn Iraq. In <strong>the</strong> studied area <strong>the</strong> lower contact <strong>of</strong> <strong>the</strong><br />

formation is not appear because <strong>of</strong> plunges <strong>in</strong>to <strong>the</strong> dam. The upper contact <strong>of</strong> <strong>the</strong> formation is<br />

conformable by nearly 30m <strong>of</strong> a thick sequence <strong>of</strong> gypsum, gypsiferous marl and marl beds<br />

gradationally changes to thick limestone beds <strong>of</strong> overla<strong>in</strong> Pila Spi <strong>Formation</strong>.<br />

Stratigraphy and sedimentology<br />

In <strong>the</strong> studied area <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> formation consists <strong>of</strong> alternation <strong>of</strong> red claystone (or<br />

gypsarenite), white marl (occasionally gypsiferous) and gypsum (or anhydrite). In general, <strong>the</strong><br />

alternation <strong>of</strong> gypsum and red claystone are represented by both lam<strong>in</strong>ation and bedd<strong>in</strong>g, <strong>the</strong><br />

thickness <strong>of</strong> lam<strong>in</strong>a ranges from 2mm to 1cm and beds is reach 20cm (Fig.2 and 3). The gypsum<br />

beds are occasionally nodular (Fig.2C) and <strong>in</strong> some place conta<strong>in</strong> pockets <strong>of</strong> small (2-5cm)<br />

convex downward lens and streaks <strong>of</strong> red claystone (Fig.2A). The gypsum beds are accompanied<br />

<strong>in</strong> some place with <strong>the</strong> secondary sta<strong>in</strong>spar gypsum (fibrous gypsum) (Fig.2B and 4C). The most<br />

surpris<strong>in</strong>g and important event dur<strong>in</strong>g this study is f<strong>in</strong>d<strong>in</strong>g, for <strong>the</strong> first time <strong>in</strong> <strong>the</strong> Iraq, both<br />

detrital gypsum (as gypsarenite) and detrital lignite at <strong>the</strong> base <strong>of</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> formation<br />

which alternate as lam<strong>in</strong>e toge<strong>the</strong>r and form<strong>in</strong>g a bed about 1.3m thick (Fig.2 and 4).<br />

3


Fig.1: Location map <strong>of</strong> <strong>the</strong> studied area show<strong>in</strong>g outcrops distribution <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong>.<br />

Bates and Jackson (1980) def<strong>in</strong>ed gypsarenite as a sandstone composed <strong>of</strong> discrete, w<strong>in</strong>ddrifted<br />

particles <strong>of</strong> gypsum. Robertson (1998) mentioned that it is composed <strong>of</strong> coarse gypsum<br />

toge<strong>the</strong>r with sand-sized detrital gra<strong>in</strong>s. Paz and Rossetti (2006) mentioned that it consists <strong>of</strong><br />

gypsum that occurs as clasts rang<strong>in</strong>g from 1mm to 1cm <strong>in</strong> diameter and it is <strong>in</strong>traformational<br />

rework<strong>in</strong>g <strong>of</strong> previously deposited evaporites. Orti, et al. (2007) mentioned that <strong>the</strong> gypsarenite<br />

derive from <strong>the</strong> synsedimentary erosion and resedimentation <strong>of</strong> <strong>the</strong> gypsiferous units. On <strong>the</strong><br />

basis <strong>of</strong> <strong>the</strong> above citations, it is clear that before <strong>the</strong> deposition <strong>of</strong> <strong>the</strong> gypsum <strong>of</strong> <strong>the</strong> present<br />

study <strong>the</strong>re was ano<strong>the</strong>r deposited gypsum beds (These beds are called old gypsum <strong>in</strong> <strong>the</strong> present<br />

study) from which <strong>the</strong> gypsum clasts are derived by erosion and transported to <strong>the</strong> present f<strong>in</strong>al<br />

location and deposited as gypsarenite. It is possible that <strong>the</strong> old gypsum was deposited dur<strong>in</strong>g<br />

high sea level (highstand systems tract). After sea level fall, <strong>the</strong> gypsum was exposed and eroded<br />

as lowstand sediments. The gypsarenite conta<strong>in</strong> cross lam<strong>in</strong>ation which shows southward<br />

paleocurrent direction. The petrographic study <strong>of</strong> this gypsarenite bed shows that <strong>the</strong> gra<strong>in</strong>s have<br />

subangular-subrounded shape (Fig.4A and B). The gysarenite conta<strong>in</strong> black clasts <strong>of</strong> bitumen<br />

which concentrated <strong>in</strong> certa<strong>in</strong> lam<strong>in</strong>a and alternate with gypsarenite lam<strong>in</strong>ae. The bitumen clasts<br />

are also eroded from <strong>the</strong> source area.<br />

The thickness <strong>of</strong> <strong>the</strong> formation is very variable due to bas<strong>in</strong> configuration which was<br />

relatively deep <strong>in</strong> <strong>the</strong> central part and shallow at <strong>the</strong> peripheral area. Accord<strong>in</strong>g to Buday (1980)<br />

<strong>the</strong> thickness <strong>of</strong> <strong>the</strong> formation <strong>in</strong> Dohuk area amount 850m, while Bellen et al. (1959) recorded<br />

838m for <strong>the</strong> formation at <strong>the</strong> type section. The previous author mentioned that this thickness<br />

decreas<strong>in</strong>g towards <strong>the</strong> sou<strong>the</strong>ast, near <strong>the</strong> Iranian border on <strong>the</strong> Diyala (Sirwan) River, it seldom<br />

reaches 100m. In <strong>the</strong> studied area <strong>the</strong> thickness <strong>of</strong> selected section for this study is nearly 85 m.<br />

In <strong>the</strong> bas<strong>in</strong> periphery at Dohuk area <strong>the</strong> strata <strong>of</strong> <strong>the</strong> formation are onlapp<strong>in</strong>g unconformably<br />

on <strong>the</strong> Kolosh <strong>Formation</strong> and overlay<strong>in</strong>g by Pila Spi <strong>Formation</strong>, but a lens <strong>of</strong> gypsum separates<br />

<strong>the</strong> tow formations (Bellen et al., 1959). Jassim and G<strong>of</strong>f (2006) mentioned that <strong>in</strong> Dohuk area<br />

4


<strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> overlies <strong>the</strong> Lower Eocene Khurmala <strong>Formation</strong> and <strong>in</strong>terf<strong>in</strong>gers with <strong>the</strong><br />

Avanah <strong>Formation</strong> and overla<strong>in</strong> by <strong>the</strong> Pila Spi <strong>Formation</strong>. In <strong>the</strong> studied area <strong>the</strong> lower contact<br />

<strong>of</strong> <strong>the</strong> formation is not appear because <strong>of</strong> plunges <strong>in</strong>to <strong>the</strong> Dohuk Lake and dam. The upper<br />

contact <strong>of</strong> <strong>the</strong> formation is conformable by nearly 30m <strong>of</strong> a thick sequence <strong>of</strong> gypsum,<br />

gypsiferous marl and marl beds gradationally changes to thick limestone beds <strong>of</strong> overla<strong>in</strong> Pila<br />

Spi <strong>Formation</strong> (Fig.5).<br />

Fig.2: A) <strong>Gypsum</strong> bed, conta<strong>in</strong> pocket <strong>of</strong> lensoidal red claystone (concave downward), at <strong>the</strong> base<br />

composed <strong>of</strong> coarse lam<strong>in</strong>a and f<strong>in</strong>ely lam<strong>in</strong>ated at <strong>the</strong> top, which underla<strong>in</strong> and overla<strong>in</strong> by sharp contact<br />

with red claystone. B) Thick gypsarenite (or brecciated gypsum) bed which conta<strong>in</strong> lam<strong>in</strong>a <strong>of</strong> black<br />

bitum<strong>in</strong>ous and above this bed have fibrous secondary gypsum (sta<strong>in</strong> spar). C) Nodular gypsum formed<br />

by diagenesis due to spontaneous deposition <strong>of</strong> gypsum and red claystone (<strong>the</strong> red claystone appear as a<br />

streak (irregular l<strong>in</strong>e).<br />

Signal <strong>of</strong> cyclicity and ideal cycle<br />

The signals <strong>of</strong> cyclicity are very strong and clear <strong>in</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> especially <strong>in</strong> <strong>the</strong><br />

studied area. This area is constituent <strong>the</strong> proximal (or periphery) area <strong>of</strong> <strong>the</strong> bas<strong>in</strong> <strong>of</strong> <strong>the</strong><br />

formation dur<strong>in</strong>g Middle Eocene. The signals consist <strong>of</strong> regular repetition <strong>of</strong> <strong>the</strong> packages <strong>of</strong><br />

lithologies for several times <strong>in</strong> outcrop section. Each package consists <strong>of</strong> red claystone (or<br />

gypsarenite), marl and gypsum (Fig.3 and 6). Dohuk outcrop section has <strong>the</strong> thickness <strong>of</strong> 85m<br />

which end with <strong>the</strong> thick limestone beds <strong>of</strong> <strong>the</strong> Pila Spi <strong>Formation</strong>, while <strong>in</strong> Bakrman village<br />

outcrop section has 100m thickness which <strong>in</strong> <strong>the</strong> middle to upper part <strong>of</strong> <strong>the</strong> formation.<br />

Al-Rawi (1980 and 1983) mentioned that 23 and 22 cycles are exposed <strong>in</strong> <strong>the</strong> <strong>Gercus</strong><br />

<strong>Formation</strong> <strong>in</strong> Derbandikhan and Shaqlawa area respectively, and <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> cycles<br />

consists <strong>of</strong> marl (limestone) and siltstone (sandstone). Karim (1988), Karim and Al-Rawi (1992)<br />

mentioned that <strong>the</strong> cycles <strong>of</strong> <strong>the</strong> Lower Fars consist <strong>of</strong> sandstone, green marl with lam<strong>in</strong>ated<br />

gypsum or anhydrite from <strong>the</strong> bottom to <strong>the</strong> top respectively. The cycle mentioned by <strong>the</strong>m is<br />

ideal cycle which belongs to upper part <strong>of</strong> Fatha <strong>Formation</strong> <strong>in</strong> <strong>the</strong> Mosul area. Ameen (2007,<br />

<strong>in</strong>press) mentioned that <strong>the</strong> ideal cycle <strong>of</strong> <strong>the</strong> Lower Fars <strong>Formation</strong> consist <strong>of</strong> red claystone (or<br />

sandstone), green marl and gypsum (or limestone) <strong>in</strong> <strong>the</strong> Sulaimanyia area.<br />

In <strong>the</strong> present study <strong>the</strong> ideal cycle <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> nearly same as later author, means<br />

<strong>the</strong> ideal cycle <strong>of</strong> <strong>the</strong> upper and middle part <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> consist <strong>of</strong> red claystone (or<br />

gypsarenite), marl (or gypsiferous marl) and gypsum(Fig.7). This ideal cycle can be seen <strong>in</strong><br />

many places but <strong>in</strong> most case one can see many <strong>in</strong>complete cycles which only consist <strong>of</strong> two<br />

lithologies such as red claystone (or gypsarenite)- marl (white marl), marl-gypsum and red<br />

claystone (or gypsarenite)-gypsum (Fig.8 and 9).<br />

5


Fig.3: Left) Close up photo <strong>of</strong> alternation <strong>of</strong> gypsum and red claystone as deposit (signals) <strong>of</strong><br />

astronomical one cycle. Right) General view <strong>of</strong> outcrop <strong>of</strong> <strong>Gercus</strong> formation at northwestern plunge <strong>of</strong><br />

Sharm<strong>in</strong> anticl<strong>in</strong>e near Bakrman village, NW Akre town.<br />

Fig.4: A & B) Powder <strong>of</strong> gypsarenite bed under b<strong>in</strong>ocular microscope (A is half-powder and B is fullpowder,<br />

both 16X) <strong>in</strong> which white and orange gra<strong>in</strong>s are gypsum and black gra<strong>in</strong>s are lignite. C) Th<strong>in</strong><br />

section <strong>of</strong> secondary gypsum (sta<strong>in</strong> spar-fibrous gypsum) under polarize microscope, 20X. D) Polish<br />

section <strong>of</strong> gypsarenite bed under b<strong>in</strong>ocular microscope, <strong>in</strong> which white layers are gypsarenite and black<br />

layers are lignite (black bitumen). E & F) Th<strong>in</strong> section <strong>of</strong> gypsarenite bed under polarize microscope,<br />

20X, <strong>in</strong> which shows sub-angular detrital lignite(black gra<strong>in</strong>s).<br />

6


Fig.5: Deposition <strong>of</strong> mixed clastic, carbonate and evaporite sediment as cyclicity <strong>in</strong> <strong>the</strong> upper part <strong>of</strong><br />

<strong>Gercus</strong> <strong>Formation</strong> which overla<strong>in</strong> by massive bedded limestone <strong>of</strong> Pila Spi <strong>Formation</strong> at left side <strong>of</strong><br />

Dohuk lake.<br />

Fig.6: Three ideal cycles (parasequences) <strong>of</strong> red claystone (or gypsarenite) (R.C), marl (M), gypsiferous<br />

marl (GM) and gypsum (Gy) at sou<strong>the</strong>astern plunge <strong>of</strong> Chiayi Spi anticl<strong>in</strong>e, NW Dohuk dam.<br />

7


Reason <strong>of</strong> cyclicity and time relation between lithologies<br />

The clear and strong signals <strong>of</strong> cyclicity can be attributed to Milankovitch astronomical<br />

<strong>the</strong>ory (or Milankovitch band) for <strong>in</strong>terpret<strong>in</strong>g and classification <strong>of</strong> layer<strong>in</strong>g <strong>of</strong> sedimentary<br />

rocks. The existed, cyclicity <strong>of</strong> <strong>the</strong> formation is resulted from earth orbital cyclicity (orbital<br />

signals). Orbital cyclicity, <strong>in</strong> tern, generate alternated warm and cold climate <strong>of</strong> long and short<br />

duration (repeated climatic fluctuations) which reflected by deposition <strong>of</strong> different lithologies <strong>in</strong><br />

<strong>the</strong> sedimentary bas<strong>in</strong>s. The climatic variations affect ice accumulation <strong>in</strong> <strong>the</strong> poles and sea level<br />

change (rise and fall). Milankovitch band consist <strong>of</strong> three types <strong>of</strong> wave lengths which have <strong>the</strong><br />

duration <strong>of</strong> 106, 41, 19 Ka (kilo anus). These wave lengths (earth orbits) are called eccentricity,<br />

obliquity and precession cycles respectively which are resulted from different orbital <strong>of</strong> earth<br />

around its self and sun (for more detail see Haq, 1991; De Boer, 1991; De Boer and Smith,<br />

(1994); Gale, 1995; Fisher, 1995; Holland, 1998; Van Vugt et al., 2001 and James et. al., 2001).<br />

The cyclicity <strong>of</strong> <strong>the</strong> upper and middle part <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> is most possibly located<br />

<strong>in</strong> <strong>the</strong> Milankovitch band especially <strong>the</strong> wave length (sea level change duration) <strong>of</strong> 100 Ka<br />

(eccentricity) which modulated by precession (20 Ka) and obliquity. This is because <strong>the</strong> total<br />

duration <strong>of</strong> <strong>the</strong> formation is about 5 Ma (Bellen, 1959; Buday, 1980; Jassim and G<strong>of</strong>f, 2006).<br />

The field study shows that <strong>the</strong> formation conta<strong>in</strong>s more than 10 complete or <strong>in</strong>complete<br />

sedimentary cycles. When <strong>the</strong> total duration <strong>of</strong> <strong>the</strong> formation, <strong>in</strong> <strong>the</strong> bas<strong>in</strong> center, is divided by<br />

<strong>the</strong> numbers <strong>of</strong> <strong>the</strong> cycles we get 100 Ka. The deviation <strong>of</strong> <strong>the</strong> many cycles from ideal one is<br />

most probably returned to modulat<strong>in</strong>g <strong>of</strong> <strong>the</strong> eccentricity by obliquity and precession cycles<br />

toge<strong>the</strong>r and s<strong>in</strong>gularly. The gypsum which present with<strong>in</strong> <strong>the</strong> upper and middle part <strong>of</strong> <strong>the</strong><br />

<strong>Gercus</strong> <strong>Formation</strong> is deposited dur<strong>in</strong>g high eccentricity and precession which is mean<strong>in</strong>g <strong>the</strong><br />

nearness <strong>of</strong> <strong>the</strong> earth from <strong>the</strong> sun and tilt<strong>in</strong>g <strong>of</strong> earth axis to it is orbit (Fig.10A).<br />

Dur<strong>in</strong>g high eccentricity and precession, <strong>the</strong> claystone (or gypsarenite) is deposited dur<strong>in</strong>g<br />

cold duration when <strong>the</strong> earth at long distant from <strong>the</strong> sun and <strong>the</strong> earth at low tilt angle <strong>of</strong> its<br />

orbit. But gypsum is deposited <strong>in</strong> opposite situation to that <strong>of</strong> claystone (dur<strong>in</strong>g clos<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

sun from <strong>the</strong> earth). The marl and limestone are deposited at <strong>the</strong> <strong>in</strong>termediated distance.<br />

Lithologic relations with<strong>in</strong> <strong>the</strong> systems tracts<br />

The whole formation consists <strong>of</strong> major lowstands systems tract on <strong>the</strong> basis <strong>of</strong> lithologic<br />

characters with<strong>in</strong> stratigraphic record <strong>of</strong> Tertiary which belongs 2 nd order sea level change<br />

(Ameen, 2005). This author studied <strong>the</strong> Sequence stratigraphy <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong> detail and<br />

divided <strong>the</strong> whole formation <strong>in</strong>to two depositional sequences, named upper (encompass upper<br />

part) and lower (encompass lower and middle parts <strong>of</strong> <strong>the</strong> formation) sequences which are<br />

modulated by 3 rd order sea level change (Milankovitch band or m<strong>in</strong>or regression and<br />

transgression). Tek<strong>in</strong> (2001) cited that lam<strong>in</strong>ated gypsum and claystone are deposited dur<strong>in</strong>g<br />

m<strong>in</strong>or transgression.<br />

The <strong>Gercus</strong> <strong>Formation</strong> as a ma<strong>in</strong> lowstands systems tract consists <strong>of</strong> many small depositional<br />

cycles. Each small cycle consists <strong>of</strong> one ideal cycle which has duration <strong>of</strong> 100 Ka. Ma<strong>in</strong> problem<br />

with <strong>the</strong> cycles <strong>in</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> is where to <strong>in</strong>dicate <strong>the</strong> each lithology on <strong>the</strong> sea level<br />

curve. This problem <strong>in</strong>cludes what lithology to be assigned as transgressive, highstand and<br />

lowstand system tracts. In <strong>the</strong> literature, E<strong>in</strong>sele (1998) discussed <strong>in</strong> detail <strong>the</strong> sequence<br />

stratigraphy <strong>of</strong> carbonate-evaporites successions (or systems). He assigned <strong>the</strong> evaporites as<br />

deposits <strong>of</strong> lowstand systems tract and carbonate as highstand systems tract (Fig.11). E<strong>in</strong>sele<br />

(1998); Babel (2004); Gurbuz and Gul (2005) are referred to accumulation <strong>of</strong> gypsum on <strong>the</strong><br />

slope dur<strong>in</strong>g <strong>the</strong> sea level fall and referred to deposition <strong>of</strong> carbonate dur<strong>in</strong>g sea level rise. In<br />

contrast to latter studied Ameen (2006), <strong>in</strong>ferred that gypsum, <strong>in</strong> bas<strong>in</strong> periphery, <strong>of</strong> <strong>the</strong> Fatha<br />

<strong>Formation</strong>, was deposited dur<strong>in</strong>g sea level rise.<br />

In <strong>Gercus</strong> <strong>Formation</strong>, we tried by field work to f<strong>in</strong>d <strong>in</strong> what type <strong>of</strong> sea level fluctuation(<br />

systems tract) <strong>the</strong> gypsum <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> were deposited when field relation and <strong>the</strong><br />

8


above ideas are considered. The field relation <strong>of</strong> <strong>the</strong> lithologies <strong>of</strong> <strong>the</strong> formation, <strong>in</strong> proximal<br />

area (studied area), showed that <strong>the</strong> gypsum bed are deposited dur<strong>in</strong>g highstand system tract<br />

(dur<strong>in</strong>g sea level rise or transgression). The red claystone deposited as lowstand system tracts.<br />

The evidence for <strong>the</strong>se assignments <strong>of</strong> system tracts as follow<strong>in</strong>g:<br />

A- In <strong>the</strong> field <strong>the</strong> cycles are associated with red claystone; this rock represents <strong>the</strong> shallowest<br />

deposits <strong>in</strong> <strong>the</strong> bas<strong>in</strong> which is represent<strong>in</strong>g <strong>the</strong> deposits <strong>of</strong> delta pla<strong>in</strong> and distributaries channels.<br />

The marl is located above <strong>the</strong> red claystone which represent sediment <strong>of</strong> deeper water and above<br />

<strong>the</strong> later lithology comes gypsum or limestone (Fig.8 and 9). Therefore, it is more convenient to<br />

assign red claystone as sediment <strong>of</strong> LST which deposited dur<strong>in</strong>g sea level fall (Fig.10).<br />

B- The most power full evidence for deposition <strong>of</strong> <strong>the</strong> gypsum dur<strong>in</strong>g sea level rise is existence<br />

<strong>of</strong> gypsarenite which, as a type <strong>of</strong> coarsest clastic <strong>in</strong> <strong>the</strong> both studied sections, is deposited<br />

dur<strong>in</strong>g regression (lowstand system tract when <strong>the</strong> citations <strong>of</strong> Emery and Myers, 1996 and<br />

Ensile, 2000) are considered. Therefore <strong>the</strong> gypsum beds are deposited dur<strong>in</strong>g sea level rise<br />

which later eroded dur<strong>in</strong>g sea level fall.<br />

C-No erosion surface was found under <strong>the</strong> gypsum beds as mentioned by E<strong>in</strong>sele (1998).<br />

Conversely <strong>the</strong> contact <strong>of</strong> gypsum with marl is gradational <strong>in</strong> some cases which are represented<br />

by gypsiferous marl or marly gypsum rock at <strong>the</strong> contact.<br />

D- The contact between gypsum beds and overly<strong>in</strong>g red claystone (or gypsarenite) is sharp<br />

which refers to erosional surface (Fig.11A). This erosional surface may be attributed to<br />

shallowness <strong>of</strong> <strong>the</strong> water which <strong>in</strong>duced <strong>the</strong> erosion by current activity. The erosion surface most<br />

possibly equivalent to type-2 sequence boundary.<br />

E- In <strong>the</strong> studied area as observed by <strong>the</strong> present author and <strong>in</strong> <strong>the</strong> Mosul area as observed by<br />

Karim (1988) and <strong>in</strong> <strong>the</strong> Sulaimanyia area as observed by Ameen (2007, <strong>in</strong> press) <strong>the</strong> most<br />

common rock that associated with gypsum, <strong>in</strong> Fatha <strong>Formation</strong> is marl. In many cases both rock<br />

make lam<strong>in</strong>ated beds which consist <strong>of</strong> regular alternation <strong>of</strong> millimeteric lam<strong>in</strong>e <strong>of</strong> both<br />

lithologies (Fig.2A). When little marl is deposited spontaneously with gypsum, a nodular bed <strong>of</strong><br />

gypsum is formed by pressure and deformation (Fig.11C).<br />

Effect <strong>of</strong> tectonism on <strong>the</strong> bas<strong>in</strong> <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong><br />

Although parasquence and m<strong>in</strong>or cycles are show<strong>in</strong>g strong astronomical signals as discussed<br />

before, <strong>the</strong> sequences and bas<strong>in</strong> configuration is ma<strong>in</strong>ly controlled by tectonism <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

Iraq. Karim et. al., (2008) discussed <strong>in</strong> detail <strong>the</strong> effect <strong>of</strong> tectonism <strong>in</strong> generation local bas<strong>in</strong>s<br />

(<strong>in</strong>termont<strong>in</strong>e bas<strong>in</strong>s) <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern Iraq. He showed by diagram that regularities was<br />

generated Lower Eocene and transformed <strong>in</strong>to <strong>in</strong>termontone bas<strong>in</strong> dur<strong>in</strong>g Middle Eocene<br />

(Fig.12). It is possible that dur<strong>in</strong>g latter age <strong>the</strong> local shallow bas<strong>in</strong> separated from <strong>the</strong> ma<strong>in</strong><br />

foreland bas<strong>in</strong> <strong>in</strong> which <strong>the</strong> gypsum is deposited. The ma<strong>in</strong> sea is supplied <strong>in</strong>termittently <strong>the</strong><br />

local bas<strong>in</strong> with dilution by river water. The absence <strong>of</strong> carbonate, <strong>in</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong><br />

<strong>the</strong> studied area, is most possibly attributed to clay <strong>in</strong>flux and to <strong>the</strong> fact <strong>the</strong> ma<strong>in</strong> foreland bas<strong>in</strong><br />

was organism rich by which <strong>the</strong> carbonate is extracted.<br />

Reasons for deposition <strong>of</strong> gypsum dur<strong>in</strong>g HST (sea level rise)<br />

Dur<strong>in</strong>g warm and humid climate <strong>the</strong> sea level rise occurs due to poles ice cap melt<strong>in</strong>g while<br />

dur<strong>in</strong>g cold and dry times <strong>the</strong> sea level fall due to ice accumulation. The important processes that<br />

enhanced deposition <strong>of</strong> gypsum dur<strong>in</strong>g HST is four po<strong>in</strong>ts, <strong>the</strong> first is that dur<strong>in</strong>g warm <strong>in</strong>tervals<br />

both evaporation and sal<strong>in</strong>ity are <strong>in</strong>creased. In upper sequence <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong>, <strong>the</strong><br />

evaporation is <strong>in</strong>creased due to nearness <strong>of</strong> <strong>the</strong> earth from <strong>the</strong> sun with high precession while<br />

sal<strong>in</strong>ity is <strong>in</strong>creased by flood<strong>in</strong>g <strong>of</strong> mar<strong>in</strong>e water over <strong>the</strong> sill that separated <strong>the</strong> bas<strong>in</strong> <strong>of</strong><br />

formation from normal mar<strong>in</strong>e water (Fig. 10).<br />

The second po<strong>in</strong>t is that dur<strong>in</strong>g HST <strong>the</strong> precipitation on <strong>the</strong> bas<strong>in</strong> and source areas decrease,<br />

this prevents <strong>the</strong> dilution <strong>of</strong> <strong>the</strong> sal<strong>in</strong>ity <strong>of</strong> water <strong>of</strong> <strong>the</strong> bas<strong>in</strong> by fresh water, at least, <strong>in</strong> <strong>the</strong><br />

9


proximal area. The warmness was <strong>the</strong> highest when <strong>the</strong> high tilt angles <strong>of</strong> precession and<br />

obliquity are associated with eccentricity. The third po<strong>in</strong>t is that dur<strong>in</strong>g remoteness <strong>of</strong> <strong>the</strong> earth<br />

from <strong>the</strong> sun with low tilt angle, <strong>the</strong> <strong>in</strong>flux <strong>of</strong> mar<strong>in</strong>e water over <strong>the</strong> sill is stopped. In o<strong>the</strong>r side,<br />

<strong>the</strong> fresh water supply from <strong>the</strong> source area <strong>in</strong>creased to a po<strong>in</strong>t that <strong>the</strong> water <strong>of</strong> <strong>the</strong> bas<strong>in</strong> is<br />

diluted <strong>in</strong> <strong>the</strong> peripheral areas (at <strong>the</strong> studied area) this associated with decrease <strong>of</strong> evaporation.<br />

In <strong>the</strong>se cases <strong>the</strong> sea level fall occurred and LST is deposited which represented by red<br />

claystone and sandstone (or gysarenite and detrrital lignite). The fourth po<strong>in</strong>t is that <strong>the</strong><br />

deposition <strong>of</strong> HST is has long duration as compared to TST and undergo some shallow<strong>in</strong>g after<br />

ma<strong>in</strong> deepen<strong>in</strong>g. This shallow<strong>in</strong>g is resulted from sediments fill and evaporation (Vail et al,<br />

1977, Van Wagoner, et al, 1988 and 1990, Haq, 1991, Emery and Myers, 1996).<br />

Fig.7: An ideal cycle at <strong>the</strong> middle <strong>of</strong> <strong>the</strong> Dohuk dam section for which <strong>the</strong> lithologies and sequence<br />

stratigraphy are shown.<br />

10


Fig.8: Stratigraphic column <strong>of</strong> Dohuk dam section, which shows <strong>the</strong> type <strong>of</strong> cycles and <strong>the</strong>ir<br />

<strong>in</strong>terpretation, and sea level curve.<br />

11


Fig.9: Stratigraphic column <strong>of</strong> Bakrman Village section, which shows <strong>the</strong> type <strong>of</strong> cycles and <strong>the</strong>ir<br />

<strong>in</strong>terpretation, and sea level curve.<br />

12


Fig.10: Effect <strong>of</strong> eccentricity and precession <strong>of</strong> climatic change <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn hemisphere dur<strong>in</strong>g Middle<br />

Eocene. A: High eccentricity and precession generate HST and high evaporation <strong>in</strong> which gypsum<br />

deposited. B: Low eccentricity and precession generate LST and <strong>in</strong>flux <strong>of</strong> fresh water to <strong>the</strong> closed<br />

lagoon.<br />

13


Fig.11: Systems tract <strong>of</strong> carbonate-evaporites system <strong>of</strong> E<strong>in</strong>sele (1998) which shows evaporite as LST<br />

and carbonate as TST and HST.<br />

14


Fig.12: Tectonic and paleogeographic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern Iraq dur<strong>in</strong>g Upper Cretaceous-Middle<br />

Eocene. In <strong>the</strong> Lower Eocene (B) many irregularities are generated <strong>in</strong> <strong>the</strong> bas<strong>in</strong> which possibly formed<br />

local evaporitic coastal bas<strong>in</strong>.<br />

15


Conclusions<br />

This paper has <strong>the</strong> follow<strong>in</strong>g conclusions:<br />

1- For <strong>the</strong> first time <strong>the</strong> most surpris<strong>in</strong>g and important event dur<strong>in</strong>g this study is f<strong>in</strong>d<strong>in</strong>g both<br />

detrital gypsum (gypsarenite) and detrital lignite <strong>in</strong> <strong>the</strong> Iraq<br />

2- The <strong>Gercus</strong> <strong>Formation</strong> as a whole consists <strong>of</strong> lowstand systems which conta<strong>in</strong> many cycles<br />

<strong>of</strong> sea level fluctuation <strong>in</strong> <strong>the</strong> range <strong>of</strong> Milankovitch bands.<br />

3- This system tract conta<strong>in</strong>s tens <strong>of</strong> packages <strong>of</strong> lithologies which repeated regularly <strong>in</strong> outcrop<br />

section <strong>in</strong> <strong>the</strong> bas<strong>in</strong> periphery.<br />

4- Each package consists <strong>of</strong> red claystone (or gypsarenite), marl or gypsum as complete or<br />

(ideal) cycle which makes repeated cycles.<br />

5- The relation <strong>of</strong> <strong>the</strong>se lithologies as concerned to systems tracts are opposite to <strong>the</strong> previous<br />

studies as red claystone, marl and gypsum are deposited dur<strong>in</strong>g time <strong>of</strong> LST, TST and HST<br />

respectively.<br />

6- The tim<strong>in</strong>g relations <strong>of</strong> deposition <strong>of</strong> <strong>the</strong>se lithologies are <strong>in</strong>dicated on <strong>the</strong> curve <strong>of</strong> eustatic<br />

sea change by sequence stratigraphy.<br />

7- The deposition <strong>of</strong> each lithology dur<strong>in</strong>g this system tract attributed to Milankovitch band<br />

which <strong>in</strong>clude eccentricity, precision and obliquity orbits <strong>of</strong> earth around sun and itself.<br />

8- The <strong>in</strong>terference <strong>of</strong> <strong>the</strong>se orbits generate cold and warm, time <strong>in</strong>tervals which lead to<br />

deposition <strong>of</strong> red claystone and gypsum respectively.<br />

References<br />

Al-Barz<strong>in</strong>jy, S. T. M., 2005. Stratigraphy and Bas<strong>in</strong> Analysis <strong>of</strong> Red Bed Series from Nor<strong>the</strong>astern Iraq,<br />

Kurdistan Region. Unpublished Ph.D. <strong>the</strong>sis, <strong>University</strong> <strong>of</strong> Sulaimani, 159p.<br />

Al-Qayim, B. and Al-Shaibani S., 1991. A bimodal tidal depositional system <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> <strong>Formation</strong><br />

,Shqlawa area Nor<strong>the</strong>astern Iraq. Salahad<strong>in</strong> <strong>University</strong>, Jour. Sci.<br />

Al-Rawi, Y., 1980. Petrology and Sedimentology <strong>of</strong> <strong>the</strong> <strong>Gercus</strong> Red Bed <strong>Formation</strong> (Eocene) NE Iraq. Iraqi J.<br />

Sci.21, 1.<br />

Al-Rawi, Y., 1983. Orig<strong>in</strong> <strong>of</strong> red color <strong>in</strong> <strong>the</strong> <strong>Gercus</strong> formation (Eocene) NE Iraq, J. Sedi. Geol., 35, pp. 177-<br />

192.<br />

Ameen, B. M., 1998. Sedimentological Study <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> <strong>in</strong> NE–Iraq Un. Pub. Ms.c. <strong>the</strong>sis, Unv.<br />

Baghdad, 103p.<br />

Ameen, B. M., 2006. Sequence stratigraphy <strong>of</strong> <strong>Gercus</strong> <strong>Formation</strong> (Middle Eocene) In Sulaimaniya area,<br />

Nor<strong>the</strong>ast Iraq. Iraqi Jour. <strong>of</strong> Earth Science, Vol. 6, No.2.<br />

Ameen, B. M., 2007. Geological relation between clastic, evaporite and limestone layers <strong>in</strong> Fatha <strong>Formation</strong>,<br />

NE-Iraq, Iraqi Geological Journal, Vol. 40, No. 1.<br />

Babel, M., 2004. Models for evaporite, selenite and gypsum microbialite deposition <strong>in</strong> ancient sal<strong>in</strong>e bas<strong>in</strong>s.<br />

Acta Geologica Polonica, Vol. 54, No. 2, pp. 219-249.<br />

Basi, M.A., 1984. Petrography <strong>of</strong> <strong>the</strong> formations exposed at Shikan-Sers<strong>in</strong>k area, No. 1396, SOM Library,<br />

Baghdad.<br />

Bates, R. L., and Jackson, J. A. (ed.), 1980. Glossary <strong>of</strong> <strong>Geology</strong>. 2 ed edition, American Geological Institute,<br />

749 p.<br />

Bellen, R. C. Van, Dunn<strong>in</strong>gton, H. V., Wetzel, R. and Morton, D., 1959. Lexique Stratigraphique, Interntional.<br />

Asie, Iraq, Vol. 3c. 10a, 333 p.<br />

Bolton, C. m.G., 1958. Geological Map-Kurdistan Series, Scale 1:100000 sheet K6 Halabja. Manuscript report<br />

No. 278, GEOSURV, Baghdad.<br />

Buday, T. C, 1980. Regional <strong>Geology</strong> <strong>of</strong> Iraq: Vol. 1, Stratigraphy, I. I. M Kassab and S. Z. Jassim (Eds) D.<br />

G. Geol. Surv. M<strong>in</strong>. Invest. Pub. 445p.<br />

Buday, T. and Jassim, S. Z., 1987. The Regional geology <strong>of</strong> Iraq: Tectonics, Magmatism and<br />

Metamorphism. I.I. Kassab and M.J. Abbas (Eds), Baghdad, 445 p.<br />

De Boer, P. L., 1991. Astronomical cycle reflected <strong>in</strong> sediment. Zbl. Geol. Teil. H.8, pp.911-930.<br />

De Boer, P. L. and Smith, D. G., 1994. Orbital forc<strong>in</strong>g and cyclic sequences. International association <strong>of</strong><br />

sedimentologist Special publication, No. 19, Blackwell, Oxford.<br />

16


E<strong>in</strong>sele, G., 1998. Event Stratigraphy: Recognition and <strong>in</strong>terpretation <strong>of</strong> Sedimentary Even Horizons, <strong>in</strong>:<br />

Doyle, P. and Bennett, M. R. (editors).Unlock<strong>in</strong>g <strong>the</strong> Stratigraphical Record, John Wily & Son, New<br />

York, 532p.<br />

E<strong>in</strong>sele, G., 2000. Sedimentary Bas<strong>in</strong>: Evolution, Facies and Sediment Budget. 2 nd ed. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>,<br />

792p.<br />

Emery, D. and Myers, K., 1996. Sequence Stratigraphy. Blackwell Scientific Limited, 297p.<br />

Fisher, A.G., 1995. Cyclostratigraphy, quo vadis? In: House, M. R. and Gale, A. S. (ed) Orbital forc<strong>in</strong>g time<br />

scales and cyclostratigraphy . AAPG special publication, No. 85, pp177-197.<br />

Gale, A. S., 1995. Cyclostratigraphy and correlation <strong>of</strong> <strong>the</strong> Cenomanian Stage <strong>in</strong> Western Europe. In: House,<br />

M. R. and Gale, A. S. (eds) Orbital forc<strong>in</strong>g time scales and cyclostratigraphy . AAPG special publication,<br />

No.85, pp. 177-197.<br />

Gurbuz, K. and Gul, M., 2005. Evolution <strong>of</strong> and Factors Controll<strong>in</strong>g Eocene Sedimentation <strong>in</strong> <strong>the</strong> Darende-<br />

Balaban Bas<strong>in</strong>, Malatya (Eastern Turkey). Turkish J. Earth Sci., Vol.14, pp. 311-335.<br />

Haq, B. U., 1991. Sequence stratigraphy, sea level change and significance for deep sea. Spec. publs. Int. ass.<br />

Sediment, 12, pp. 12-39.<br />

Holland, C. H., 1998. Chronostratigraphy (Global standard Stratigraphy): A personal Perspective, <strong>in</strong>:<br />

Unlock<strong>in</strong>g <strong>the</strong> Stratigraphical Record (Advance <strong>in</strong> Modern Stratigraphy). John Wily & Sons, New York,<br />

Toronto<br />

James, Z., Mark, P., Lisa, S. Ellen, T. and Kathar<strong>in</strong>a, B., 2001. Trends, Rhythms, and Aberrations <strong>in</strong> Global<br />

Climate 65 Ma to Present. Sc<strong>in</strong>ce, Paleoclimate, Vol. 292, pp. 686-693.<br />

Jassim, S. Z., Al Shaibani, S. K. and Aj<strong>in</strong>a, T. M., 1975. Possible Middle Eocene block movements <strong>in</strong> <strong>the</strong><br />

Darbandikhan area, Nor<strong>the</strong>astern Iraq, J. Geol. Soc. Iraq<br />

Jassim, S. Z., Karim, S. A., Basi, M. A., Al-Mubarak, M. A. and Munir, J., 1984. F<strong>in</strong>al report on <strong>the</strong> regional<br />

geological survey <strong>of</strong> Iraq. Vol.3, Stratigraphy, GEOSURV, Baghdad, Lib. Unpub. Rep., No.1447, 498p.<br />

Jassim, S.Z. and G<strong>of</strong>f, J.C., 2006. <strong>Geology</strong> <strong>of</strong> Iraq. Published by Dol<strong>in</strong>, Prague and Moravian Museun, Berno,<br />

341p.<br />

Karim, K.H., 1988, Petrography and Sedimentology <strong>of</strong> <strong>the</strong> Lower Fars <strong>Formation</strong> <strong>in</strong> <strong>the</strong> bore hole (S1) from<br />

Hammam Al-Alil area nor<strong>the</strong>rn Iraq. Unpub. Ms.c. <strong>the</strong>sis, Unv. Mosule, 127p.<br />

Karim, K.H. and Al-Rawi, D., 1992. Facies analysis and bas<strong>in</strong> reconstruction <strong>of</strong> <strong>the</strong> Lower Fars <strong>Formation</strong> <strong>in</strong><br />

<strong>the</strong> Shura bore hole No.1 from Hammam Al-Alil area, Mosul District. Iraqi Geol. Jour., Vol.25, No.2,<br />

pp.63-87.<br />

Karim, K.H., Al Barz<strong>in</strong>jy, S. T. M, and Ameen, B. M., 2008. Histroy and Geologecal Sett<strong>in</strong>g <strong>of</strong> Intermontane<br />

Bas<strong>in</strong> <strong>in</strong> <strong>the</strong> Zagros Fold-Thrust, Kurdistan Region, NE-Iraq. Iraqi Bullet<strong>in</strong> <strong>of</strong> <strong>Geology</strong> and M<strong>in</strong><strong>in</strong>g<br />

GEOSERV, Baghdad, Vol.4, No.1.<br />

Orti, F., Rosell, L., Ingles, M. and Playa, E., 2007. Depositional models <strong>of</strong> lacustr<strong>in</strong>e evaporites <strong>in</strong> <strong>the</strong> SE<br />

marg<strong>in</strong> <strong>of</strong> <strong>the</strong> Ebro Bas<strong>in</strong> (Paleogene, NE Spa<strong>in</strong>). Geologica Acta, Vol.5, No.1.<br />

Paz, J. D. S and Rossetti, D. F., 2006. Petrography <strong>of</strong> gypsum-bear<strong>in</strong>g facies <strong>of</strong> <strong>the</strong> Codo <strong>Formation</strong> (Late<br />

Aptian), Nor<strong>the</strong>rn Brazil. Annals <strong>of</strong> <strong>the</strong> Brazilian Academy <strong>of</strong> Sciences, 78 (3).<br />

Robertson, A. H. F., 1998. Late Miocene Paleoenvironments and Tectonic Sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Marg<strong>in</strong> <strong>of</strong><br />

Cyprus and <strong>the</strong> Eratos<strong>the</strong>nes Seamount. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Ocean Drill<strong>in</strong>g Program, Scientific Results,<br />

Vol.160.<br />

Tek<strong>in</strong>, E., 2001. Stratigraphy, Geochemistry and Depositional Environment <strong>of</strong> <strong>the</strong> Celest<strong>in</strong>e-bear<strong>in</strong>g<br />

Gypsiferous <strong>Formation</strong>s <strong>of</strong> <strong>the</strong> Tertiary Ulaş-Sivas Bas<strong>in</strong>, East-Central Anatolia (Turkey). Turkish J. Earth<br />

Sci., Vol. 10, pp. 35-49.<br />

Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M. and Hatleid, W. G., 1977a. Seismic stratigraphy and<br />

global changes <strong>in</strong> sea level. In: seismic Stratigraphy–Application to Hyrocarbon Exploration (ed. by C. E.<br />

Payton). Memoir <strong>of</strong> <strong>the</strong> American Association <strong>of</strong> <strong>the</strong> Petroleum Geologists, Tulsa, Vol. 26, pp49-62.<br />

Van Vugt, N., Langereis, C.G. and Hilgen, F.J., 2001. Orbital forc<strong>in</strong>g <strong>in</strong> Pliocene-Pleistocene Mediterranean<br />

lacustr<strong>in</strong>e deposits: dom<strong>in</strong>ant expression <strong>of</strong> eccentricity versus precession. Elsevier Science B.V.,<br />

Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 172, pp.193-205.<br />

Van Wagoner, J. C., Posamentier, H. W. Jones, C. R. Mitchum, R.M., Vail, P. R., Sarg, J. F. Loutit, T. S. and<br />

Handebol, J., 1988. An overview <strong>of</strong> <strong>the</strong> fundamental <strong>of</strong> sequence stratigraphy and key def<strong>in</strong>ition. In: Sea<br />

level changes: an <strong>in</strong>tegrated Approach, Spec. Publ. Soc. Econ. Paleont. M<strong>in</strong>eral, V.42, pp.39-45.<br />

Van Wagoner, J. C., Jones, C.R. Mitchum, R.M., Campion,K.M. and Rahmanian, V.D., 1990. Siliciclastic<br />

sequence stratigraphy <strong>in</strong> well logs, cores and outcrops: Concepts for high resolution correlation <strong>of</strong> time<br />

and facies. AAPG, Method <strong>in</strong> Exploration Series, Tulsa, 755p.<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!