23.10.2014 Views

Chapter two: Electrostatics Coulomb's law: The force on a test ...

Chapter two: Electrostatics Coulomb's law: The force on a test ...

Chapter two: Electrostatics Coulomb's law: The force on a test ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<str<strong>on</strong>g>Chapter</str<strong>on</strong>g> <str<strong>on</strong>g>two</str<strong>on</strong>g>: <str<strong>on</strong>g>Electrostatics</str<strong>on</strong>g><br />

Coulomb’s <str<strong>on</strong>g>law</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>force</str<strong>on</strong>g> <strong>on</strong> a <strong>test</strong> charge due to a single point charge is proporti<strong>on</strong>al to the charges<br />

and inversely proporti<strong>on</strong>al to the square of the separati<strong>on</strong> distance.<br />

1 <br />

4 ̂<br />

where is permittivity of free space<br />

8.8510 <br />

<br />

<br />

. <br />

<br />

<br />

If we have several point charges , , , ⋯ , <br />

at distances , , , ⋯ , from <strong>test</strong> charge .<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total <str<strong>on</strong>g>force</str<strong>on</strong>g> <strong>on</strong> a is:<br />

<br />

where<br />

⋯<br />

1 <br />

4 <br />

̂ <br />

<br />

̂ <br />

<br />

̂ ⋯<br />

<br />

<br />

<br />

4 <br />

̂ <br />

<br />

̂ <br />

<br />

̂ ⋯<br />

<br />

<br />

<br />

1 <br />

4 <br />

̂<br />

<br />

<br />

: is called the electric field of the source charges.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

76


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

Find the electric field a distance above the midpoint between <str<strong>on</strong>g>two</str<strong>on</strong>g> equal charges, , a<br />

distance apart.<br />

Repeat part , <strong>on</strong>ly make the right‐hand charge – instead of .<br />

<br />

<br />

<br />

<br />

<br />

<br />

/<br />

/<br />

<br />

<br />

Horiz<strong>on</strong>tal comp<strong>on</strong>ents cancel.<br />

Vertical field is:<br />

1<br />

4 <br />

2 <br />

cos <br />

when<br />

; cos <br />

1 2<br />

4 / <br />

≫ ⇒ 1 2<br />

4 <br />

It looks like a single charge 2.<br />

If 0 ⇒ 0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

/<br />

/<br />

<br />

<br />

1<br />

4 <br />

2 <br />

sin <br />

; sin /<br />

<br />

77


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

when<br />

1<br />

4 <br />

<br />

/ <br />

≫ . . ⟶ 0 ⇒ 0<br />

If 0 ⇒ <br />

<br />

<br />

<br />

Problem:<br />

Charge 4 is located at 1,1,0 and charge is located at 0,0,4. What<br />

should be so that at 0,2,0 has no ‐comp<strong>on</strong>ent?<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

4 <br />

<br />

<br />

1<br />

4 <br />

4<br />

√2 1<br />

2 <br />

1 <br />

4 <br />

1 <br />

4 √20 1 <br />

4 20<br />

cos 1<br />

2 <br />

1<br />

√2 <br />

cos 1 <br />

4 20 2<br />

√20 <br />

0<br />

<br />

2 √2 <br />

10 √20 0<br />

20√10 10√40 63.2455 .<br />

78


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

C<strong>on</strong>tinuous Charge Distributi<strong>on</strong>s:<br />

If the charge is distributed c<strong>on</strong>tinuously over some regi<strong>on</strong>, the sum becomes an integral:<br />

1 <br />

4 ̂<br />

Thus, the electric field of a charge is:<br />

1 <br />

4 ̂<br />

For a surface charge:<br />

1 <br />

4 ̂<br />

and, for a volume charge:<br />

1 <br />

4 ̂<br />

where:<br />

: Charge per unit length, : Charge per unit area, : Charge per unit volume.<br />

: an element of length al<strong>on</strong>g the line, : an element of area <strong>on</strong> the surface, and<br />

: an element of volume.<br />

Example:<br />

Find the electric field a distance above the midpoint of a straight line segment of length 2<br />

which carries a uniform line charge .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Due to symmetric horiz<strong>on</strong>tal comp<strong>on</strong>ents = 0.<br />

1<br />

4 <br />

<br />

̂<br />

<br />

1<br />

2 <br />

<br />

4 cos <br />

<br />

79


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

cos <br />

; ; : 0 → <br />

1 2<br />

<br />

4 <br />

<br />

<br />

<br />

/<br />

<br />

2 <br />

<br />

4 /<br />

<br />

2 <br />

<br />

<br />

4 √ <br />

1 2<br />

4 √ <br />

⋙ For points far from the line ≫ :<br />

≅ 1 2<br />

4 <br />

It looks like a point charge 2.<br />

⋙ For points ≫ :<br />

≅ 1<br />

4 <br />

2<br />

<br />

Notes:<br />

Let:<br />

<br />

<br />

<br />

<br />

/ 1 /<br />

<br />

tan <br />

⇒ tan ⇒ sec <br />

<br />

<br />

<br />

sec <br />

/ 1 /<br />

1tan sec <br />

<br />

<br />

<br />

sec <br />

/ sec <br />

<br />

/ sec <br />

sin <br />

<br />

<br />

/ <br />

<br />

sin <br />

√ <br />

<br />

<br />

/ <br />

√ <br />

cos<br />

<br />

<br />

80


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

Find the electric field a distance above <strong>on</strong>e end of a straight line segment of length , which<br />

carries a uniform line charge . Check that your formula is c<strong>on</strong>sistent with what you would<br />

expect for the case ≫.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

4 <br />

<br />

̂<br />

<br />

1 <br />

4 cos <br />

<br />

cos <br />

; ; : 0 → <br />

1 <br />

<br />

4 <br />

<br />

<br />

/<br />

<br />

<br />

<br />

<br />

<br />

4 √ <br />

1 <br />

4 √ <br />

1<br />

<br />

4 sin <br />

<br />

<br />

4 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4 <br />

<br />

1<br />

/<br />

<br />

<br />

√ <br />

<br />

1 4 1<br />

√ <br />

81


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

1<br />

4 <br />

<br />

1 <br />

<br />

<br />

√ <br />

√ <br />

⋙ For points far from the line ≫ ; you expect it to look point charge .<br />

≅ 1 <br />

4 <br />

Problem:<br />

Find the electric field a distance above the center of a square loop (side ) carrying<br />

uniform line charge .<br />

<br />

<br />

<br />

<br />

/<br />

<br />

<br />

1<br />

4 <br />

<br />

̂<br />

1 <br />

<br />

4 cos <br />

1 <br />

<br />

<br />

<br />

4 <br />

<br />

<br />

For <strong>on</strong>e side:<br />

/<br />

<br />

4 <br />

<br />

<br />

<br />

/ <br />

<br />

<br />

<br />

<br />

2 <br />

<br />

4 <br />

<br />

<br />

<br />

<br />

2<br />

<br />

/2<br />

4 <br />

<br />

<br />

<br />

<br />

/<br />

<br />

<br />

<br />

82


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are four sides:<br />

<br />

<br />

4 <br />

4<br />

4 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Problem:<br />

Find the electric field a distance above the center of a circular loop of radius , which<br />

carries a uniform line charge .<br />

<br />

<br />

<br />

<br />

<br />

Horiz<strong>on</strong>tal comp<strong>on</strong>ents cancel;<br />

Here:<br />

1<br />

4 <br />

<br />

̂<br />

<br />

<br />

<br />

4 cos <br />

<br />

<br />

<br />

4 / <br />

∶ <br />

cos <br />

∶<br />

<br />

<br />

<br />

1<br />

4 / <br />

1<br />

4 <br />

<br />

2 <br />

/ <br />

83


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

Find the electric field a distance above the center of a flat circular disk of radius , which<br />

carries a uniform surface charge .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

4 <br />

<br />

<br />

1 2 <br />

<br />

4 cos <br />

<br />

2 <br />

<br />

4 √ <br />

2 <br />

<br />

4 / <br />

2 <br />

4 2<br />

√ <br />

<br />

<br />

2<br />

4 <br />

1 1<br />

√ <br />

Flux and Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> electric field of a single point charge is:<br />

1 <br />

4 ̂<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> flux of through a surface of radius is:<br />

∙ 1 <br />

4 ̂∙ sin ̂<br />

<br />

sin <br />

22<br />

4 4 <br />

∙ <br />

This is a Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g>; which suggests that the flux through any closed surface is a measure of<br />

the total charge inside.<br />

84


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

As it stands, Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> is an integral equati<strong>on</strong>, but we can readily turn it into a differential<br />

<strong>on</strong>e, by applying the divergence theorem.<br />

Rewriting in terms of charge density .<br />

So Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> become:<br />

or<br />

∙ ∙ dτ<br />

<br />

∙ dτ <br />

<br />

Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> in differential form.<br />

∙ <br />

Problem:<br />

Suppose the electric field in some regi<strong>on</strong> is found to be , in spherical<br />

coordinates ( is c<strong>on</strong>stant).<br />

Find the charge density .<br />

Find the total charge c<strong>on</strong>tained in a sphere of radius , centered at the origin.<br />

a)<br />

∙ <br />

⇒ ∙<br />

b) from Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g>:<br />

∙ 1 <br />

1 <br />

5 <br />

⇒<br />

5 <br />

∙ <br />

∙ ∙ sin <br />

or:<br />

4 4 <br />

<br />

5 sin <br />

<br />

85


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

5 sin <br />

<br />

<br />

<br />

5 <br />

5 22 4 <br />

Example:<br />

Find the field outside a uniformly charged solid sphere of radius and total charge .<br />

Drawing a spherical surface at radius .<br />

<br />

<br />

<br />

<br />

∙ <br />

<br />

∙ sin <br />

22 <br />

1 <br />

4 <br />

Problem:<br />

Use Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> to find the electric field inside and outside a spherical shell of radius .<br />

Which carries a uniform surface charge density .<br />

<br />

<br />

<br />

∙ <br />

Inside: 0<br />

∙ 4 0 ⇒ 0<br />

<br />

86


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Outside: 4 <br />

∙ 4 4 <br />

⇒ <br />

<br />

Problem:<br />

Use Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> to find the electric field inside a uniformly charged sphere (charge density )<br />

<br />

<br />

∙ <br />

∙ 4 <br />

sin <br />

∴ 4 1 <br />

<br />

<br />

3 <br />

⇒ <br />

3 <br />

<br />

Problem:<br />

Find the electric field a distance from an infinitely l<strong>on</strong>g straight wire, which carries a<br />

uniform line charge .<br />

<br />

<br />

∙ <br />

∙ 2<br />

<br />

<br />

2 <br />

<br />

∴ 2 <br />

<br />

⇒ <br />

2 <br />

87


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

An infinite plate carries a uniform<br />

surface charge . Find<br />

its electric field.<br />

<br />

∙ <br />

In this case ; from the top and bottom surface yield<br />

∙ 2<br />

<br />

2<br />

<br />

∴ 2 <br />

⇒<br />

<br />

<br />

2 <br />

Results:<br />

⊚ <str<strong>on</strong>g>The</str<strong>on</strong>g> electric field of a sphere falls off like 1/ <br />

⊚ <str<strong>on</strong>g>The</str<strong>on</strong>g> electric field of an infinite<br />

line falls off like 1/<br />

⊚ <str<strong>on</strong>g>The</str<strong>on</strong>g> electric field of an infinite<br />

plane does<br />

not falls offf at all.<br />

Divergence and Curl of <br />

∙ <br />

<br />

4 <br />

1<br />

<br />

4 ̂<br />

∙ ̂<br />

<br />

<br />

<br />

̂<br />

4<br />

<br />

⇒<br />

⇒<br />

∙ <br />

0<br />

Problem:<br />

Find the electric field<br />

inside a sphere which carries a charge density proporti<strong>on</strong>al to the<br />

distance from the origin, , for some c<strong>on</strong>stant .


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

∙ <br />

∙ 4 <br />

sin <br />

<br />

∴ 4 <br />

<br />

22 <br />

1<br />

4 <br />

⇒ 1<br />

4 <br />

<br />

Problem:<br />

A hollow spherical shell carries a charge density, , in the regi<strong>on</strong> .<br />

Find the electric field in the three regi<strong>on</strong>s:<br />

<br />

(i)<br />

∙ <br />

(ii)<br />

0 ⇒ 0<br />

<br />

<br />

<br />

∙ 4 <br />

sin sin <br />

<br />

22 4<br />

∴ 4 <br />

<br />

<br />

4 <br />

<br />

<br />

<br />

⇒ <br />

<br />

<br />

<br />

<br />

<br />

89


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

(iii)<br />

<br />

<br />

<br />

∙ 4 <br />

<br />

<br />

<br />

sin sin <br />

22 4<br />

∴ 4 <br />

<br />

<br />

4 <br />

<br />

<br />

<br />

⇒ <br />

<br />

<br />

<br />

Example:<br />

A l<strong>on</strong>g cylinder carries a charge density that is proporti<strong>on</strong>al to the distance from the axis<br />

for some c<strong>on</strong>stant . Find the electric field inside this cylinder.<br />

<br />

<br />

∙ <br />

∙ 2 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3 2 2 3 <br />

∴ 2 1 <br />

2<br />

3 <br />

1<br />

3 <br />

⇒ 1<br />

3 <br />

<br />

90


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem (Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Example:<br />

Two infinite parallel planes carry<br />

equal but opposite uniform charge<br />

density . Find the<br />

field in each of the three regi<strong>on</strong>s:<br />

to the<br />

left of both.<br />

between them.<br />

to the right of both.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> left plate produce a field <br />

which points away from it.<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> right plate produce a field which points toward<br />

it.<br />

<br />

<br />

0<br />

<br />

2 2<br />

<br />

0<br />

Problem:<br />

A charge sits at the<br />

back corner of a cube, as shown in Figure. What is the flux<br />

of through<br />

the shades side?<br />

Think of this cube as <strong>on</strong>e of (8) surrounding the charge. Each of the (24) squaress which make<br />

up the surface of this<br />

large cube gets the same flux as every other <strong>on</strong>e, so:<br />

But;<br />

<br />

<br />

∙ <br />

1<br />

24<br />


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

∴ ∙ <br />

<br />

∙ <br />

<br />

<br />

<br />

24 <br />

Problem:<br />

One of these is an impossible electrostatic field, which <strong>on</strong>e?<br />

<br />

2 3 <br />

<br />

2 2 <br />

Here is a c<strong>on</strong>stant.<br />

<br />

<br />

<br />

<br />

02 03 0 0<br />

<br />

2 3<br />

So is an impossible electrostatic field.<br />

<br />

<br />

<br />

<br />

2 2<br />

<br />

00 2 2 0<br />

2 2<br />

So is a possible electrostatic field.<br />

Problem:<br />

If the electric field in some regi<strong>on</strong> is given by the expressi<strong>on</strong>:<br />

sincos <br />

<br />

where & are c<strong>on</strong>stant, what is the charge density?<br />

1 r A 1<br />

rsinθ<br />

∙ <br />

⇒ ∙<br />

1 ∂ A<br />

r ∂r r r 1 ∂<br />

rsinθ∂φ sincos <br />

<br />

sin<br />

<br />

sin ⇒ <br />

AB sin<br />

r 92


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

A l<strong>on</strong>g<br />

coaxial cable carries a uniform volume charge density <strong>on</strong><br />

the inner cylinder<br />

(radius ), and a uniform surface<br />

charge density <strong>on</strong> the outer cylindrical shell (radius ); This<br />

surface charge is negative and of<br />

just the right magnitude so that the cable as a whole is<br />

electrically neutral. Find the electric field in each of the three regi<strong>on</strong>s:<br />

a) Inside the inner cylinder .<br />

b) Between the cylinders .<br />

a) Outside the cable .<br />

a))<br />

<br />

∙ <br />

∙ 2 <br />

<br />

∴ 2 <br />

1 <br />

<br />

b))<br />

<br />

<br />

2 <br />

⇒<br />

<br />

<br />

2 <br />

<br />

∙ 2 <br />

<br />

∴ 2 <br />

1 <br />

<br />

c))<br />

<br />

<br />

2 <br />

<br />

⇒<br />

<br />

<br />

2 <br />

<br />

∙ 2 <br />

0<br />

0


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Electric Potential:<br />

Electric potential is define as:<br />

<br />

. <br />

<br />

: standard reference point.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> potential difference between <str<strong>on</strong>g>two</str<strong>on</strong>g> point & is:<br />

<br />

<br />

. <br />

. <br />

<br />

<br />

<br />

<br />

<br />

. . . <br />

<br />

<br />

<br />

From, the<br />

fundamental theorem for gradients:<br />

<br />

. <br />

<br />

<br />

<br />

<br />

. . <br />

<br />

<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> electric field is the gradient of a scalar potential.<br />

Example:<br />

Find the potential inside and outside a spherical shell of radius , which carries a uniform<br />

surface charge. Set the referencee point at infinity.<br />

1 <br />

<br />

4 ̂<br />

For points outside the sphere :<br />

<br />

<br />

1 <br />

<br />

. 4 1 <br />

<br />

4 1 <br />

4<br />

∞ <br />

∞<br />

∞<br />

To find the potential inside the sphere , we must break the integral into <str<strong>on</strong>g>two</str<strong>on</strong>g> secti<strong>on</strong>s:<br />

<br />

<br />

<br />

1 <br />

4 1 <br />

0 <br />

4 1 <br />

<br />

4<br />

∞ <br />


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

Find the potential inside and outside a uniformly charged sphere whose radius is , and<br />

whose total charge is<br />

. Use infinity as your reference point.<br />

Outside the sphere :<br />

Inside the<br />

sphere :<br />

For :<br />

For :<br />

1 <br />

4 <br />

∞<br />

<br />

<br />

. <br />

1 <br />

4 ̂<br />

1 <br />

4 ̂<br />

<br />

1<br />

<br />

4<br />

<br />

1 <br />

4 <br />

∞<br />

<br />

<br />

1 4 1 <br />

1<br />

4 2 3 <br />

<br />

∞<br />

<br />

1<br />

4 <br />

<br />

<br />

<br />

<br />

1<br />

4<br />

∞<br />

<br />

<br />

<br />

Problem:<br />

Find the potential a distance from an infinitely l<strong>on</strong>g straight wire that carries a uniform line<br />

charge . .<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> electric field of nfinite l<strong>on</strong>g straight wire<br />

is:<br />

1 2<br />

4 <br />

In this case we cannot set the reference point at ∞.<br />

Lets set it<br />

at :<br />

<br />

1 2<br />

4 1<br />

2 ln <br />

4


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Poiss<strong>on</strong>’s Equati<strong>on</strong> & Laplace’s Equati<strong>on</strong>:<br />

We have: <br />

and<br />

∙ <br />

∴ ∙ ⇒ <br />

This is known as Poiss<strong>on</strong>’s equati<strong>on</strong>.<br />

In regi<strong>on</strong> where there is no charge, so that 0, Poiss<strong>on</strong>’s equati<strong>on</strong> reduces to Laplace’s<br />

equati<strong>on</strong>: 0<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> potential of a localized charge distributi<strong>on</strong>:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> potential of a point charge at the origin is:<br />

. 1 <br />

4 <br />

1 <br />

4 <br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> potential of collecti<strong>on</strong> of charges is:<br />

1 <br />

4 <br />

For a c<strong>on</strong>tinuous distributi<strong>on</strong>:<br />

1 <br />

4 <br />

For a volume charge, it’s:<br />

1 4 <br />

Problem:<br />

Find the potential at a distance above the center of:<br />

(1) a straight line of length 2, which carries a uniform line charge .<br />

(2) a flat circular disk of radius , which carries a uniform surface charge .<br />

(1)<br />

96


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

2<br />

<br />

<br />

or:<br />

<br />

1<br />

4 <br />

<br />

1<br />

4 <br />

<br />

<br />

ln √ <br />

<br />

4 <br />

<br />

<br />

<br />

<br />

<br />

√ <br />

<br />

4 <br />

ln √ <br />

√ <br />

<br />

sinh <br />

4 <br />

2 sinh <br />

4 <br />

(2)<br />

<br />

<br />

<br />

<br />

<br />

1 <br />

4 1 <br />

4 <br />

1<br />

4 <br />

2 <br />

<br />

<br />

<br />

<br />

2 <br />

√ <br />

<br />

<br />

2 <br />

<br />

Problem:<br />

A c<strong>on</strong>ical surface carries a uniform surface charge . <str<strong>on</strong>g>The</str<strong>on</strong>g> height of the c<strong>on</strong>e is , as is the<br />

radius of the top. Find the potential difference between positi<strong>on</strong>s (the vertex) and (the<br />

center of the top).<br />

<br />

<br />

<br />

’<br />

<br />

<br />

97


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

where; √2 <br />

√<br />

1 2<br />

4 <br />

√<br />

2 /√2<br />

4 <br />

<br />

<br />

<br />

√<br />

1 2<br />

4 ′<br />

√<br />

2<br />

4 <br />

1<br />

√2 <br />

<br />

<br />

<br />

<br />

2 <br />

√2<br />

√2 <br />

2 <br />

<br />

<br />

√2 <br />

<br />

√2 <br />

2√2 √2 ln2 √2 2√2 <br />

<br />

<br />

2√2 √2 ln2 2√2√2 ln2 √2<br />

√2<br />

<br />

<br />

2√2 <br />

<br />

<br />

ln2 √2 ln2 √2<br />

√2<br />

ln 2√2 2 √2<br />

ln ln1 √2<br />

4 2√2 4 2 2 <br />

∴ <br />

2 <br />

1 ln1 √2<br />

√<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three fundamental quantities of electrostatics are: , , & :<br />

<br />

<br />

<br />

∙ <br />

<br />

98


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Electrostatic Boundary C<strong>on</strong>diti<strong>on</strong>s:<br />

Suppose we draw a wafer‐thin Gaussian pillbox, extending just barely over the edge in each<br />

directi<strong>on</strong>.<br />

Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> state that:<br />

∙ <br />

<br />

Where is the area of the pillbox lid in the limit as the thickness goes to zero.<br />

<br />

<br />

<br />

<br />

<br />

E <br />

<br />

a <str<strong>on</strong>g>force</str<strong>on</strong>g> oppo<br />

Work and<br />

Energy in <str<strong>on</strong>g>Electrostatics</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> work<br />

d<strong>on</strong>e to move a <strong>test</strong> charge q, you must exert osite to the electric field.<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> work<br />

is therefore:<br />

<br />

<br />

<br />

<br />

∙ ∙ <br />

∙ <br />

<br />

<br />

<br />

Notice that the answer is independent of the<br />

path you take from to . (the electric <str<strong>on</strong>g>force</str<strong>on</strong>g><br />

are c<strong>on</strong>servative).<br />

∴ <br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> potential difference between points & is equal to the work per unit charge required<br />

to carry a particle from to .<br />

If we bring the charge in from far away and<br />

stick it at point , the work you must do is:<br />

∞ ⇒ <br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy of a point charge distributi<strong>on</strong>:<br />

How much work would it take to<br />

assemble an entire collecti<strong>on</strong> of point charges?<br />

Imagine bringing in the charges, <strong>on</strong>e by <strong>on</strong>e from far away:


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

<br />

<br />

<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first charge takes no work.<br />

Work to bring is:<br />

Work to bring is:<br />

1<br />

4 <br />

<br />

<br />

<br />

1 <br />

4 <br />

<br />

<br />

<br />

Similarly, the extra work to bring in will be:<br />

1 <br />

4 <br />

<br />

<br />

<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total work necessary to assemble the first four charges, is:<br />

1<br />

4 <br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> general rule:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

4 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> stipulati<strong>on</strong> is just to remind you not to count the same pair twice, we can write:<br />

1<br />

8 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 2 <br />

<br />

<br />

1 <br />

<br />

4 1<br />

2 <br />

<br />

<br />

<br />

<br />

Problem:<br />

Three point charges 1 nC, 4 nC, and 3 nC, are located at 0 , 0 , 0, 0 , 0 , 1, and 1 , 0 , 0,<br />

respectively. Find the energy in the system.<br />

100


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Soluti<strong>on</strong>:<br />

W<br />

WW W W <br />

W0q V q V V <br />

q <br />

Wq <br />

4πϵ 1 q q <br />

<br />

4πϵ 1 q <br />

4πϵ √2 <br />

W 1<br />

4πϵ <br />

q q q q q q <br />

√2 <br />

1<br />

4π8.85 10 4312<br />

√2 10 13.37 mJ<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy of a c<strong>on</strong>tinuous charge distributi<strong>on</strong>:<br />

For a volume charge density :<br />

1 2<br />

<br />

∙ <br />

⇒ ∙<br />

Note:<br />

<br />

2 ∙ <br />

∙fA f ∙AA ∙f<br />

∙fA dτ f ∙A dτ A ∙f dτ<br />

<br />

∙fA dτ f A ∙da <br />

∴<br />

f ∙A dτ A ∙f dτ f A ∙da <br />

To transfer the derivative from E to <br />

But:<br />

V E<br />

<br />

2 E ∙V dτ V E ∙da <br />

For large volume:<br />

<br />

2 E dτ V E ∙da <br />

<br />

2<br />

<br />

<br />

E dτ<br />

101


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Problem:<br />

Find the energy stored in a uniformly charged solid sphere of radius and charge .<br />

Problem:<br />

<br />

2<br />

<br />

2 E dτ<br />

⇒ 1<br />

4 <br />

<br />

̂<br />

⇒ 1<br />

4 <br />

<br />

̂<br />

<br />

<br />

4 <br />

<br />

1 <br />

4 2 1 <br />

5 <br />

∞<br />

4 1 <br />

<br />

<br />

∞<br />

1 <br />

<br />

1 <br />

4 2 1<br />

5 1 1 3 <br />

4 5 <br />

4 <br />

C<strong>on</strong>sider <str<strong>on</strong>g>two</str<strong>on</strong>g> c<strong>on</strong>centric spherical shells, of radii & . Suppose the inner <strong>on</strong>e carries a<br />

charge , and the other <strong>on</strong>e a charge – (both of them uniformly distributed over the<br />

surface). Calculate the energy of this c<strong>on</strong>figurati<strong>on</strong>.<br />

1<br />

4 <br />

<br />

̂<br />

<br />

2 E dτ<br />

, <br />

∴ <br />

2 <br />

<br />

<br />

1 <br />

4 <br />

<br />

<br />

<br />

<br />

4 <br />

1 8 <br />

<br />

1 8 1 <br />

C<strong>on</strong>ductors:<br />

1‐ 0 inside a c<strong>on</strong>ductor.<br />

102


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Putting a c<strong>on</strong>ductor in to an external field<br />

, this will drive any free positive charges to<br />

the right and negative <strong>on</strong>es to<br />

the left. Now these induced charges produce a field of their<br />

own , which is in<br />

the opposite directi<strong>on</strong><br />

to . So the field of induced charges tends to<br />

cancel<br />

off the original field, and the resultant field inside the c<strong>on</strong>ductor is precisely zero.<br />

2‐ 0<br />

inside a c<strong>on</strong>ductor, from<br />

Gauss’s <str<strong>on</strong>g>law</str<strong>on</strong>g> ∙ <br />

. If 0 ⇒ 0.<br />

<br />

3‐ Any net charge resides <strong>on</strong> the surface.<br />

4‐ A c<strong>on</strong>ductor is an equipotential. If & are <str<strong>on</strong>g>two</str<strong>on</strong>g> points within (or<br />

at the surface) a given<br />

<br />

c<strong>on</strong>ductor <br />

∙ 0, hence .<br />

<br />

5‐ is perpendicularr to the surface, just outside a c<strong>on</strong>ductor.<br />

Capacitos:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> capacitance /<br />

Capacitance is a purely geometrical quantity, determined by the size, shapes and separati<strong>on</strong><br />

of the <str<strong>on</strong>g>two</str<strong>on</strong>g> c<strong>on</strong>ductors.<br />

For a parallel‐plat capacitor the surfaces of area , and held a distance apart:<br />

; E σ for plat ; and V Ed<br />

<br />

ϵ <br />

σ<br />

∴ d q d<br />

ϵ ϵ A<br />

& ⇒ ϵ A<br />

<br />

<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> work<br />

you must do to increase the charge<br />

by a small amount is:<br />

dq<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total work necessary, to go from 0 to is:<br />

1 q <br />

⇒<br />

1 2 C<br />

2 qV ⇒ 1 2 CV


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

Example:<br />

Find the capacitance of <str<strong>on</strong>g>two</str<strong>on</strong>g> c<strong>on</strong>centric spherical metal shells, with radii & .<br />

1 <br />

4 ̂<br />

<br />

∙ <br />

<br />

<br />

1 4 <br />

<br />

<br />

<br />

<br />

4 <br />

1 1 <br />

∴ 4 <br />

<br />

<br />

More examples:<br />

Example(1):<br />

A charge distributi<strong>on</strong> with spherical symmetry has density , determine everywhere and<br />

the energy stored in regi<strong>on</strong> .<br />

Outside the sphere:<br />

1 <br />

4 <br />

∭ ⟹ <br />

<br />

3 <br />

Inside the sphere:<br />

∙ <br />

∙ 4 <br />

∭ ⟹ <br />

∴ 4 <br />

⟹ <br />

<br />

<br />

104


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

9 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

4. <br />

<br />

18 5 2 <br />

45<br />

<br />

<br />

. <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example(2):<br />

A total charge of is uniformly distributed over a circular ring of radius . Find the potential<br />

at a distance above the center of the ring.<br />

Z<br />

r <br />

2<br />

z<br />

2<br />

Q dl<br />

dl d<br />

(0, ,z)<br />

V <br />

<br />

dl<br />

<br />

4 r<br />

2<br />

2<br />

0<br />

4 <br />

Q<br />

Q dl <br />

(2<br />

) <br />

2<br />

Q<br />

V<br />

<br />

4 R<br />

o<br />

o<br />

<br />

z<br />

2<br />

d<br />

o<br />

2<br />

z<br />

2<br />

<br />

2<br />

o<br />

<br />

2<br />

z<br />

2<br />

r<br />

+ + + + + +<br />

+<br />

+ +<br />

+ +<br />

+ + (,,0)<br />

Example (3):<br />

Determine , at 2,0, due to three charge distributi<strong>on</strong>s as follows; a uniform sheet at<br />

0 with 12 / , a uniform sheet at 4 with 12 / , and a<br />

uniform line at 6, 0 with 2 /.<br />

<br />

<br />

<br />

2 <br />

<br />

2 <br />

1<br />

4 <br />

2<br />

<br />

, , <br />

<br />

<br />

12 <br />

<br />

2 12 <br />

<br />

2 <br />

<br />

2 <br />

2 4 <br />

<br />

<br />

12.25 /<br />

Example (4):<br />

A charge distributi<strong>on</strong> with spherical symmetry has density:<br />

105


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

0 <br />

<br />

<br />

0 <br />

Determine everywhere.<br />

a) For: :<br />

b) For: :<br />

<br />

4 sin <br />

<br />

<br />

<br />

<br />

4 <br />

<br />

<br />

∴ <br />

4 <br />

<br />

<br />

<br />

4 sin <br />

<br />

<br />

<br />

4 <br />

<br />

<br />

<br />

∴ <br />

4 <br />

Example (5):<br />

Giving that:<br />

2cos sin <br />

3<br />

<br />

in cylindrical coordinates, find the flux crossing the porti<strong>on</strong> of the 0 plane defined<br />

by , 3/2 2. Assume flux positive in the directi<strong>on</strong>.<br />

∙ <br />

1 3 <br />

<br />

<br />

<br />

<br />

<br />

<br />

2cos sin <br />

3<br />

∙ <br />

/<br />

sin <br />

/<br />

<br />

1 3 cos /<br />

<br />

<br />

<br />

3<br />

Example (6):<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> charge is distributed al<strong>on</strong>g the z‐axis from to ∞ and to ∞ with a<br />

charge density of . Find <strong>on</strong> the ‐axis.<br />

<br />

<br />

4 <br />

1 <br />

4 <br />

<br />

<br />

<br />

<br />

<br />

cos <br />

<br />

4 cos <br />

<br />

106


Electromagnetic <str<strong>on</strong>g>The</str<strong>on</strong>g>orem<br />

(Dr. Omed Ghareb Abdullah) University of Sulaimani –College of Science – Physics Department<br />

<br />

<br />

<br />

<br />

<br />

<br />

4 / <br />

/ <br />

<br />

<br />

<br />

<br />

<br />

<br />

4 √ <br />

√ <br />

<br />

<br />

<br />

4 <br />

<br />

1 1<br />

√ √ <br />

<br />

<br />

4 2 1 <br />

√ <br />

<br />

107

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!