22.10.2014 Views

ecologia mediterranea - Université d'Avignon et des Pays de Vaucluse

ecologia mediterranea - Université d'Avignon et des Pays de Vaucluse

ecologia mediterranea - Université d'Avignon et des Pays de Vaucluse

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>ecologia</strong> <strong>mediterranea</strong><br />

SOMMAIRE – CONTENTS<br />

TOMÁS PAVLÍCEK, VLADIMIR CHIKATUNOV & EVIATAR NEVO<br />

Arthropods in the mounds of mole rats,Spalax ehrenbergi superspecies,<br />

in Israel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL NAGGAR<br />

Tome 31 fascicule 1, 2005<br />

ISSN 0153-8756<br />

AND KHADIJA A. BAAYO<br />

Veg<strong>et</strong>ation structure and environmental gradients in the Sallum area, Egypt . . . 15<br />

Tome 31 fascicule 1, 2005<br />

M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

Phenological patterns of ground spi<strong>de</strong>rs (Araneae, Gnaphosidae)<br />

on Cr<strong>et</strong>e, Greece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

L.M.M. BIDAK<br />

On the seed ecology of two life forms of Spergularia (Caryophyllaceae) . . . . . . . 55<br />

SÉBASTIEN AUBRY & FRÉDÉRIC MAGNIN<br />

Factors structuring land snail communities in South-Eastern France: a comparison of<br />

two estimation m<strong>et</strong>hods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

CYRILLE B. K. RATHGEBER, ANTOINE NICAULT & JOËL GUIOT<br />

Évolution <strong>de</strong> la croissance radiale du pin d’Alep (Pinus halepensis Mill.)<br />

en Provence calcaire (sud-est <strong>de</strong> la France) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

GÉRARD DE BÉLAIR<br />

Dynamique <strong>de</strong> la végétation <strong>de</strong> mares temporaires en Afrique du Nord (Numidie<br />

orientale, NE Algérie) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

Faits <strong>de</strong> conservation en Méditerranée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

Analyses d’ouvrages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

Résumés <strong>de</strong> thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

Revue in<strong>de</strong>xée dans Pascal-CNRS <strong>et</strong> Biosis<br />

<strong>ecologia</strong> <strong>mediterranea</strong><br />

Tome 31<br />

Fascicule 1, 2005<br />

ISSN 0153-8756<br />

Revue internationale<br />

d’écologie méditerranéenne<br />

International Journal<br />

of Mediterranean Ecology


<strong>ecologia</strong><br />

<strong>mediterranea</strong><br />

Revue internationale<br />

d’écologie méditerranéenne<br />

International Journal<br />

of Mediterranean Ecology<br />

Tome 31 • Fascicule 1 • 2005


Rédacteur en chef • Managing editor Secrétariat • Secr<strong>et</strong>ariat<br />

FRÉDÉRIC MÉDAIL<br />

MICHELLE DOUGNY<br />

Rédacteurs • Editors<br />

LAURENCE AFFRE<br />

THIERRY DUTOIT<br />

JÉRÔME ORGEAS<br />

PHILIP ROCHE<br />

THIERRY TATONI<br />

ERIC VIDAL<br />

Fondateur • Foun<strong>de</strong>r<br />

PROFESSEUR PIERRE QUÉZEL<br />

Comité <strong>de</strong> lecture • Advisory board<br />

ARONSON J., CEFE-CNRS, Montpellier<br />

BARBERO M., IMEP, Université Aix-Marseille III<br />

BEAULIEU J.-L. DE, IMEP, Université Aix-Marseille III<br />

BROCK M., University of New England, Armidale, Australie<br />

CHEYLAN M., EPHE, Montpellier<br />

DEBUSSCHE M., CEFE-CNRS, Montpellier<br />

FADY B., INRA, Avignon<br />

GRILLAS P., Station biologique Tour du Valat, Arles<br />

GUIOT J., CEREGE-CNRS, Aix-en-Provence<br />

HOBBS R. J., CSIRO, Midland, Australie<br />

KREITER S., ENSA-M-INRA, Montpellier<br />

LE FLOC’H E., CEFE-CNRS, Montpellier<br />

MARGARIS N. S., University of the Aegean, Mytilène, Grèce<br />

OVALLE C., CSI-Quilamapu, INIA, Chili<br />

PEDROTTI F., Universita <strong>de</strong>gli Studi, Camerino, Italie<br />

PLEGUEZUELOS J. M., Université <strong>de</strong> Grena<strong>de</strong>, Espagne<br />

PONEL P., IMEP, CNRS, Marseille<br />

PRODON R., EPHE, Montpellier<br />

RIDCHARSON D. M., University Cape Town, Afrique du Sud<br />

SANS F. X., Université <strong>de</strong> Barcelone, Espagne<br />

SHMIDA A., Hebrew University of Jérusalem, Israël<br />

TROUMBIS A., University of the Aegean Mytilene, Grèce<br />

URBINATI C., Agripolis, Legnaro, Italie<br />

Ecologia <strong>mediterranea</strong><br />

Ecologia Mediterranea<br />

Europôle méditerranéen <strong>de</strong> l’Arbois, Bâtiment Villemin, B.P. 80<br />

F-13545 Aix-en-Provence, CEDEX 04, France<br />

Tél. : + 33 04 42 90 84 06 – Fax : + 33 04 91 28 80 51<br />

Intern<strong>et</strong> : http://www.imep-cnrs.com/<strong>ecologia</strong>/ – email : f.medail@univ.u-3mrs.fr –<br />

Éditions Édisud / Atelier graphique Édisud<br />

3120 route d’Avignon, F-13090 Aix-en-Provence, France<br />

Tél. : 00 33 04 42 21 61 44 – Fax : 00 33 04 42 21 56 20<br />

Intern<strong>et</strong> : http://www.edisud.com – email : info@edisud.com -<br />

© Édisud, 2006, tous droits réservés.<br />

Abonnements • Subscription (contacter Edisud)<br />

Un an : 2 numéros • One year : 2 issues<br />

— France : 61 € + 9,12 € <strong>de</strong> frais <strong>de</strong> port<br />

— Europe : 61 € + 12,2 € <strong>de</strong> frais <strong>de</strong> port<br />

— Amérique, Afrique, Asie : 61 € + 18,3 € <strong>de</strong> frais <strong>de</strong> port<br />

ISSN 0153-8756


<strong>ecologia</strong><br />

<strong>mediterranea</strong><br />

Revue internationale<br />

d’écologie méditerranéenne<br />

International Journal<br />

of Mediterranean Ecology<br />

Tome 31 • Fascicule 1 • 2005


Arthropods in the mounds of mole rats,<br />

Spalax ehrenbergi superspecies, in Israel<br />

Arthropo<strong><strong>de</strong>s</strong> dans les monticules <strong>de</strong> rats-taupes<br />

<strong>de</strong> la super-espèce Spalax ehrenbergi en Israël<br />

Tomás Pavlícek*, Vladimir Chikatunov** & Eviatar Nevo*<br />

* Institute of Evolution, University of Haifa, Mt. Carmel, Haifa 31905, Israel<br />

** Department of Zoology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel<br />

Address for correspon<strong>de</strong>nce: Dr. Tomás Pavlícek, Institute of Evolution, University of Haifa,<br />

Mt. Carmel, Haifa 31905, Israel. Tel. ++972-4-8240460, e-mail: patricia@research.haifa.ac.il.<br />

5<br />

Abstract<br />

A complex of invertebrates (mites, Collembola, earthworms,<br />

snails, Diplopoda, Myriapoda, Chilopoda, Isopoda and insects)<br />

was uncovered in large breeding mounds ma<strong>de</strong> by the blind subterranean<br />

mole rat (belonging to the species Spalax carmeli Nevo<br />

& Ivanitskaya & Beiles, 2000 of the Spalax ehrenbergi (Nehring,<br />

1898) superspecies) in the Haifa region, situated in the Northern<br />

Coastal Plain of Israel. The <strong><strong>de</strong>s</strong>cribed properties of this complex<br />

were based on the 56 be<strong>et</strong>le species found there, mostly collected<br />

from the outer compact wall of the breeding mounds by forceps<br />

and exhausters. Most of the recor<strong>de</strong>d be<strong>et</strong>le species were xerophiles<br />

or mesophiles and carnivores or d<strong>et</strong>ritivores. Only few species were<br />

phytophages, coprophages or necrophages. Since the invertebrate<br />

complex <strong>de</strong>rives from the unique breeding mounds architecture, the<br />

mole rats can be consi<strong>de</strong>red as ecological architects of this microscale<br />

ecosystem.<br />

Key-words<br />

Spalax, breeding mounds, invertebrates, be<strong>et</strong>les, Israel<br />

Résumé<br />

Un complexe d’invertébrés (mites, collemboles, vers <strong>de</strong> terre, escargots,<br />

diplopo<strong><strong>de</strong>s</strong>, myriapo<strong><strong>de</strong>s</strong>, chilopo<strong><strong>de</strong>s</strong>, isopo<strong><strong>de</strong>s</strong> <strong>et</strong> insectes) a été<br />

mis au jour dans <strong>de</strong> grands monticules <strong>de</strong> reproduction construits<br />

par le rat-taupe souterrain aveugle (appartenant à l’espèce Spalax<br />

carmeli <strong>de</strong> la super-espèce Spalax ehrenbergi) dans la région <strong>de</strong><br />

Haïfa, située dans la plaine côtière septentrionale d’Israël. Les<br />

caractéristiques <strong>de</strong> ce complexe ont été décrites à partir <strong><strong>de</strong>s</strong> 56 espèces<br />

<strong>de</strong> coléoptères trouvées à c<strong>et</strong> endroit, pour la plupart dans la<br />

paroi extérieure compacte <strong><strong>de</strong>s</strong> monticules d’élevage. La majorité <strong><strong>de</strong>s</strong><br />

coléoptères recensés sont xérophiles ou mésophiles <strong>et</strong> carnivores ou<br />

détritivores. Seules quelques espèces sont phytophages, coprophages<br />

ou nécrophages. Étant donné que le complexe d’invertébrés est le<br />

produit <strong>de</strong> l’architecture unique en son genre <strong><strong>de</strong>s</strong> monticules <strong>de</strong><br />

reproduction, les rats-taupes peuvent être considérés comme <strong><strong>de</strong>s</strong><br />

architectes écologiques <strong>de</strong> ce micro-écosystème.<br />

Mots-clé<br />

Spalax, monticules <strong>de</strong> reproduction, invertébrés, coléoptères, Israël<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 5-13


◆ T. PAVLICEK, V. CHIKATUNOV & E. NEVO<br />

6<br />

INTRODUCTION<br />

Large soil structures such as breeding mounds of mole<br />

rats (fig. 1; Nevo, 1961, 1991, 1999) might be used as a<br />

shelter and as a breeding and living place by a number<br />

of invertebrates. To obtain preliminary knowledge about<br />

invertebrates living in the breeding mounds of mole rats,<br />

we studied such mounds near of the area known as Check<br />

Post in Haifa, Israel. These huge breeding mounds, built<br />

by Spalax carmeli Nevo & Ivanitskaya & Beiles, 2000<br />

(S. ehrenbergi Nehring, 1898 superspecies) might be<br />

the most elaborate in Israel, probably due to the poor<br />

soil drainage at the locality (Nevo, 1961). The mole rat<br />

superspecies, Spalax ehrenbergi, distributed in the Middle<br />

East (Nevo, 1991, 1999; Nevo <strong>et</strong> al., 2000), is a blind,<br />

solitary, subterranean mammal. Both, females and males,<br />

build relatively small nutritional mounds. However, both<br />

gen<strong>de</strong>rs build also during the winter breeding season<br />

(October to March/April), particularly in poorly-drained<br />

soil, much bigger mounds that are either dome-shaped<br />

(females) or cone-shaped (males) (Nevo, 1961). During<br />

the breeding season, females use the big winter mounds<br />

for breeding and males for resting. After this period,<br />

during summer time, males and females r<strong>et</strong>urn to <strong>de</strong>eper<br />

runways. The burrowing activity is then limited because<br />

of the soil dryness.<br />

Female breeding mounds, the subject of our study,<br />

constitute a system composed of a central breeding nest,<br />

storage chambers containing bulbs and rhizomes, and<br />

sanitary chambers (toil<strong>et</strong>s), all connected by spiraling<br />

tunnels and roofed by a solid dome (fig. 1). Female<br />

breeding mounds are connected with the peripheral<br />

region by feeding tunnels (Nevo, 1961). In floo<strong>de</strong>d<br />

areas with poorly drained dark alluvial clayey soils, the<br />

breeding mounds might be exceptionally large. They have<br />

well-plastered tunnels and are more solidly constructed<br />

than breeding mounds built in areas with good drainage<br />

(Nevo, 1961).<br />

Figure 1. Breeding mound of the blind mole rat, Spalax ehrenbergi.<br />

Cross section in a natural breeding mound (note the nest in the centre and the storage chambers in the periphery)<br />

(from Nevo, 1999, with permision of the author).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ARTHROPODS IN THE MOUNDS OF MOLE RATS, SPALAX EHRENBERGI SUPERSPECIES, IN ISRAEL ◆<br />

MATERIALS AND METHODS<br />

The study of the invertebrate complex in the breeding<br />

mounds of mole rat, Spalax carmeli (2n = 58) was<br />

conducted in an uncultivated field near of Check-Post,<br />

Haifa, Israel. Zoogeographically, the studied area is part<br />

of the Northern Coastal Plain (see zoogeographical areas<br />

in Israel in Fishelson, 1985).<br />

The studied field consists of black alluvial soil (Atlas<br />

of Israel, 1970), has poor drainage, and the water table<br />

is 0-50 cm below the surface (Nevo, 1961). The field<br />

is regularly floo<strong>de</strong>d in January/February and surface<br />

waters may stay there for many days. To avoid damage<br />

to the breeding mounds by flooding, females build large<br />

breeding mounds averaging 175 cm in length, 140 cm in<br />

width and 40 cm in height (Nevo, 1961). These mounds<br />

are always projecting above the water level in or<strong>de</strong>r to<br />

avoid the suffocation of mother and pups. Bulbs of numerous<br />

geophytes (Muscari comosum L., Gladiolus italicus<br />

Mill. and Narcissus taz<strong>et</strong>ta L.) growing in the field form<br />

the basic food of the mole rats living there. Note that<br />

the field chosen near Check-Post does not represent a<br />

solitary habitat with uniquely large breeding mounds in<br />

Israel. Nevo (1961) <strong><strong>de</strong>s</strong>cribed similarly large and even<br />

larger breeding mounds in the other floo<strong>de</strong>d areas in<br />

Israel as well.<br />

We collected invertebrates once per spring, in<br />

Februrary-March, from 1997 till 2000. In each collection<br />

session, 5 female breeding mounds were checked, and<br />

one quarter of the volume of every studied mound was<br />

searched for invertebrates, which were collected individually<br />

by means of forceps and exhausters. The be<strong>et</strong>les<br />

were i<strong>de</strong>ntified by comparison with a reference collection<br />

kept in the Department of Zoology at the Tel Aviv<br />

University. The collected specimens of invertebrates, with<br />

the exception of be<strong>et</strong>les, are <strong>de</strong>posited in the Institute of<br />

Evolution at the University of Haifa, whereas the be<strong>et</strong>les<br />

are <strong>de</strong>posited in the insect collection at the Department<br />

of Zoology at the Tel Aviv University.<br />

We collected the following groups of invertebrates in<br />

the breeding mounds of female mole rats: earthworms,<br />

land-snails, Myriapoda (Scolopendra cingulata Latreille,<br />

1789), Diplopoda (T<strong>et</strong>rarthrosoma syriacum Humbert &<br />

Saussure, 1869), Isopoda, Chilopoda, insects (H<strong>et</strong>eroptera,<br />

ants, solitary bees and be<strong>et</strong>les) and spi<strong>de</strong>rs. Additionally,<br />

mites and Collembola were observed. Since we are<br />

primarily familiar with be<strong>et</strong>les, most of our conclusions<br />

will be based on the analysis of this group, which was the<br />

richest in species numbers and the most abundant group<br />

in the breeding mounds.<br />

Be<strong>et</strong>le diversity<br />

Altog<strong>et</strong>her, we collected 422 specimens (7.5 ± 13.4<br />

specimens per be<strong>et</strong>le species) representing 56 be<strong>et</strong>le species,<br />

45 be<strong>et</strong>le genera and 9 be<strong>et</strong>le families (appendix 1).<br />

Surprisingly, 18 of these species (32 %) had not been<br />

recor<strong>de</strong>d earlier in the Northern Coastal Plain (appendix<br />

1) and two of them represented new records for Israel<br />

(Brachinus peregrinus Apfelbeck, 1904 and Harpalus basanicus<br />

Sahlberg, 1913). To our knowledge, the last record of<br />

the rare Pterostichus pertusus Schaum, 1858 in Israel was<br />

that of Bo<strong>de</strong>nheimer (1937). Ground and darkling be<strong>et</strong>les<br />

(families Carabidae and Tenebrionidae) represented the<br />

largest be<strong>et</strong>le groups in the mounds (41 species, 73% of<br />

all species assemblage, fig. 2). Those 41 species represent<br />

about 31 % of the ground and darkling be<strong>et</strong>le species<br />

known from the Northern Coastal Plain (Chikatunov,<br />

unpublished). The rest of the be<strong>et</strong>le species belonged to<br />

the following be<strong>et</strong>le families: Staphylinidae (n = 5; 8.9 %),<br />

7<br />

RESULTS<br />

Figure 2. Proportions of species from different be<strong>et</strong>le families in the breeding<br />

mounds of the mole rat Spalax carmeli, Check Post, Haifa, Israel.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 5-13


◆ T. PAVLICEK, V. CHIKATUNOV & E. NEVO<br />

8<br />

Curculionidae (n = 3; 5.4 %), Scarabaeidae (n = 3;<br />

5.4 %), Coccinellidae (n = 1; 1.8 %), Chrysomelidae<br />

(n = 1; 1.8 %), Elateridae (n = 1; 1.8 %) and Silphidae<br />

(n = 1; 1.8 %) (fig. 2).<br />

The outer and inner solid dome layers<br />

Be<strong>et</strong>les and other invertebrates were collected from<br />

the solid dome except for Aphodius spp., which were<br />

collected in the sanitary chambers. According to our<br />

observation, there might be at least two different ecological<br />

niches in the wall of the solid dome: the outer and<br />

inner wall layers. The outer wall layer of the solid dome<br />

is exposed directly to the surrounding environment and<br />

to direct solar radiation. Therefore, it might be microclimatically<br />

more fluctuating and generally drier and<br />

warmer than the inner wall layer. We observed that most<br />

of the collected specimens belonging to the be<strong>et</strong>le genera<br />

Belopus, Cabirutus, Cossyphus, Eutagenia, Gonocephalum<br />

and Coccinella were found on and in the outer wall. The<br />

inner wall layer of the solid dome bor<strong>de</strong>rs the outer layer<br />

on one si<strong>de</strong> and tunnels, the chambers and the breeding<br />

nest on the second si<strong>de</strong>. It has no direct contact with the<br />

surrounding environment and therefore might be microclimatically<br />

more stable and w<strong>et</strong>ter. Most of the specimens<br />

representing the remaining genera (N = 38, 84 %<br />

of all genera) not collected in the outer layer (appendix 1)<br />

were found in the inner layer. The only exception were<br />

Aphodius spp. collected in sanitary chambers. Apart from<br />

adults in the solid dome wall, we also found larvae and<br />

pupae of Carabus hemprichi Dejean, 1826 and noni<strong>de</strong>ntified<br />

be<strong>et</strong>le larvae. This indicates that some species<br />

<strong>de</strong>velop compl<strong>et</strong>ely insi<strong>de</strong> the breeding mounds.<br />

Trophic n<strong>et</strong>work<br />

As regards trophic relationships, we recor<strong>de</strong>d phytophage<br />

(15 species, 26.8 %), carnivore (23 species,<br />

41.1 %), coprophage (3 species, 5.4%), necrophage<br />

(1 species, 1.8 %) and d<strong>et</strong>ritivore (14 species, 25 %)<br />

be<strong>et</strong>les in the breeding mounds (fig. 3, appendix 1). In<br />

seven phytophage species (12.5 % of all be<strong>et</strong>le species)<br />

both adults and larvae were phytophages and in eight<br />

species (14.3 % of all be<strong>et</strong>le species) adults were phytophages<br />

and their larvae carnivores. Phytophages were<br />

represented by 54 specimens (12.8 % of the total be<strong>et</strong>le<br />

abundance). The most frequent phytophage species was<br />

the leaf be<strong>et</strong>le Gonioctena fornicata Br ggemann, 1873.<br />

Carnivore species involved 234 specimens (55.5 %<br />

of the total be<strong>et</strong>le abundance). Sixteen carnivore species<br />

Figure 3. Proportions of be<strong>et</strong>le species in different trophic zones in breeding<br />

mounds of Spalax carmeli, Check Post, Haifa, Israel.<br />

were mesophiles (69.6 % of carnivore species) and all<br />

carnivore and mesophile species were members of the<br />

families Carabidae and Staphylinidae (appendix 1).<br />

The <strong>de</strong>velopment of coprophage be<strong>et</strong>le species is connected<br />

with dung, and, in<strong>de</strong>ed, they were found in the<br />

sanitary chambers of the breeding mounds, in contrast<br />

to all other invertebrates collected from the solid dome.<br />

Rather surprisingly, coprophages were found in very low<br />

numbers, and every coprophage species was represented<br />

by one specimen only. One necrophage species was represented<br />

by four specimens (1 % of all be<strong>et</strong>le specimens).<br />

The d<strong>et</strong>ritophage species involved 127 specimens<br />

(30.1 % of the total be<strong>et</strong>le abundance). All tenebrionid<br />

be<strong>et</strong>les were d<strong>et</strong>ritophages and xerophiles, which might<br />

explain why many of these be<strong>et</strong>les were represented in the<br />

outer layer of the soil dome.<br />

As regards humidity preference, 19 species (34 % of<br />

all be<strong>et</strong>le species) were xerophiles (fig. 4) represented<br />

by 173 specimens (41 % of the total be<strong>et</strong>le abundance).<br />

Twenty-four species (43% of all be<strong>et</strong>le species) were<br />

mesophiles (fig. 4) and involved 174 specimens (41 %<br />

of the total be<strong>et</strong>le abundance). Only four species (7 %<br />

of the be<strong>et</strong>le assemblage) were hydrophiles (fig. 4) involving<br />

58 specimens (14 % of the total be<strong>et</strong>le abundance).<br />

Water requirements were not known for nine species<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ARTHROPODS IN THE MOUNDS OF MOLE RATS, SPALAX EHRENBERGI SUPERSPECIES, IN ISRAEL ◆<br />

Figure 4. Proportions of xerophile, hydrophile and mesophile be<strong>et</strong>le species<br />

in breeding mounds of the mole rat, Spalax carmeli, Check Post, Israel.<br />

(16 %) represented by 17 specimens (4 % of the total<br />

be<strong>et</strong>le abundance). Both mesophile and xerophile species<br />

accounted for 77 % of the species richness and for 82 %<br />

of the be<strong>et</strong>le abundance.<br />

DISCUSSION<br />

The breeding mound,<br />

a unique microhabitat and ecosystem<br />

The mole rat breeding mound represents a unique<br />

microhabitat and ecosystem for invertebrates appearing<br />

in high <strong>de</strong>nsity. No other study of invertebrates, apart<br />

of ectoparasites (Costa & Nevo, 1969) has previously<br />

been un<strong>de</strong>rtaken in the breeding mounds of mole rat, S.<br />

ehrenbergi. Even the number of recor<strong>de</strong>d species could<br />

be probably higher if other collection techniques were<br />

employed and sampling covered a larger area. Similarly,<br />

up to now, little attention had been paid to the study of<br />

the invertebrate fauna of mounds and nests of other<br />

mole-rat species (A. Scharff recently investigated insect<br />

associated with burrows of mole rat species belonging to<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 5-13<br />

the genus Cryptomys, pers. com.), again apart of parasites<br />

(for example Gupta & Trivedi, 1985; Sayin <strong>et</strong> al., 1977;<br />

Scharff <strong>et</strong> al., 1996, 1997). It does appear, however,<br />

that breeding mounds and galleries (Cox, 1972, 1984,<br />

1990; Cox & Gakahu, 1984; Cox & Hunt, 1990; Cox &<br />

Scheffer, 1991; Nevo, 1999) provi<strong>de</strong> a suitable structures<br />

for the evolution of rich un<strong>de</strong>rground micro-ecosystems<br />

generated by subterranean mammals. The studied breeding<br />

mounds were colonized by invertebrates with specific<br />

(presumably microclimatic) requirements, as might<br />

be <strong>de</strong>duced from the fact that most collected species were<br />

xerophiles or mesophiles and carnivores or d<strong>et</strong>ritivores.<br />

Remarkably, 18 of the species found in the breeding<br />

mounds constitute new records for the Northern Coastal<br />

Plain and two out of them even new records for Israel<br />

(appendix 1).<br />

Be<strong>et</strong>les and other invertebrates were collected only<br />

in the solid dome, with the exception of Aphodius sp.<br />

and A. granarius Linnaeus, 1767, which were collected<br />

solely in the sanitary chambers. Interestingly enough,<br />

Aphodius sp. represents a new species to science (David<br />

Král, pers. comm.) and might be exclusively associated<br />

with excrements of mole rats. The two other reported<br />

coprophages, A. granarius and Copris hispanus Linnaeus,<br />

1758, are also frequent in the dung of land mammals.<br />

Interestingly, phytophages were not found insi<strong>de</strong> the storage<br />

chambers which contained large amounts of stored<br />

and kept bulbs and rhizomes. Nevertheless, we did not<br />

collect very small invertebrates such as nemato<strong><strong>de</strong>s</strong> and<br />

mites. Theirs and the other small invertebrates presence<br />

in the breeding mounds of the mole rats is corroborated<br />

by the fact that 5 species of fleas and 53 species of<br />

gamasid mites had been collected previously from mole<br />

rat breeding nests in Israel (Costa & Nevo, 1969) and<br />

additional new flea species in mole rat breeding nests<br />

in Turkey (Aktas, 1989). Besi<strong><strong>de</strong>s</strong> the above mentioned<br />

fleas and gamasid mites, it might be expected that endoparasites<br />

at specific life stages are present in the sanitary<br />

room. Spalax ehrenbergi superspecies seems to host series<br />

of different endoparasites such as: helminthes and larval<br />

nemato<strong><strong>de</strong>s</strong> (Wertheim & Nevo, 1971; Fair <strong>et</strong> al., 1990),<br />

coccidia (Golemansky & Darwish, 1992, Couch <strong>et</strong> al.,<br />

1993) and Eimerian protoctists (Sayin, 1980).<br />

The solid dome<br />

The most important part of the breeding mounds for<br />

invertebrates appears to be the solid dome where most of<br />

the species and specimens concentrate. The solid dome<br />

constitues many interstices, where invertebrates might<br />

9


◆ T. PAVLICEK, V. CHIKATUNOV & E. NEVO<br />

10<br />

move and <strong>de</strong>velop. Till now, a few vertebrates had been<br />

observed in mounds, such as the warm snake (Typhlops<br />

vermicularis Merrem, 1820: Nevo, Ivanitskaya, Pavlíček<br />

& Chikatunov, pers. observ.), the mouse Mus macedonicus<br />

P<strong>et</strong>rov & Ružic, 1983, and the lesser white-toothed shrew,<br />

Crocidura suaveolens Pallas, 1811 (Nevo, pers. observ.).<br />

According to our observation, at least two different ecological<br />

niches (layers) or species gradients colonized by<br />

different species can be distinguished in the solid dome,<br />

namely the outer and inner wall layer, colonized by different<br />

species. Nevertheless, further research will be<br />

nee<strong>de</strong>d to confirm our observation and to gather precise<br />

quantitative and qualitative data. The observed distribution<br />

of be<strong>et</strong>les in outer and inner si<strong>de</strong> of the solid dome<br />

might be connected with their favorite temperature ranges<br />

for activity. According to Bo<strong>de</strong>nheimer (1934), the temperature<br />

range for high activity of the darkling be<strong>et</strong>les<br />

(prevailing on the solid dome surface) is 30.1 0 C-41.3 0 C,<br />

whereas in the ground be<strong>et</strong>les (prevailing insi<strong>de</strong> of the<br />

solid dome) it is only 31 0 C-35 0 C. The specific microclimate<br />

of breeding mounds might be the reason why<br />

xerophiles and mesophiles constituted almost 86 % of the<br />

be<strong>et</strong>le species assemblage. The interesting species from<br />

this group is Phaleria acuminata that is usually present on<br />

sea-shores (Canzoneri, 1968). In the Check-post area, it<br />

might be present since the distance from the sea shore is<br />

less than 1 km, or this species is also able to colonize some<br />

habitats more inland. The second option supports the<br />

fact that P. acuminata was collected also from the Upper<br />

Galilee (Chikatunov, unpublished) in a distance of tens<br />

kilom<strong>et</strong>ers from the coastal plain. Our observations suggest<br />

that the mole rat breeding mounds support mainly<br />

the activity of xerophile and mesophile be<strong>et</strong>les which are<br />

carnivores or d<strong>et</strong>ritivores. The carnivore trophic zone<br />

was richer in species number and abundance than the<br />

d<strong>et</strong>ritivore one. Carnivores might feed on d<strong>et</strong>ritivore<br />

species, on themselves, on species of other trophic zones<br />

and on many small invertebrates. However, the presence<br />

of some (e.g., Coccinella septempunctata Linnaeus,<br />

1758 of which adults and larvae are predators) might be<br />

acci<strong>de</strong>ntal or they are hiding in mounds during cold and<br />

rainy period. D<strong>et</strong>ritivore species are perhaps prosperous<br />

in the mounds due to the large amount of organic remains<br />

in the soil. A similar case was <strong><strong>de</strong>s</strong>cribed from the nests<br />

of the harvester ant, Messor bouvieri Bondroit, 1918, in<br />

South Europe. Insi<strong>de</strong> the nests, darkling be<strong>et</strong>les and other<br />

invertebrates were up to 660 time more concentrated than<br />

outsi<strong>de</strong>, probably due to the high concentration of organic<br />

remains gathered tog<strong>et</strong>her by ants (Sanchezpinero &<br />

Gomez, 1995). In the Check Post area, a relatively rich<br />

trophic layer was that of phytophages. We found more<br />

different phytophage species than d<strong>et</strong>ritivore ones, but<br />

they were much less abundant than the latter. In part,<br />

they might <strong>de</strong>velop in the solid dome. However, the<br />

presence of some phytophagous species (e.g., Kalcapion<br />

semivittatum Gyllenhal, 1839, Gonioctena fornicata)<br />

might be acci<strong>de</strong>ntal or they are temporally hiding there.<br />

Otherwise, the presence of K. semivittatum might be<br />

difficult to explain because it lives and <strong>de</strong>velops in galls on<br />

Mercurialis annua L. Nevertheless, the foodweb structure<br />

in the mole rat breeding mound seems to start with the<br />

phytophage and d<strong>et</strong>ritivore tropic zones followed by the<br />

carnivore trophic zone.<br />

CONCLUSIONS<br />

Mole rats are extraordinary ecological architects and<br />

subterranean ro<strong>de</strong>nt farmers. In heavy, badly drained<br />

alluvial soils they construct unique complex structures<br />

to increase their Darwinian fitness by escaping floods and<br />

avoiding mortality of the mother and offspring. These<br />

unique breeding mounds are the cradles of a remarkable<br />

concentration of primarily invertebrate fauna with predominating<br />

be<strong>et</strong>les – a phenomenon not studied earlier<br />

in the Spalax ehrenbergi superspecies. The be<strong>et</strong>les display<br />

a trophic n<strong>et</strong>work of phytophages, d<strong>et</strong>ritivores and carnivores.<br />

The warm nest in the breeding mound and the<br />

organic d<strong>et</strong>ritus harbour small arthropods (such as mites)<br />

providing food for the bigger d<strong>et</strong>ritivore and carnivore<br />

be<strong>et</strong>les and other arthropods (e.g., myriapods). Thus, the<br />

mole rat breeding mounds represent a construction which<br />

supports this unique microscale ecosystem.<br />

ACKNOWLEDGEMENTS<br />

We thank the Chair of Evolutionary Biology and the<br />

Ancell-Teicher Research Foundation for Gen<strong>et</strong>ics and<br />

Molecular Evolution for financial support. We are grateful<br />

also to Ms. Robin Permut (Institute of Evolution) for<br />

English corrections and to Ms. Patricia Card<strong>et</strong> (Haifa) for<br />

the translation of the Title and Abstract into French.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ARTHROPODS IN THE MOUNDS OF MOLE RATS, SPALAX EHRENBERGI SUPERSPECIES, IN ISRAEL ◆<br />

References<br />

AKTAS M., 1989. Ctenophthalmus harputus, a new Spalax flea<br />

from Turkey. Med. V<strong>et</strong>. Entomol., 3 : 23-27.<br />

ATLAS OF ISRAEL, 1970. Jerusalem: Ministry of Labour and<br />

Elsevier, Amsterdam. 1 volume (various pagins).<br />

BODENHEIMER F.S., 1934. Studies on ecology of Palestinian<br />

Coleoptera: II. Seasonal and diurnal appearances and activity.<br />

Bull. Soc. Entomol. Egypte, 18: 211-241.<br />

BODENHEIMER F.S., 1937. Prodromus Faunae Palestinae. Essai sur<br />

<strong><strong>de</strong>s</strong> éléments zoogéographiques <strong>et</strong> historiques du sud-ouest<br />

du sous-règne Paléarctique. Mém. Inst. Égypte, 33 : 1-286.<br />

CANZONERI S., 1968. Materiali per una monographia <strong>de</strong>lle<br />

Phaleria <strong>de</strong>l sottogenere Phaleria Latr. XX Contributo alla<br />

conescenza <strong>de</strong>i Coleoptera Tenebrionidae. Mem. Soc. Entomol.<br />

Ital., 47: 117-167.<br />

COSTA M. & NEVO E., 1969. Nidicolous arthropods associated<br />

with different chromosomal types of Spalax ehrenbergi<br />

Nehring. Zool. J. Linn. Soc., 48: 199-215.<br />

COUCH L., DUSZYNSKI D.W. & NEVO E., 1993. Coccidia (Apicomplexa),<br />

gen<strong>et</strong>ic diversity, and environmental unpredictability<br />

of four chromosomal species of the subterranean superspecies<br />

Spalax ehrenbergi (mole rat) in Israel. Parasitology, 79:<br />

181-189.<br />

COX C.B., 1972. A new digging dicynodont from the Upper<br />

Permian of Tanzania. In: Josey K.A. & Kemp T.S. (eds.),<br />

Studies in Vertebrate Evolution. Winchester Press, New York:<br />

173-179.<br />

COX G.W., 1984. The distribution and origin of mima mound<br />

grasslands in San Diego, California. Ecology, 65: 1397-1405.<br />

COX G.W., 1990. Soil mining by pock<strong>et</strong> gopher along topographic<br />

gradients in a mima moundfield. Ecology, 71: 837-843.<br />

COX G.W. & GAKAHU C.G., 1984. The formation of mima<br />

mounds in the Kenya highlands. A test of the Dalquest-<br />

Scheffer hypothesis. J. Mammal., 65: 149-152.<br />

COX G.W. & HUNT J., 1990. Form of mima mounds in relation<br />

to occupancy by pock<strong>et</strong> gophers. J. Mammal., 71: 90-94.<br />

COX G.W. & SCHEFFER V.B., 1991. Pock<strong>et</strong> gophers and mima<br />

terrain in North America. Nat. Areas J., 11: 193-198.<br />

FAIR J.M., SCHMIDT G.D. & WERTHEIM G., 1990. New species of<br />

Andrya and Paranoplocephala (Cestoi<strong>de</strong>a: Anoplocephalidae)<br />

from voles and mole rats in Israel and Syria. J. Parasitol., 76:<br />

641-644.<br />

FISHELSON L., 1985. Fauna Palaestina. Orthoptera: Acridoi<strong>de</strong>a.<br />

The Israel Aca<strong>de</strong>my of Sciences and Humanities, Jerusalem,<br />

229 p.<br />

GUPTA S.P. & TRIVEDI K.K., 1985. Nemato<strong>de</strong> parasites of<br />

vertebrates. A new nemato<strong>de</strong>, Gongylonema fotedari sp.<br />

nov. (family: Spiruridae Oerley, 1985) from Indian mole<br />

rat Bandicota bengalensis from Lucknow, U.P. Indian J.<br />

Helminthol., 37: 100-108.<br />

GOLEMANSKY V.G. & DARWISH A.I., 1992. The coccidian<br />

parasites (Apicomplexa: Coccidia) of the herbivorous mole<br />

rat - Spalax (Microspalax) ehrenbergi Nehring (Ro<strong>de</strong>ntia:<br />

Spalacidae) from Syria. Acta Protozool., 31: 173-176.<br />

NEVO E., 1961. Observations on Israeli populations of the mole<br />

rat, Spalax ehrenbergi Nehring 1898. Mammalia, 25: 127-<br />

144.<br />

NEVO E., 1991. Evolutionary theory and processes of active<br />

speciation and adaptive radiation in subterranean mole rats,<br />

Spalax ehrenbergi in Israel. Evol. Biol., 25: 1-125.<br />

NEVO E., 1999. Mosaic evolution of subterranean mammals: regression,<br />

progression and global convergence. Oxford University<br />

Press, Oxford, 413 p.<br />

NEVO E., IVANITSKAYA E. & BEILES A., 2000. Adaptive radiation<br />

of blind subterranean mole rats: naming and revising the four<br />

sibling species of the Spalax ehrenbergi superspecies in Israel:<br />

Spalax galili (2n=52), S. golani (2n=54), S. carmeli (2n=58)<br />

and S. judaei (2n=60). Backhuys Publishers, Lei<strong>de</strong>n, 198 p.<br />

SANCHEZPINERO F. & GOMEZ J.M., 1995. Use of ant-nest <strong>de</strong>bris<br />

by darkling be<strong>et</strong>les and other arthropod species in an arid<br />

system in South Europe. J. Arid Environ., 31: 91-104.<br />

SAYIN F., 1980. Eimeriidae of the herbivorous mole rat, Spalax<br />

ehrenbergi Nehring. J. Protozool., 27: 364-367.<br />

SAYIN F., DINCER S. & MERIC I., 1977. Coccidia, Protozoa<br />

Eimeridae of the herbivorous mole-rat, Spalax leucodon.<br />

J. Protozool., 24: 210-212.<br />

SCHARFF A., BURDA H., TENORA F., KAWALIKA M. & BARUS V.,<br />

1997. Parasites in social subterranean Zambian mole-rats<br />

(Cryptomys spp., Bathyergidae, Ro<strong>de</strong>ntia). J. Zool., 241:<br />

571-577.<br />

SCHARFF A., TENORA F., KAWALIKA M., BARUS V. & BURDA<br />

H., 1996. Helminths from Zambian mole-rats (Cryptomys,<br />

Bathyergidae, Ro<strong>de</strong>ntia). Helminthol., 33: 105-110.<br />

WERTHEIM G. & NEVO E., 1971. Helminths of birds and mammals<br />

from Israel: III. Helminths from chromosomal forms of<br />

the mole-rat, Spalax ehrenbergi. J. Helminthol., 45: 161-169.<br />

11<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 5-13


◆ T. PAVLICEK, V. CHIKATUNOV & E. NEVO<br />

APPENDIX 1<br />

List of be<strong>et</strong>les species recor<strong>de</strong>d from the breeding mounds of Spalax carmeli,<br />

in the Check Post area, near Haifa, Israel<br />

(N = number of collected specimens, * new record for Israel, ** new record for the Northern Coastal Plain,<br />

M – mesophile(s), X – xerophile(s), H –hydrophile(s).<br />

12<br />

SPECIES N TROPHIC ZONE CLIMATIC CORRELATE<br />

Family Carabidae<br />

Amara aenea Degeer, 1774 1 Carnivores M<br />

Anchomenus dorsalis Pontoppidan, 1763 7 Carnivores M<br />

Acinopus laevigatus Ménétries, 1823 5 Adults phytophagous, larvae carnivorous X<br />

Bembidion quadrifossulatum<br />

coelesyria N<strong>et</strong>olitzky, 1921**<br />

2 Carnivores H<br />

Bembidion lampros Herbst, 1784 1 Carnivores H<br />

Brachinus berytensis Reiche, 1855 25 Carnivores M<br />

Brachinus exhalans hebraicus Reiche, 1855 1 Carnivores M<br />

Brachinus peregrinus Apfelbeck, 1904* 12 Carnivores M<br />

Carabus hemprichi Dejean, 1826** 8 Carnivores M<br />

Carterus rufipes Chaudoir, 1843** 5 Phytophages X<br />

Chlaenius aeneocephalus Dejean, 1826 54 Carnivores H<br />

Dyschirius beludscha ganglbaueri Znojko, 1927 1 Carnivores H<br />

Ditomus calydonius Rossi, 1790 1 Phytophages X<br />

Harpalus basanicus Sahlberg, 1913** 3 Adults phytophagous, larvae carnivorous M<br />

Harpalus smyrnensis Hei<strong>de</strong>n, 1888** 14 Adults phytophagous, larvae carnivorous M<br />

Microlestes seladon Holdhaus, 1912** 1 Carnivores M<br />

Notiophilus danieli Reitter, 1897** 2 Carnivores M<br />

Ophonus battus Reitter, 1900 1 Adults phytophagous, larvae carnivorous M<br />

Ophonus cribrellus Reiche, 1855 1 Adults phytophagous, larvae carnivorous M<br />

Ophonus oblongus Schaum, 1858** 5 Adults phytophagous, larvae carnivorous M<br />

Orthomus berytensis Reiche <strong>et</strong> Saulcy, 1857 5 Adults phytophagous, larvae carnivorous M<br />

Parophonus fallax Peyron, 1858** 5 Adults phytophagous, larvae carnivorous M<br />

Pterostichus pertusus Schaum, 1858** 1 Carnivores M<br />

Scarites planus Bonelli, 1813 15 Carnivores X<br />

Scarites saxicola Bonelli, 1813** 20 Carnivores X<br />

Siagona europaea Dejean, 1816 2 Carnivores M<br />

Siagona longula Reiche <strong>et</strong> Saulcy, 1855 69 Carnivores M<br />

Family Chrysomelidae<br />

Gonioctena fornicata Br ggemann, 1873** 4 Phytophages ?<br />

Family Coccinellidae<br />

Coccinella septempunctata Linnaeus, 1758 5 Carnivores ?<br />

Family Curculionidae<br />

Brachycerus junix Lichtenstein 1796 1 Phytophages ?<br />

Hypera sp. 1 Phytophages ?<br />

Kalcapion semivittatum Gyllenhal, 1839 2 Phytophages ?<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ARTHROPODS IN THE MOUNDS OF MOLE RATS, SPALAX EHRENBERGI SUPERSPECIES, IN ISRAEL ◆<br />

Family Elateridae<br />

Cardiophorus discicollis Herbst, 1806** 1 Adults phytophagous, larvae rhizophagous ?<br />

Family Scarabaeidae<br />

Aphodius granarius Linnaeus, 1767 1 Coprophages ?<br />

Aphodius sp. 1 Coprophages ?<br />

Copris hispanus Linnaeus, 1758 1 Coprophages ?<br />

Family Silphidae<br />

Ablattaria arenaria Kraatz, 1876 4 Necrophages M<br />

Family Staphylinidae<br />

Leptolinus nothus Erichson, 1839** 1 Carnivores M<br />

Xantholinus graecus Kraatz, 1858 1 Carnivores M<br />

Platyprosopus hierichonticus Reiche <strong>et</strong> Saulcy, 1856 3 Carnivores M<br />

Philonthus corruscus Gravenhorst, 1802** 1 Carnivores M<br />

Pseudocypus excisus G. Müller, 1925** 1 Carnivores M<br />

Family Tenebrionidae<br />

A<strong>de</strong>lostoma sulcatum cordatum Solier, 1837 1 D<strong>et</strong>ritophages X<br />

Belopus syriacus Zoufal, 1893 11 D<strong>et</strong>ritophages X<br />

Cabirutus castaneus Reitter, 1904 3 D<strong>et</strong>ritophages X<br />

Clitobius variolatus Allard, 1884 9 D<strong>et</strong>ritophages X<br />

Cossyphus rugulosus Peyron, 1854 48 D<strong>et</strong>ritophages X<br />

Crypticus gibbulus Quensel, 1806 2 D<strong>et</strong>ritophages X<br />

Dichillus nitidulus Reitter, 1886 1 D<strong>et</strong>ritophages X<br />

Eutagenia cribricollis Reitter, 1886 1 D<strong>et</strong>ritophages X<br />

Gonocephalum costatum rugulosum Küster, 1849 28 D<strong>et</strong>ritophages X<br />

Gonocephalum rusticum Olivier, 1811 4 D<strong>et</strong>ritophages X<br />

Mesomorphus longulus Reiche <strong>et</strong> Saulcy, 1857** 12 D<strong>et</strong>ritophages X<br />

Phaleria acuminata Küster, 1852 1 D<strong>et</strong>ritophages X<br />

Stenosis comata Reiche <strong>et</strong> Saulcy, 1857** 3 D<strong>et</strong>ritophages X<br />

Stenosis sulcata Miller, 1861 3 D<strong>et</strong>ritophages X<br />

13<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 5-13


Veg<strong>et</strong>ation structure and environmental gradients<br />

in the Sallum area, Egypt<br />

Structure <strong>de</strong> la végétation <strong>et</strong> gradients environnementaux<br />

dans la région <strong>de</strong> Sallum, Égypte<br />

Fawzy M. Salama 1 , Monier M. Abd El-Ghani 2-* , Salah M. El Naggar 1 and Khadija A. Baayo 1<br />

1. Botany Department, Faculty of Science, Assiut University, Assiut 71516, Egypt<br />

2-*. Corresponding Author; The Herbarium, Faculty of Science, Cairo University, Giza 12613, Egypt; email: elghani@yahoo.com<br />

Abstract<br />

We examined veg<strong>et</strong>ation composition and its relation to environmental<br />

variables in the Sallum area along the <strong>mediterranea</strong>n coastal land<br />

of Egypt. The study area lies b<strong>et</strong>ween 25º 09’-25º 35’E and 31º 32’-<br />

31º 15’ N (about 1700km 2 ), and extends for about 49 km b<strong>et</strong>ween<br />

Buqbuq and Sallum on the egyptian-libyan frontier. It is inclu<strong>de</strong>d in<br />

the semi-<strong><strong>de</strong>s</strong>ert veg<strong>et</strong>ation zone with an attenuated <strong><strong>de</strong>s</strong>ert climate. An<br />

analysis of veg<strong>et</strong>ation along environmental gradients that prevail in<br />

the study area using the relative importance values of 55 perennials<br />

in 53 stands, followed by multivariate data analysis was presented.<br />

Altog<strong>et</strong>her, 111 species (75 perennials and 36 annuals) belonging<br />

to 92 genera and 34 families of the flowering plants were recor<strong>de</strong>d.<br />

Asteraceae, Fabaceae, Chenopodiaceae, Poaceae, Brassicaceae,<br />

Caryophyllaceae, Liliaceae and Zygophyllaceae were the largest<br />

families, and constitute more than 64 % of the total recor<strong>de</strong>d species.<br />

Therophytes and chamaephytes were the most frequent, <strong>de</strong>noting a<br />

typical <strong><strong>de</strong>s</strong>ert life-form spectrum. Phytochorological analysis revealed<br />

that 45.2 % of the studied species were uniregional, of which 23 %<br />

being native to the saharo-arabian chorotype. It also showed the<br />

<strong>de</strong>crease in the numbers of the Mediterranean species and increase<br />

of the saharo-arabian species along N-S direction form the see-shore<br />

inwards till the Diffa Plateau. Classification of the veg<strong>et</strong>ation was<br />

analysed using TWINSPAN technique resulted in the recognition<br />

of five veg<strong>et</strong>ation groups, each of <strong>de</strong>finite floristic composition and<br />

environmental characteristics, and could be linked to a specific<br />

habitat. Haloxylon salicornicum occupied the foot of the Diffa<br />

Plateau, Haloxylon salicornicum-Thymelaea hirsuta characterised<br />

the sand plains, Thymelaea hirsuta-Anabasis articulata inhabited<br />

the non-saline <strong>de</strong>pressions, Haloxylon salicornicum-Atriplex portulacoi<strong><strong>de</strong>s</strong><br />

characterised the saline <strong>de</strong>pressions and Salsola t<strong>et</strong>randra-Limoniastrum<br />

monop<strong>et</strong>alum on the coastal salt marshes.<br />

Ordination techniques as DCA and CCA were used to examine the<br />

relationship b<strong>et</strong>ween the veg<strong>et</strong>ation and the studied environmental<br />

param<strong>et</strong>ers: electric conductivity (EC), pH, calcium carbonate, moisture<br />

content, organic matter, silt, clay, K + , Mg ++ and altitu<strong>de</strong>. CCA<br />

axis 1 showed significant correlation with clay, moisture content, pH,<br />

EC, K + , and altitu<strong>de</strong>, while CCA axis 2 was clearly related to pH,<br />

Mg ++ and altitu<strong>de</strong>. Species richness was correlated with Mg ++ , while<br />

Shannon in<strong>de</strong>x was correlated with Na + and Mg ++ .<br />

Key-words<br />

Multivariate analysis, plant distribution, coastal veg<strong>et</strong>ation, diversity,<br />

plant communities, arid ecosystems<br />

Résumé<br />

Nous avons examiné la composition <strong>de</strong> la végétation <strong>et</strong> la relation avec<br />

les différentes variables environnementales dans la région <strong>de</strong> Sallu, le<br />

long du littoral méditerranéen <strong>de</strong> l’Égypte. La zone d’étu<strong>de</strong> se situe<br />

entre 25º 09’ - 25º 35’ E <strong>et</strong> 31º 32’ - 31º 15’ N (ca. 1 700 km 2 ),<br />

<strong>et</strong> s’étend sur environ 49 km entre Buqbuq <strong>et</strong> Sallum, à la frontière<br />

entre l’Égype <strong>et</strong> la Libye. C<strong>et</strong>te région s’intègre dans la zone semidésertique<br />

<strong>de</strong> végétation, avec un climat désertique atténué. L’analyse<br />

<strong>de</strong> végétation a été réalisée en fonction <strong><strong>de</strong>s</strong> gradients environnementaux<br />

locaux, en utilisant les valeurs relatives d’abondance <strong>de</strong> 55 espèces<br />

vivaces présentes dans 53 plac<strong>et</strong>tes ; ces données ont été traitées par<br />

analyses statistiques multivariées. Au total, 111 espèces – 75 vivaces<br />

<strong>et</strong> 36 annuelles – appartenant à 92 genres <strong>et</strong> 34 familles ont été<br />

inventoriées. Les Asteraceae, Fabaceae, Chenopodiaceae, Poaceae,<br />

Brassicaceae, Caryophyllaceae, Liliaceae <strong>et</strong> Zygophyllaceae sont les<br />

familles les plus représentées ; elles regroupent plus <strong>de</strong> 64 % <strong>de</strong> toutes<br />

les espèces enregistrées. Les thérophytes <strong>et</strong> les chamaephytes sont les<br />

types biologiques les plus fréquents, ce qui représente un cas classique<br />

pour la végétation désertique. L’analyse phytochorologique indique<br />

que 45,2 % <strong><strong>de</strong>s</strong> espèces étudiées ont une répartition uni-régionale,<br />

avec 23 % <strong>de</strong> végétaux indigènes au chorotype saharo-arabe. Il<br />

existe une diminution du nombre d’espèces méditerranéennes <strong>et</strong> une<br />

augmentation <strong><strong>de</strong>s</strong> espèces saharo-arabes selon un gradient nord-sud,<br />

<strong>de</strong>puis le bord <strong>de</strong> mer jusqu’à l’intérieur <strong><strong>de</strong>s</strong> terres (plateau <strong>de</strong> Diffa).<br />

Le classement <strong>de</strong> la végétation basé sur la métho<strong>de</strong> TWINSPAN a<br />

permis d’i<strong>de</strong>ntifier 5 groupes <strong>de</strong> végétation, chacun déterminé par<br />

une composition floristique <strong>et</strong> <strong><strong>de</strong>s</strong> caractéristiques environnementales<br />

bien déterminées, liées à un habitat particulier.<br />

Mots-clés<br />

Analyses multivariées, distribution <strong><strong>de</strong>s</strong> végétaux, végétation côtière,<br />

diversité, communautés végétales, écosystèmes ari<strong><strong>de</strong>s</strong><br />

15<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

16<br />

INTRODUCTION<br />

The Mediterranean coastal land of Egypt extends for<br />

about 970 km b<strong>et</strong>ween Sallum on the egyptian-libyan<br />

bor<strong>de</strong>r eastward to Rafah on the egyptian-palestinian bor<strong>de</strong>r,<br />

with an average width ranging b<strong>et</strong>ween 15-20 km in<br />

a N-S direction. It lies within the Mediterranean/Sahara<br />

regional transition zone, where the veg<strong>et</strong>ation comprises<br />

floristic elements for both of the <strong>mediterranea</strong>n and<br />

saharo-arabian regions (White, 1993). Floristically, it<br />

remains one of the less known territories of the country.<br />

El Hadidi (2000) distinguished b<strong>et</strong>ween a Mareotis sector<br />

which extends b<strong>et</strong>ween Sallum eastwards to Alexandria,<br />

where cyrenaican elements are prominent and a sinaitic<br />

sector extending from Port Said eastwards to Rafah,<br />

where East Mediterranean taxa prevail. Ecologically, it<br />

represents the narrow less arid belt of Egypt that can be<br />

divi<strong>de</strong>d into three sections: western, middle and eastern<br />

(Zahran <strong>et</strong> al., 1990). The western section extends from<br />

Sallum eastwards to Abu Qir, near Alexandria, for about<br />

550 km (fig. 1).<br />

Physiographically, the western section of the <strong>mediterranea</strong>n<br />

coastal land can be distinguished into two main<br />

provinces: an eastern province b<strong>et</strong>ween Alexandria and<br />

Ras El-Hikma, and a western province b<strong>et</strong>ween Ras<br />

El-Hikma and Sallum (Selim, 1969). One of the salient<br />

features of the latter province is the dissection of its landscape<br />

into an extensive system of shallow wadies (gullies,<br />

sensu El Hadidi, 2000). They draining from the southern<br />

limestone plateau which lies parallel to the west <strong>mediterranea</strong>n<br />

coast and reaches a maximum elevation of about<br />

200 m above sea level at Sallum. The phytosociology and<br />

veg<strong>et</strong>ation analyses of these wadies were the subject of El<br />

Hadidi & Ayyad (1975), El Hadidi <strong>et</strong> al. (1986), El-Kady<br />

& Sa<strong>de</strong>k (1992), Kamal & El-Kady (1993) and El Garf<br />

(2003).<br />

Several earlier extensive studies (1950-1996) <strong>de</strong>picted<br />

the veg<strong>et</strong>ation, flora, phytogeography and biodiversity<br />

of the western section of the <strong>mediterranea</strong>n coastal<br />

land, amongst others; Tadros & Atta (1958), Tadros &<br />

El-Sharkawi (1960), Ayyad (1973), Ayyad & El-Kady<br />

(1982), Shaltout (1985), El-Kady <strong>et</strong> al. (1995), Ayyad<br />

Fig. 1. Location map of the study area<br />

showing the distribution of the studied<br />

stands along the six transects (T 1 -T 6 ).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

& Fakhry (1996). At least 10 habitat types were recognised<br />

in this section, which belong to five veg<strong>et</strong>ation<br />

types. These inclu<strong>de</strong> the <strong><strong>de</strong>s</strong>ert veg<strong>et</strong>ation, the littoral salt<br />

marshes, the coastal sand dunes, the farmland veg<strong>et</strong>ation,<br />

and the aquatic veg<strong>et</strong>ation (see Zahran & Willis, 1992<br />

and El Hadidi, 2000 for d<strong>et</strong>ailed information). Y<strong>et</strong>, not<br />

all parts of that section have been studied in the same<br />

intense way. Less attention has been paid to the distant<br />

western part of the <strong>mediterranea</strong>n coast from Sidi Barrani<br />

to Sallum on the egyptian-libyan frontier (fig. 1), that will<br />

be here referred to as the Sallum area. It represents the<br />

distant part of the western <strong>mediterranea</strong>n coastal land of<br />

Egypt, where the human activities through cultivation,<br />

grazing and urbanisation were much less pronounced<br />

than in the other parts of the region. Therefore, the environmental<br />

correlates of species distribution in that part<br />

will be highlighted in this study.<br />

Key questions in the present study were: (1) What are<br />

the major environmental gradients associated with the<br />

observed patterns of plant communities? (2) Is the distribution<br />

of plant communities a<strong>de</strong>quately explained by<br />

the environmental factors consi<strong>de</strong>red or are other factors<br />

more important in d<strong>et</strong>ermining species distribution? and<br />

(3) Which of the studied environmental factors affecting<br />

the diversity of plant communities inhabiting the study<br />

area? These objectives were addressed by applying classification<br />

and ordination techniques to data of species<br />

composition and environment from the study area.<br />

STUDY AREA<br />

The area selected for the present study lies b<strong>et</strong>ween<br />

25º 09’-25º 35’ E and 31º 32’-31º 15’ N, extends for about<br />

49 km from Buqbuq to Sallum on the egyptian-libyan<br />

frontier with a total area of about 1 700 km 2 (fig. 1). It is<br />

inclu<strong>de</strong>d in the semi-<strong><strong>de</strong>s</strong>ert veg<strong>et</strong>ation zone that proposed<br />

by Bornkamm & Kehl (1990). The coastal plain is very<br />

narrow or, som<strong>et</strong>imes, lacking at Sallum. As reported by<br />

Selim (1969), the entire northern region of the egyptian<br />

western <strong><strong>de</strong>s</strong>ert is covered by sedimentary formations<br />

that range in age from lower Miocene to Holocene. The<br />

holocene formations comprise lagoon and loamy <strong>de</strong>posits,<br />

sand dune accumulations, wadi fillings and limestone<br />

crusts. Ol<strong>de</strong>r formations (Pleistocene-Miocene) are of<br />

limestone or dolomite (dolostone).<br />

Wickens (1992) proposed that Egypt falls within<br />

the subtropical <strong><strong>de</strong>s</strong>ert and <strong>mediterranea</strong>n zonobiomes.<br />

According to the classification of climatic zones of Egypt<br />

that suggested Ayyad & Ghabbour (1986) and recently<br />

modified by El Hadidi (2000), the study area lies within<br />

the northern arid province that runs parallel to the semiarid<br />

belt. Comparing climatic characteristics of four<br />

m<strong>et</strong>eorological stations along the western sector of the<br />

<strong>mediterranea</strong>n coast (fig. 1): Sallum station, the nearest<br />

to the study area, with other three are shown in table 1.<br />

Notably, the wi<strong>de</strong> variation in annual precipitation along<br />

the E-W direction along the coast (from Alexandria in the<br />

east to Sallum in the west) was remarkable.<br />

METHODS<br />

Veg<strong>et</strong>ation analysis<br />

During 2002-2003, a quantitative survey of the<br />

veg<strong>et</strong>ation of the study area was carried out. Six transects<br />

(T 1 -T 6 ) from the coast till the fringes of the Diffa Plateau,<br />

were used to sample the veg<strong>et</strong>ation and environmental<br />

attributes of the study area (fig. 1). Because of the variable<br />

17<br />

Station<br />

Min.<br />

Temperature (°C)<br />

Max<br />

Relative humidity (%)<br />

Rainfall (mm)<br />

Sallum 14.0 24.3 65.5 89.8<br />

Sidi Barrani 15.5 23.3 69.7 149.8<br />

Mersa Matruh 14.3 24.3 66.0 144.0<br />

Alexandria 14.9 24.9 65.0 192.1<br />

Table 1. Long-term annual averages (courtesy of the Egyptian M<strong>et</strong>eorological Authority) of some climatic factors of Sallum station<br />

in the study area, and other three stations along the <strong>mediterranea</strong>n coast of Egypt.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

18<br />

width b<strong>et</strong>ween the coastal plain and the Diffa Plateau,<br />

the transects ranged from approximately 2 to 20 km in<br />

length. These transects inclu<strong>de</strong>d plant communities of the<br />

major habitats prevailing in the physiographic provinces<br />

of the region. Stratified random sampling m<strong>et</strong>hod was<br />

employed (Greig-Smith, 1983; Ludwig & Reynold,<br />

1988) within each transect. A total of 53 stands (30 x<br />

20 m each) were sampled, positioned using GPS mo<strong>de</strong>l<br />

Trimble SCOUT M , and distributed along the studied<br />

transects. In each stand, the plant cover (m/100m) was<br />

d<strong>et</strong>ermined using the line-intercept m<strong>et</strong>hod (Canfield,<br />

1941). For this purpose, five parallel lines (20 m each)<br />

were laid across the stand and the intercept lengths (cm)<br />

of each perennial were summed. Density (individuals/<br />

100 m 2 ) and frequency (occurrences/100 sample plots)<br />

were estimated using a number of randomly located<br />

sample plots without overlap. The relative importance<br />

value (IV) for each species in each stand was obtained<br />

by the sum of its relative <strong>de</strong>nsity, frequency and cover<br />

with a maximum value out of 300. Voucher specimens<br />

of each species were collected and i<strong>de</strong>ntified by us in<br />

the Herbaria of Cairo (CAI) and Assiut Universities<br />

where they are <strong>de</strong>posited. Taxonomic nomenclature was<br />

according to Täckholm (1974), Cope & Hosni (1991),<br />

and Boulos (1995, 1999, 2000 & 2002).<br />

Soil analysis<br />

For each sampled stand, three soil samples were collected<br />

from profiles of 0-15, 15-25 and 25-50 cm <strong>de</strong>pth.<br />

These samples (300 g each) are then pooled tog<strong>et</strong>her to<br />

form one composite sample, air-dried, thoroughly mixed,<br />

and passes through a 2 mm-sieve to g<strong>et</strong> rid of gravel and<br />

boul<strong>de</strong>rs. The portion finer than 2 mm was kept for physical<br />

and chemical analysis according to Jackson (1967)<br />

and Allen & Stainer (1974). Soil texture was d<strong>et</strong>ermined<br />

by the Bouyoucos hydrom<strong>et</strong>er m<strong>et</strong>hod, and the results<br />

used to calculate the percentages of sand, silt and clay.<br />

Electric conductivity and pH were evaluated in 1:5 soilwater<br />

extract using electric conductivity m<strong>et</strong>er and a glass<br />

electro<strong>de</strong> pH-m<strong>et</strong>er, respectively. Total carbonate content<br />

was d<strong>et</strong>ermined using the volum<strong>et</strong>ric calcim<strong>et</strong>er (Allison<br />

& Moodie, 1965), and the Walkely-Black w<strong>et</strong> combustion<br />

m<strong>et</strong>hod (Tan, 1996) using K 2 Cr 2 O 7 and H 2 SO 4 to<br />

estimate the <strong>de</strong>composed fraction of soil organic matter.<br />

D<strong>et</strong>ermination of Na + and K + was carried out by a<br />

Drlang M 7D flame photom<strong>et</strong>er. Mg ++ was estimated<br />

using a buck scientific mo<strong>de</strong>l 210 VGP atomic absorption<br />

spectrophotom<strong>et</strong>er.<br />

Data analysis<br />

In or<strong>de</strong>r to obtain an effective analysis of the veg<strong>et</strong>ation<br />

and related environmental factors, both classification<br />

and ordination techniques were employed. Two-<br />

Way INdicator SPecies ANalysis (TWINSPAN) using<br />

the <strong>de</strong>fault s<strong>et</strong>tings of the computer program PC-ORD<br />

for windows version 4.14 (McCune & Mefford, 1999)<br />

classified a data matrix of 53 stands and 55 perennial<br />

species using their relative importance values (IV). Only<br />

species present in at least two stands were inclu<strong>de</strong>d in the<br />

analysis. TWINSPAN is a divisive hierarchical classification<br />

m<strong>et</strong>hod that doubles the number of groups at each<br />

division (positive and negative groups are formed at each<br />

dichotomy). The procedures simultaneously classify both<br />

samples and species directly, constructing an or<strong>de</strong>red twoway<br />

table to exhibit the relationship b<strong>et</strong>ween them clearly<br />

as possible (Hill, 1979; Økland, 1990).<br />

The computer program CANOCO 3.12 (ter Braak,<br />

1987-1992) was used for all ordinations. Rare species<br />

were downweighted to reduce distortion of the analysis.<br />

Preliminary analyses were ma<strong>de</strong> using D<strong>et</strong>ren<strong>de</strong>d<br />

Correspon<strong>de</strong>nce Analysis (DCA; Hill & Gauch, 1980)<br />

to check the magnitu<strong>de</strong> of change in species composition<br />

along the first ordination axis (i.e., gradient length in standard<br />

<strong>de</strong>viation (SD)- units). In the present study, DCA<br />

estimated the gradient length to be larger than 6 SD-units<br />

for all subs<strong>et</strong> analyses, thus Canonical Correspon<strong>de</strong>nce<br />

Analysis (CCA) was the appropriate ordination m<strong>et</strong>hod<br />

to perform direct gradient analysis (ter Braak & Prentice,<br />

1988). CCA was used to d<strong>et</strong>ermine the relationships<br />

b<strong>et</strong>ween veg<strong>et</strong>ation data and environmental variables<br />

(Jean & Bouchard, 1993). Ter Braak (1986) suggests<br />

using DCA and CCA tog<strong>et</strong>her to see how much of the<br />

variation in species data is accounted for by the environmental<br />

data. Due to high inflation factor of total soluble<br />

salts (TSS), sand, and Na + , they were exclu<strong>de</strong>d from<br />

the CCA analysis. Thus, 10 soil param<strong>et</strong>ers were inclu<strong>de</strong>d:<br />

electric conductivity (EC), pH, calcium carbonate<br />

(CaCO 3 ), moisture content (MC), organic matter (OM),<br />

silt, clay, K + , Mg ++ and altitu<strong>de</strong> (Alt) as a mesologic param<strong>et</strong>er.<br />

All the <strong>de</strong>fault s<strong>et</strong>tings were used for CCA, and<br />

a Monte Carlo permutation test (99 permutations) was<br />

used to test for significance of the eigenvalues of the first<br />

canonical axis. Intra-s<strong>et</strong> correlations from the CCA’s<br />

were used to assess the importance of the environmental<br />

variables. The variables in the CCA biplots were represented<br />

by arrows pointing in the direction of maximum<br />

variation, with their length proportional to the rate of<br />

change (ter Braak, 1986). Each arrow d<strong>et</strong>ermines an axis<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

on which the species points can be projected. When plot<br />

points were projected perpendicularly to the (prolonged)<br />

arrows, their or<strong>de</strong>r represents approximately the ranking<br />

of weighed averages with respect to the values of the<br />

factors involved.<br />

One-way analysis of variance (ANOVA) was applied<br />

to assess the significance of variations in soil variables<br />

and diversity indices in relation to the veg<strong>et</strong>ation groups<br />

i<strong>de</strong>ntified after TWINSPAN application. Pearson’s product-moment<br />

correlation coefficient was also used to<br />

estimate the intercorrelation b<strong>et</strong>ween the studied soil<br />

factors. All the statistical analyses were carried out using<br />

SPSS version 10.0 for Windows.<br />

Species diversity<br />

Species diversity within each separated TWINSPAN<br />

veg<strong>et</strong>ation group was assessed using two different indices<br />

expressing species richness and diversity. Species richness<br />

(alpha-diversity) is calculated as the average number of<br />

species per stand and the species diversity was estimated<br />

as the Shannon-Wiener in<strong>de</strong>x: H’ = Σ i=1 p i log 2 p i , where<br />

S is the total number of species and p i is the relative<br />

importance value (IV) of ith species (Whittaker, 1972;<br />

Pielou, 1975).<br />

RESULTS<br />

Taxonomic patterns<br />

A total of 111 species (36 annuals and 75 perennials)<br />

belonging to 92 genera and 34 families of the<br />

vascular plants were recor<strong>de</strong>d (appendix 2). The largest<br />

families were Asteraceae and Fabaceae (16 for each),<br />

Chenopodiaceae (10), Poaceae (9), Brassicaceae (7),<br />

Caryophyllaceae (5), Liliaceae and Zygophyllaceae (4 for<br />

each). The largest genera inclu<strong>de</strong> Astragalus (7), Lotus and<br />

Erodium (3 for each), Launaea, Atriplex, Silene, Medicago,<br />

Limonium, Asparagus and Aspho<strong>de</strong>lus (2 for each). The<br />

most common perennials recor<strong>de</strong>d were Haloxylon salicornicum,<br />

Thymelaea hirsuta, Aspho<strong>de</strong>lus ramosus, Anabasis<br />

articulata, Atriplex portulacoi<strong><strong>de</strong>s</strong>, Limoniastrum monop<strong>et</strong>alum<br />

and Salsola t<strong>et</strong>randra. Each of these species attains a<br />

maximum importance value (IV) of more than 140 (out<br />

of 300 for all species in a stand), and a mean of more<br />

than 60 (table 2). Common but less important perennials<br />

were R<strong>et</strong>ama ra<strong>et</strong>am, Deverra tortuosa, Lycium europaeum,<br />

Arthrocnemum macrostachyum, Halocnemum strobilaceum,<br />

Periploca angustifolia and Zygophyllum album. Common<br />

annuals inclu<strong>de</strong> Trigonella stellata, Senecio glaucus, Cotula<br />

cinerea, Eremobium aegyptiacum, Arnebia <strong>de</strong>cumbens,<br />

Calendula arvensis, Aizoon hispanicum, Schismus barbatus,<br />

Erodium laciniatum and Bassia muricata.<br />

The life-form spectrum of the Sallum area showed<br />

that the proportion of therophytes (32.4 %) is higher<br />

than that of other life forms, while the proportions of<br />

chamaephytes (25.2 %), hemicryptophytes (22.5 %) and<br />

cryptophytes (13.5 %) were noteworthy (Salama <strong>et</strong> al.,<br />

2003). The majority of the recor<strong>de</strong>d species belong to the<br />

<strong>mediterranea</strong>n and saharo-arabian chorotypes.<br />

Classification of veg<strong>et</strong>ation<br />

The application of TWINSPAN on the relative<br />

importance values (IV) of the 55 perennial species<br />

recor<strong>de</strong>d in 53 sampled stands helped to distinguish<br />

five veg<strong>et</strong>ation groups (table 2, fig. 2). These groups<br />

were named after their leading dominant species (those<br />

have the highest relative IV) as follows: (A) Haloxylon<br />

salicornicum, (B) Haloxylon salicornicum-Thymelaea<br />

hirsuta, (C) Thymelaea hirsuta-Anabasis articulata, (D)<br />

Haloxylon salicornicum-Atriplex portulacoi<strong><strong>de</strong>s</strong>, and (E)<br />

Salsola t<strong>et</strong>randra-Limoniastrum monop<strong>et</strong>alum. Each of these<br />

groups could easily be linked to a habitat type: foot of the<br />

Diffa Plateau, sand plains, non-saline <strong>de</strong>pressions, saline<br />

<strong>de</strong>pressions and the coastal salt marshes, respectively.<br />

Table 3 summarises the mean values and the standard<br />

<strong>de</strong>viations of the measured soil variables, and the diversity<br />

indices in the five groups <strong>de</strong>rived from TWINSPAN.<br />

The first TWINSPAN dichotomy differentiated the 53<br />

stands into two main groups according to pH, EC, Na + ,<br />

K + and Mg ++ (p=0.0001). Group E (12 stands) dominated<br />

by Salsola t<strong>et</strong>randra-Limoniastrum monop<strong>et</strong>alum,<br />

inhabited the coastal saline <strong>de</strong>pressions was separated<br />

on the right si<strong>de</strong> of the <strong>de</strong>ndrogram (fig. 2), while the<br />

left si<strong>de</strong> is still h<strong>et</strong>erogeneous. At the second hierarchical<br />

level, the inland dry group of stands (41) was split into<br />

two subgroups related to pH, EC, organic matter, Na +<br />

and altitu<strong>de</strong> (p=0.0001). Here, another distinct group (A;<br />

9 stands) dominated by Haloxylon salicornicum found on<br />

the gravel plains at the foot of Diffa Plateau was also separated.<br />

Description of each group will be given below.<br />

Group A. Haloxylon salicornicum group<br />

The 9 stands of this group were sampled from the<br />

foot of the Diffa Plateau (fig. 1). On the highly elevated<br />

and gravely calcareous soil with mo<strong>de</strong>rate moisture<br />

content and the least amounts of organic matter and<br />

19<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

Fig. 2. TWINSPAN <strong>de</strong>ndrogram<br />

of the 53 studied stands<br />

of the study area based on their<br />

importance values.<br />

A-E are the five separated<br />

veg<strong>et</strong>ation groups.<br />

For abbreviation of indicator<br />

species, see appendix.<br />

20<br />

salinity (table 3), sand she<strong>et</strong>s of Haloxylon salicornicum<br />

were found. It was differentiated by the growth of shrubs<br />

of R<strong>et</strong>ama ra<strong>et</strong>am, Lycium europaeum and Fars<strong>et</strong>ia aegyptia,<br />

and occupied parts of the drainage channels of the<br />

southern str<strong>et</strong>ches of T 3, T 4 and T 5 where surface <strong>de</strong>posits<br />

were <strong>de</strong>eper. This group had the largest share (23) of<br />

annuals. Shortly after rainfall, the soil surface supporting<br />

the sites of this group was covered with a <strong>de</strong>nse veg<strong>et</strong>ation<br />

of annual species, especially Schismus barbatus, Anthemis<br />

microsperma, Reichardia tingitana, Brassica tournefortii,<br />

Medicago laciniata, Cutandia memphitica, Erodium pulverulentum,<br />

Malva parviflora and Astragalus hamosus.<br />

Group B. Haloxylon salicornicum-<br />

Thymelaea hirsuta group<br />

The landscape of this group was characterized by a<br />

combination of Haloxylon salicornicum and Thymelaea<br />

hirsuta found on the sand plains with <strong>de</strong>ep loose soil<br />

and the lowest levels of moisture content. It represents<br />

a transitional zone b<strong>et</strong>ween the non-saline and saline<br />

<strong>de</strong>pression veg<strong>et</strong>ation groups. This group was differentiated<br />

by a number of woody species such as Periploca<br />

angustifolia, Deverra tortuosa, Globularia arabica and Zilla<br />

spinosa. The herb layer was relatively sparse, and characterized<br />

by Hor<strong>de</strong>um leporinum, Aspho<strong>de</strong>lus tenuifolius,<br />

Bupleurum lancifolium and Astragalus pereginus. The most<br />

common xerophytic species in the egyptian <strong><strong>de</strong>s</strong>ert, Sinai,<br />

and the neighboring arid environments were inclu<strong>de</strong>d in<br />

this group (Zohary, 1973; Batanouny, 1979; Salama &<br />

Fayed, 1990; Abd El-Ghani & Amer, 2003).<br />

Group C. Thymelaea hirsuta-<br />

Anabasis articulata group<br />

This veg<strong>et</strong>ation group dominated the non-saline<br />

<strong>de</strong>pressions with soils of the highest pH values and the<br />

lowest levels of carbonate content (table 3). Other physical<br />

soil properties were comparable to those of group B.<br />

While Gymnocarpos <strong>de</strong>candrum, Aspho<strong>de</strong>lus ramosus and<br />

Astragalus siberii dominated the shrub layer, the herb<br />

layer showed the lowest share of annuals (viz., Centaurea<br />

glomerata, Louts angustissimus, Aspho<strong>de</strong>lus tenuifolius and<br />

Hor<strong>de</strong>um leporinum).<br />

Group D. Haloxylon salicornicum-<br />

Atriplex portulacoi<strong><strong>de</strong>s</strong> group<br />

This was the largest group of stands (13), and the<br />

most diversified among the other veg<strong>et</strong>ation groups<br />

(table 2). It inhabited the saline <strong>de</strong>pressions on fertile<br />

soils that are rich in their fine sediment contents (silt and<br />

clay). Relatively high soil salinity favoured the growth of<br />

some salt-tolerant species as Atriplex portulacoi<strong><strong>de</strong>s</strong>, Salsola<br />

t<strong>et</strong>randra and Nitraria r<strong>et</strong>usa. The shrub layer was cha-<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

TWINSPAN GROUP<br />

A B C D E<br />

Group size 9 8 11 13 12<br />

Total number of species 14 17 16 27 19<br />

Total number of annuals 23 7 4 9 9<br />

Haloxylon salicornicum 155 78 36 94 6<br />

R<strong>et</strong>ama ra<strong>et</strong>am 49 - - - -<br />

Astragalus sieberi 4 - 8 1 1<br />

Carthamus glaucus 5 2 - 10<br />

Hyoscyamus muticus 8 2 1 - -<br />

Lycium europaeum 17 - 1 4<br />

Fars<strong>et</strong>ia aegyptiaca 9 - 1 - -<br />

Periploca angustifolia 7 16 - - -<br />

Citrullus colocynthis 7 - - - -<br />

Euphorbia r<strong>et</strong>usa 10 - - - -<br />

Marrubium alysson 6 - - - -<br />

Thymelaea hirsuta 5 75 100 25 7<br />

Deverra tortuosa - 50 2 26 7<br />

Lygeum spartaum - 1 - - 15<br />

Globularia arabica - 10 - - -<br />

Zilla spinosa subsp. biparmata - 15 - - -<br />

Anabasis articulata 5 15 82 26 -<br />

Aspho<strong>de</strong>lus ramosus - 24 46 - -<br />

Carduncellus mareoticus - - 1 3 -<br />

Echinops spinosus - - 2 1 -<br />

Gymnocarpos <strong>de</strong>candrus - - 7 - -<br />

Atriplex portulacoi<strong><strong>de</strong>s</strong> - - 3 64 31<br />

Helianthemum lippii - - - 4 -<br />

Nitraria r<strong>et</strong>usa - - - 3 -<br />

Noaea mucronata - - - 2 -<br />

Verbascum l<strong>et</strong>ourneuxii - - - 2 -<br />

Salsola t<strong>et</strong>randra - 1 3 26 66<br />

Limoniastrum monop<strong>et</strong>alum - - - - 65<br />

Halocnemum strobilaceum - - - 1 69<br />

Suaeda maritima - 1 1 1 13<br />

Arthrocnemum macrostachyum - - - 1 15<br />

Sporobolus spicatus - - - 1 9<br />

Zygophyllum album - - - 2 14<br />

Frankenia hirsuta - - - - 8<br />

Limonium pruinosum - - - - 8<br />

Table 2. Species composition<br />

of the 53 stands in the six transects,<br />

arranged in or<strong>de</strong>r of occurrence<br />

in the five TWINSPAN groups (A-E).<br />

The mean importance value<br />

(out of 300) roun<strong>de</strong>d to the nearest<br />

integer is given in each group.<br />

Entries in bold are indicator<br />

species in each group.<br />

See text for explanation.<br />

21<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

22<br />

Range Mean ± SD<br />

TWINSPAN veg<strong>et</strong>ation groups<br />

A B C D E<br />

F-ratio<br />

Sand 99.9 – 99.9 99.9 ± 0.08 99.7 ± 0.02 99.9 ± 0.04 99.8 ± 0.07 99.8 ± 0.07 99.9 ± 0.1 2.1<br />

Silt 0.01 – 0.4 0.07 ± 0.07 0.01 ± 0.02 0.07 ± 0.03 0.08 ± 0.06 0.1 ± 0.06 0.06 ± 0.09 2.5<br />

Clay 0.01 - 0.1 0.02 ± 0.02 0.01 ± 0.03 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.04 ± 0.03 3.8*<br />

MC (%) 0.5 – 28.4 3.4 ± 4.6 3.16 ± 3.4 2.12 ± 0.09 2.2 ± 1.70 2.5 ± 1.6 6.7 ± 8.3 2.2<br />

OM 0.01 - 0.6 0.2 ± 0.01 0.08 ± 0.09 0.19 ± 0.13 0.2 ± 0.14 0.3 ± 0.14 0.2 ± 0.2 3.9*<br />

Total carbonates 1.8 – 12.5 5.8 ± 2.4 6.9 ± 2.2 5.7 ± 2.30 4.5 ± 1.90 6.0 ± 2.1 5.90 ± 3.1 1.3<br />

pH 8.2 – 10.0 9.1 ± 0.03 9.2 ± 0.4 9.2 ± 0.15 9.4 ± 0.20 9.3 ± 0.2 8.70 ± 0.1 7.0*<br />

EC (mS cm -1 ) 0.3 – 4.4 1.1 ± 1.80 0.36 ± 0.03 0.45 ± 0.10 0.41 ± 0.06 0.6 ± 0.2 3.30 ± 3.0 8.9*<br />

Alt (m) -40 – 100 25.6 ± 27.3 62.0 ± 28.2 31.0 ± 21.8 21 ± 15.3 23.1 ± 21.4 2.0 ± 12.7 12.1*<br />

Na + 0.02 – 3.8 0.4 ± 0.08 0.04 ± 0.01 0.11 ± 0.08 0.08 ± 0.05 0.2 ±0.15 1.5 ± 1.1 15.7*<br />

K + (m eq/l) 0.02 - 0.03 0.06 ± 0.05 0.03 ± .007 0.04 ± 0.02 0.04 ± 0.01 0.06 ± 0.02 0.12 ± 0.07 8.4*<br />

Mg ++ 0.003 -0.03 0.01 ± 0.006 0.005 ± 0.009 0.008 ± 0.003 0.008 ± 0.003 0.009 ± 0.004 0.02 ± 0.008 7.3*<br />

Species diversity 0.4 – 3.3 1.83 ± 0.07 1.5 ± 0.06 1.70 ± 0.07 1.6 ± 0.6 2.2 ± 0.5 1.9 ± 0.3 2.4<br />

Species richness 2.0 – 13.0 6.0 ± 2.6 1.9 ± 1.6 6.0 ± 2.4 5.2 ± 1.8 7.1 ± 2.9 6.5 ± 3.4 1.4<br />

Table 3. Mean values and standard <strong>de</strong>viations (±) of the environmental variables and altitu<strong>de</strong> in the stands representing the veg<strong>et</strong>ation groups obtained<br />

by TWINSPAN. MC= Moisture content, OM= Organic matter, EC= Electric conductivity and Alt= Altitu<strong>de</strong>. *= Differences significant at p< 0.05.<br />

racterised by the growth of Carthamus glaucus, Anabasis<br />

articulata, Carduncellus mareoticus and Deverra tortuosa.<br />

Other species showed certain <strong>de</strong>gree of fi<strong>de</strong>lity since<br />

they did not pen<strong>et</strong>rate to other veg<strong>et</strong>ation groups; such<br />

as Helianthemum lippii, Noaea mucronata and Verbascum<br />

l<strong>et</strong>ourneuxii. Few annual species (Bassia muricata,<br />

Astragalus hamosus, Centaurea glomerata and Aspho<strong>de</strong>lus<br />

tenuifolius) were recor<strong>de</strong>d.<br />

Group E. Salsola t<strong>et</strong>randra-<br />

Limoniastrum monop<strong>et</strong>alum<br />

On muddy fertile saline soil with high Na + , K + and<br />

Mg ++ , the coastal salt marshes with veg<strong>et</strong>ation characterized<br />

by the complex Halocnemum strobilaceum, Salsola<br />

t<strong>et</strong>randra and Limoniastrum monop<strong>et</strong>alum were found,<br />

indicating the saline nature of this group (12 stands).<br />

Notably, several halophytic species were recor<strong>de</strong>d such<br />

as Suaeda maritima, Arthrocnemum macrostachyum,<br />

Zygophyllum album, Frankenia hirsuta and Limonium<br />

pruinosum. The herb layer was mo<strong><strong>de</strong>s</strong>tly represented, and<br />

inclu<strong>de</strong>d amongst others Brassica tournefortii, Centaurea<br />

glomerata, Astragalus hispidulus and Hor<strong>de</strong>um leporinum.<br />

Environmental characteristics of the five veg<strong>et</strong>ation<br />

groups were summarised in table 3. Of the measured<br />

param<strong>et</strong>ers, clay, organic matter, pH, electric conductivity,<br />

altitu<strong>de</strong>, Na + , K + and Mg ++ showed highly significant<br />

differences b<strong>et</strong>ween groups. It can be noted that clay,<br />

moisture content, electric conductivity, K + and Mg ++<br />

displayed relatively high values on coastal salt marshes<br />

(group E), organic matter on the saline <strong>de</strong>pressions<br />

(group D), and total carbonates and altitu<strong>de</strong> on the foot<br />

of Diffa Plateau (group A). A remarkable <strong>de</strong>crease in salinity<br />

gradient from the coastal salt marshes (group E) to<br />

the foot of Diffa Plateau (group A) was also noticeable.<br />

Ordination of stands<br />

Figure 3 showed the ordination results of the DCA<br />

analysis of the floristic data s<strong>et</strong>. The 53 stands were<br />

plotted along axes 1 and 2, and tend to cluster into five<br />

groups that resulted from TWINSPAN analysis <strong><strong>de</strong>s</strong>cribed<br />

above. The stands were spread out 6.4 S.D units along<br />

the first axis (eigenvalue= 0.81), expressing the high floristic<br />

variations among veg<strong>et</strong>ation groups, and indicating<br />

a compl<strong>et</strong>e turnover in species composition took place<br />

(Hill, 1973). This diagram displayed graphically that<br />

group B was transitional in its composition b<strong>et</strong>ween the<br />

other groups. Stands of group E were separated towards<br />

and the positive end of DCA axis 1, while those of groups<br />

A and C were separated out along the other end. DCA<br />

axis 2 with an eigenvalue of 0.53 and a gradient length of<br />

3.86 S.D is less important. The species-environment correlation<br />

(table 4) was also high: 0.83 and 0.55 for DCA<br />

axis 1 and 2 showing that the species data were related<br />

to the measured environmental variables. From table 4,<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

Fig. 3. DCA ordination diagram<br />

for the 53 stands on the first<br />

two axes, with the TWINSPAN<br />

groups superimposed.<br />

23<br />

significant correlations of soil variables with the first three<br />

DCA axes revealed greater correlations along axis 1 than<br />

the higher or<strong>de</strong>r axis. DCA axis 1 showed significant correlations<br />

with altitu<strong>de</strong>, EC, K + , moisture content and clay.<br />

We interpr<strong>et</strong>ed DCA axis 1 as an altitu<strong>de</strong>-soil salinity<br />

gradient. As axis 2 was significantly correlated with total<br />

carbonates and altitu<strong>de</strong>, DCA axis 2 was interpr<strong>et</strong>ed as<br />

an altitu<strong>de</strong>-carbonate gradient.<br />

Environment-veg<strong>et</strong>ation-diversity<br />

relationships<br />

The successive <strong>de</strong>crease of the eigenvalues of the first<br />

three CCA axes (table 4), suggesting a well-structured<br />

data s<strong>et</strong>. These eigenvalues were somewhat lower than<br />

for the DCA axes, indicating that important explanatory<br />

stand variables were not measured and inclu<strong>de</strong>d in the<br />

analysis or some of the variations was not explained<br />

by environmental variables (Franklin & Merlin, 1992;<br />

McDonald <strong>et</strong> al., 1996). However, the species-environment<br />

correlations were higher for the first three canonical<br />

axes, explaining 67.3 % of the cumulative variance. These<br />

results suggested a strong association b<strong>et</strong>ween veg<strong>et</strong>ation<br />

and the measured soil param<strong>et</strong>ers presented in the biplot<br />

(Jongman <strong>et</strong> al., 1987). From the intra-s<strong>et</strong> correlation of<br />

the soil factors with the first three axes of CCA shown in<br />

table 4, it can be noted that CCA axis 1 was correlated<br />

to clay, moisture content, pH, EC, K + , and altitu<strong>de</strong>. This<br />

fact becomes more clearly in the biplot (fig. 4). A test for<br />

significance with an unrestricted Monte Carlo permutation<br />

test (99 permutations) found the F-ratio for the<br />

eigenvalue of axis 1 and the trace statistics to be significant<br />

(p


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

DCA AXIS<br />

CCA AXIS<br />

1 2 3 1 2 3<br />

Eigenvalues 0.81 0.55 0.32 0.65 0.38 0.33<br />

Species-environment correlations 0.83 0.55 0.70 0.93 0.85 0.78<br />

Silt -0.24 -0.15 0.09 0.3 -0.001 0.02<br />

Clay -0.59 * -0.03 0.01 0.74 * 0.04 0.03<br />

MC -0.60 * 0.01 -0.21 0.71 * -0.1 -0.27<br />

OM -0.32 -0.1 0.04 0.37 -0.08 0.18<br />

Total Carbonates -0.11 0.39 * -0.21 -0.2 0.10 -0.32<br />

pH 0.51 -0.22 0.32 -0.57 * -0.22 * 0.41 *<br />

EC -0.71 * 0.04 -0.05 0.86 * -0.15 -0.09<br />

K + -0.67 * 0.12 -0.1 0.80 * 0.12 -0.13<br />

Mg ++ -0.51 * 0.02 -0.42 0.41 0.65 * -0.18<br />

Altitu<strong>de</strong> 0.56 * 0.32 * -0.05 -0.50 * -0.38 * -0.34 *<br />

24<br />

Table 4. Comparison of the results of ordination for the first three axes of DCA and CCA. Intra-s<strong>et</strong> correlations of the environmental variables and altitu<strong>de</strong>,<br />

tog<strong>et</strong>her with eigenvalues and species-environment correlation coefficients. *= Significant at p


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

the relative positions of species and sites along the most<br />

important ecological gradients. Both ordination techniques<br />

clearly indicated that fine soil sediments, moisture<br />

content, pH, electric conductivity, altitu<strong>de</strong>, relative concentrations<br />

of K + and Mg ++ were the most important<br />

param<strong>et</strong>ers for the distribution of the veg<strong>et</strong>ation pattern<br />

in the present study. The role of these factors in<br />

<strong>de</strong>limiting plant communities in the western <strong><strong>de</strong>s</strong>ert has<br />

been stressed by many authors (Ayyad, 1976; Kamal &<br />

El-Kady, 1993). The percentage of surface sediments of<br />

different size classes d<strong>et</strong>ermines the spatial distribution of<br />

soil moisture (Yair & Danin, 1980), as shown for other<br />

<strong><strong>de</strong>s</strong>ert ecosystems in Egypt by Sharaf El Din & Shaltout<br />

(1985), Abd El-Ghani (1998, 2000a) and in Saudi Arabia<br />

by El-Demerdash <strong>et</strong> al. (1994).<br />

The distribution of species in saline and marshy<br />

habitat relates to salinity in many arid regions has been<br />

discussed by several authors (Kassas, 1957; Ungar, 1968<br />

and Maryam <strong>et</strong> al., 1995). Ungar (1974) indicated that<br />

the distribution of halophytes in the United States is<br />

mainly <strong>de</strong>pen<strong>de</strong>nt on the salinity gradient, while local<br />

climate, topography, soil moisture and biotic factors are<br />

less important. Ragonese & Covas (1947) <strong><strong>de</strong>s</strong>cribed the<br />

interrelation of the salinity gradient and veg<strong>et</strong>ation in the<br />

northern Argentinian saltmarshes. Abu-Ziada (1980) and<br />

Abd El-Ghani (2000b) also noted strong relationships<br />

b<strong>et</strong>ween the veg<strong>et</strong>ation pattern and the soil moisture-salinity<br />

gradients in the oases of the western <strong><strong>de</strong>s</strong>ert of Egypt.<br />

When studying the saltmarsh communities of the western<br />

<strong>mediterranea</strong>n coastal <strong><strong>de</strong>s</strong>ert, Ayyad & El-Ghareeb<br />

(1982) pointed out that salinity, the concentration of different<br />

ions and the periodical variation in the water table<br />

d<strong>et</strong>ermine the distribution of species and the differences<br />

b<strong>et</strong>ween communities. They also conclu<strong>de</strong> that the saltmarsh<br />

veg<strong>et</strong>ation in this part of the country represents a<br />

transition from the western communities in North Africa<br />

and those characteristics of the eastern <strong>mediterranea</strong>n<br />

region. In their account of the northern and eastern<br />

<strong>mediterranea</strong>n coastal saltmarshes, Zahran <strong>et</strong> al. (1996)<br />

<strong>de</strong>monstrated the distribution of some halophytic species<br />

as best correlated along a gradient of a dozen of soil variables,<br />

the most important were salinity, moisture content,<br />

soil texture, organic matter and calcium carbonate. In the<br />

present study, the gradient in soil salinity and its variation<br />

from one habitat to another was the primary d<strong>et</strong>erminant<br />

of the plant community composition.<br />

The plant life in the study area was restricted to<br />

microenvironments (as in wadies, runnels and <strong>de</strong>pressions)<br />

where runoff water collects and provi<strong><strong>de</strong>s</strong> sufficient<br />

moisture for plant growth. This was <strong><strong>de</strong>s</strong>cribed by Monod<br />

(1954) as “végétation contractée”, runoff <strong><strong>de</strong>s</strong>ert (sensu<br />

Zohary, 1962), and restricted <strong><strong>de</strong>s</strong>ert (sensu Walter, 1963).<br />

25<br />

Fig. 4. CCA biplot of axes 1<br />

and 2 showing the distribution<br />

of the 53 stands with their<br />

TWINSAPN groups<br />

and soil variables.<br />

For abbreviations, see table 2.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

Diversity indices<br />

26<br />

Table 5. Spearman rank correlations (r) b<strong>et</strong>ween the diversity indices<br />

and the studied environmental variables and altitu<strong>de</strong> in the study area.<br />

*= Significant at p


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

References<br />

ABD EL-GHANI, M.M., 1998. Environmental correlates of species<br />

distribution in arid <strong><strong>de</strong>s</strong>ert ecosystems of eastern Egypt.<br />

Journal of Arid Environments, 38: 297-313.<br />

ABD EL-GHANI, M.M., 2000a. Floristics and environmental relations<br />

in two extreme <strong><strong>de</strong>s</strong>ert zones of western Egypt. Global<br />

Ecology and Biogeography, 9: 499-516.<br />

ABD EL-GHANI, M.M., 2000b. Veg<strong>et</strong>ation composition of egyptian<br />

inland salt marshes. Botanical Bull<strong>et</strong>in of Aca<strong>de</strong>mia Sinica,<br />

41: 305-314.<br />

ABD EL-GHANI, M.M. & AMER, W.M., 2003. Soil-veg<strong>et</strong>ation relationships<br />

in a coastal <strong><strong>de</strong>s</strong>ert plain of southern Sinai. Journal<br />

of Arid Environments, 55: 607-628.<br />

ABDEL-RAZIK, M., ABDEL-AZIZ, M. & AYYAD, M., 1984.<br />

Environmental gradients and species distribution in a<br />

transect at Omayed (Egypt). Journal of Arid Environments,<br />

7: 337-352.<br />

ABU-ZIADA, M.E.A., 1980. Ecological studies on the flora of<br />

Kharga and Dakhla oases of the western <strong><strong>de</strong>s</strong>ert of Egypt.<br />

Ph.D. Thesis, Faculty of Science, Mansoura Univ. 342 pp.<br />

ALLEN, M.M. & STAINER, S.T., 1974. Chemical analysis of<br />

Ecological Materials. Blackwell Scientific Publications,<br />

London. 565 pp.<br />

ALLISON, L.E. & MOODIE, C.D., 1965. Carbonates. In: Black, C.A.<br />

<strong>et</strong> al. (eds), M<strong>et</strong>hods of Soil Analysis, Part 2, p. 1379. American<br />

Soci<strong>et</strong>y of Agronomy Incorporation, Madison, USA.<br />

AYYAD, M. A., 1973. Veg<strong>et</strong>ation and environment of the western<br />

<strong>mediterranea</strong>n coastal land of Egypt. I. The habitat of sand<br />

dunes. Journal of Ecology, 61: 509-523.<br />

AYYAD, M., 1976. The veg<strong>et</strong>ation and environment of the western<br />

<strong>mediterranea</strong>n coastal land of Egypt. II. The habitat of<br />

non-saline <strong>de</strong>pressions. Journal of Ecology, 62: 439-456.<br />

AYYAD, M.A. & EL-GHAREEB, R.E., 1982. Salt marsh veg<strong>et</strong>ation<br />

of the western <strong>mediterranea</strong>n <strong><strong>de</strong>s</strong>ert of Egypt. Veg<strong>et</strong>atio, 49:<br />

3-19.<br />

AYYAD, M.A. & EL-KADY, H.F., 1982. Effect of protection and<br />

controlled grazing on the veg<strong>et</strong>ation of <strong>mediterranea</strong>n <strong><strong>de</strong>s</strong>ert<br />

ecosystem in Northern Egypt. Veg<strong>et</strong>atio, 49: 129-139.<br />

AYYAD, M.A. & FAKHRY, A.M., 1996. Plant biodiversity in the<br />

western <strong>mediterranea</strong>n <strong><strong>de</strong>s</strong>ert of Egypt. Verhandlungen <strong>de</strong>r<br />

Gesellschaft für Ökologie, 25: 65-76.<br />

AYYAD, M.A. & GHABBOUR, S.I., 1986. Hot Deserts of Egypt and<br />

Sudan. In: Evenari, M. <strong>et</strong> al. (eds.), Ecosystems of the World,<br />

12B, Hot Deserts and Arid Shrublands. Elsevier, Amsterdam,<br />

pp. 149-202.<br />

BATANOUNY, K.H., 1979. The <strong><strong>de</strong>s</strong>ert veg<strong>et</strong>ation in Egypt. Cairo<br />

University African Studies Review, Special Publication, 1: 9-37.<br />

BORNKAMM, R. & KEHL, H., 1985. Pflanzengeographische<br />

zonen in <strong>de</strong>r Marmarika (Nordwest-Egypten). Flora, 176:<br />

141-151.<br />

BORNKAMM, R. & KEHL, H., 1990. The plant communities of the<br />

western <strong><strong>de</strong>s</strong>ert of Egypt. Phytocoenologia, 19: 149-231.<br />

BOULOS, L., 1995. Flora of Egypt. Check list. Al Hadara Publishing,<br />

Cairo. 283 pp.<br />

BOULOS, L., 1999. Flora of Egypt. Vol. 1. Azollaceae-Oxalidaceae.<br />

Al Hadara Publishing, Cairo. 417 PP.<br />

BOULOS, L., 2000. Flora of Egypt. Vol. 2. Geraniaceae-Bora-ginaceae.<br />

Al Hadara Publishing, Cairo. 352 pp.<br />

BOULOS, L., 2002. Flora of Egypt. Vol. 3. Verbenaceae-Compositae.<br />

Al Hadara Publishing, Cairo. 372 pp.<br />

BRAUN-BLANQUET, J., 1949. Premier apercu phytosociologique<br />

du Sahara Tunisien. Mémoire hors-series <strong>de</strong> la Société d’histoire<br />

naturelle d’Afrique du Nord, 2 : 1-16.<br />

CANFIELD, R., 1941. Application of the line interception m<strong>et</strong>hod<br />

in sampling range veg<strong>et</strong>ation. Journal of Forestry, 39: 288-<br />

294.<br />

COPE, T.A. & HOSNI, H.A., 1991. A Key to Egyptian Grasses.<br />

Royal Botanic Gar<strong>de</strong>ns Kew and Cairo University Herbarium,<br />

London. 75 pp.<br />

EL-DEMERDASH, M., HEGAZY, A.K. & ZILAY, A.M., 1994.<br />

Distribution of the plant communities in Tihamah coastal<br />

plains of Jazan region, Saudi Arabia. Veg<strong>et</strong>atio, 112: 141-<br />

151.<br />

EL GARF, I.A., 2003. Studies on the shallow wadies of the<br />

Mareotis sector of the <strong>mediterranea</strong>n coastal land of Egypt.<br />

I. Floristic features of wady Halazeen. Bull<strong>et</strong>in of the Faculty<br />

of Science, Assiut University, 32 (1-D): 61-71.<br />

EL-GHAREEB, R., 1990. A phytosociological study of Zygophyllum<br />

album L. in the western <strong>mediterranea</strong>n coast of Egypt. Journal<br />

of the University of Kuwait (Science), 17: 143-155.<br />

EL-GHAREEB, R. & HASSAN, I.A., 1989. A phytosociological study<br />

on the inland <strong><strong>de</strong>s</strong>ert plateau of the western <strong>mediterranea</strong>n<br />

<strong><strong>de</strong>s</strong>ert of Egypt at El-Hammam. Journal of Arid Environments,<br />

17: 13-21.<br />

EL HADIDI, M.N., 2000. Geomorphology, climate and phytogeographic<br />

affinities. In: El Hadidi, M.N. & Hosni, H.A. (eds.),<br />

Flora Aegyptiaca, vol. 1, pp. 1-25. The Palm Press and The<br />

Cairo University Herbarium, Cairo, 187 pp.<br />

EL HADIDI, M.N. & AYYAD, M.A., 1975. Floristic and ecological<br />

features of Wadi Habis (Egypt). La Flore du bassin méditerranéen<br />

: essai <strong>de</strong> systématique synthétique, Colloques internationaux<br />

du CNRS, 235 : 247- 258.<br />

EL HADIDI, M.N., ABD EL-GHANI, M.M., SPRINGUEL, I. &<br />

HOFFMAN, M.A., 1986. Wild barley Hor<strong>de</strong>um spontaneum L.<br />

in Egypt. Biological Conservation, 37: 291-300.<br />

EL-KADY, H.F., AYYAD, M. & BORNKAMM, R., 1995. Veg<strong>et</strong>ation<br />

and recent land-use history in the <strong><strong>de</strong>s</strong>ert of Maktala, Egypt.<br />

Advances in GeoEcology, 28: 109-123.<br />

EL-KADY, H.F. & SADEK, L., 1992. On the phytosociology of<br />

wadi Um Ashtan in the western <strong><strong>de</strong>s</strong>ert of Egypt. Fed<strong><strong>de</strong>s</strong> Repertorium,<br />

103: 269-277.<br />

27<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

28<br />

FRANKLIN, J. & MERLIN, M., 1992. Species-environment patterns<br />

of forest veg<strong>et</strong>ation on the uplifted reef limestone of<br />

Atiu, Managia, Ma’uke and Miti’aro, Cook Islands. Journal<br />

of Veg<strong>et</strong>ation Science, 3: 3-14.<br />

GREIG-SMITH, P., 1983. Quantitative Plant Ecology. Third Edition.<br />

Blackwell Scientific Publications, London, 359 pp.<br />

HILL, M.O., 1973. Diversity and evenness: A unifying notation<br />

and its consequences. Ecology, 54: 427-432.<br />

HILL, M.O., 1979. TWINSPAN-A FORTRAN program for<br />

arranging multivariate data in an or<strong>de</strong>red two-way table of<br />

classification of individuals and attributes. Ithaca, NY, Cornell<br />

University. 90 pp.<br />

HILL, M.O. & GAUCH, H.G., 1980. D<strong>et</strong>ren<strong>de</strong>d Correspon<strong>de</strong>nce<br />

Analysis: An improved ordination technique. Veg<strong>et</strong>atio, 42:<br />

47-58.<br />

JACKSON, M.L., 1967. Soil chemical analysis-Advanced course.<br />

Published by the Washington Department of Soil Sciences.<br />

498 pp.<br />

JONGMAN, R.H., TER BRAAK, C.J.F. & VAN TONGEREN, O.F.G.,<br />

1987. Data analysis in community and landscape ecology.<br />

Pudoc (Wageningen), The N<strong>et</strong>herlands. 299 pp.<br />

KAMAL, S.A. & EL-KADY, H.F., 1993. Veg<strong>et</strong>ation analysis of<br />

some wadis in the egyptian <strong>mediterranea</strong>n <strong><strong>de</strong>s</strong>ert. Fed<strong><strong>de</strong>s</strong><br />

Repertorium, 104: 537-545.<br />

KASSAS, M., 1957. On the ecology of the Red Sea coastal land.<br />

Journal of Ecology, 45: 187-203.<br />

KASSAS, M., 1966. Plant life in <strong><strong>de</strong>s</strong>erts. In: Hills, E.S. (ed.),<br />

Arid Lands, pp. 145-180. London, Mathuen/Paris, Unesco,<br />

461 pp.<br />

KILLIAN, C. & LEMÉE, G., 1948. Étu<strong>de</strong> sociologique, morphologique<br />

<strong>et</strong> écologique <strong>de</strong> quelques halophytes sahariens. Revue<br />

<strong>de</strong> Génétique <strong>et</strong> <strong>de</strong> Botanique, 55 : 376-402.<br />

LUDWIG, J.A. & REYNOLD, J.F., 1988. Statistical Ecology. John<br />

Wiley, New York, 337 pp.<br />

MAIRE, R. & WEILLER, M., 1947. Remarque sur la flore <strong>et</strong> la végétation<br />

<strong>de</strong> la Tripolitaine <strong>et</strong> <strong>de</strong> la Cyrénaïque septentrionales.<br />

Recueil <strong>de</strong> Travaux <strong>de</strong> l’Institut <strong>de</strong> botanique, Montpellier, 3 :<br />

1-17.<br />

MARYAM, H., ISMAIL, S., ALAA, F. & AHMED, R., 1995. Studies<br />

on growth and salt regulation in some halophytes as influenced<br />

by edaphic and climatic conditions. Pakistan Journal of<br />

Botany, 27: 151-163.<br />

MCCUNE, B. & MEFFORD, M.J., 1999. PC-ORD for windows.<br />

Multivariate Analysis of Ecological Data. Version 4.14. User’s<br />

Gui<strong>de</strong>. MjM Software, Oregon, USA. 237 pp.<br />

MCDONALD, D.J., COWLING, R.M. & BOUCHER, C., 1996.<br />

Veg<strong>et</strong>ation-environment relationships on a species-rich<br />

coastal mountain range in the fynobs biome (South Africa).<br />

Veg<strong>et</strong>atio, 123:165-182.<br />

MIGAHID, A.M., BATANOUNY, K.H. & ZAKI, M.A.F., 1971.<br />

Phytosociological and ecological study of a sector in the<br />

<strong>mediterranea</strong>n coastal region in Egypt. Veg<strong>et</strong>atio, 23: 113-<br />

134.<br />

MONOD, TH., 1954. Mo<strong>de</strong> contracté <strong>et</strong> diffus <strong>de</strong> la végétation<br />

saharienne. In: Cloudsley-Thompson, J.L. (ed.), Biology of<br />

Desert, pp. 35-44. Institute of Biology, London. 224 pp.<br />

NAVEH, H. & WHITTAKER, R.H., 1979. Structural and floristic<br />

diversity of shrublands and woodlands in northern Israel and<br />

other Mediterranean areas. Veg<strong>et</strong>atio, 41: 171-190.<br />

NAVIKOFF, G., 1961. Contribution a l’étu<strong>de</strong> <strong><strong>de</strong>s</strong> relations entre le<br />

sol <strong>et</strong> la végétation halophile <strong>de</strong> la Tunisie. Annales <strong>de</strong> l’Institut<br />

national <strong>de</strong> la recherche agronomique <strong>de</strong> Tunisie, 34 : 90-114.<br />

ØKLAND, R.H., 1990. Veg<strong>et</strong>ation ecology: theory, m<strong>et</strong>hods and<br />

applications with reference to Fennoscandia. Sommerf<strong>et</strong>tia<br />

Supplement, 1: 1-216.<br />

PIELOU, E.C., 1975. Ecological Diversity. Wiley, New York. 165 pp.<br />

PIGNATTI, E. & PIGNATTI, S., 1989. Life forms and phytogeographical<br />

affinities of the Canarian flora. Flora, 183: 87-95.<br />

QUÉZEL, P., 1978. Analysis of the flora of <strong>mediterranea</strong>n and<br />

saharan Africa. Annals of the Missouri Botanical Gar<strong>de</strong>n, 65:<br />

479-534.<br />

RAGONESE, A. & COVAS, G., 1947. The halophilous flora of<br />

southern Santa Fe province (Argentina). Darwiniana, 7: 40-<br />

496.<br />

SALAMA, F.M., ABD EL-GHANI, M.M., EL-NAGGAR, S.M. &<br />

BAAYO, K.A., 2003. Floristic composition and chorological<br />

analysis of the Sallum area, west <strong>mediterranea</strong>n Egypt.<br />

Journal of Union Arab Biologists Cairo, 13 (B): 27-47.<br />

SALAMA, F.M. & FAYED, A.A., 1990. Phytosociological study<br />

on the <strong>de</strong>ltaic part and the principal channel of wadi Qena,<br />

Egypt. Fed<strong><strong>de</strong>s</strong> Repertorium, 101: 89-96.<br />

SELIM, A.A., 1969. Geology of El-Salum Area, western Mediterranean<br />

coastal zone, UAR. Ph.D. Thesis, Alexandria<br />

University.<br />

SHALTOUT, K.H., 1985. On the diversity of the veg<strong>et</strong>ation in the<br />

western <strong>mediterranea</strong>n coastal region of Egypt. Proceedings<br />

of the Egyptian Botanical Soci<strong>et</strong>y, 4: 1355-1376.<br />

SHALTOUT, K.H. & EL-GHAREEB, R., 1992. Diversity of the<br />

salt marsh plant communities in the western <strong>mediterranea</strong>n<br />

region of Egypt. Journal of the University of Kuwait (Science),<br />

19: 75-84.<br />

SHARAF EL DIN, A. & SHALTOUT, K.H., 1985. On the<br />

phytosociology of Wadi Araba in the eastern <strong><strong>de</strong>s</strong>ert of Egypt.<br />

Proceedings of the Egyptian Botanical Soci<strong>et</strong>y, 4: 1311-1325.<br />

SIMMONEAU, P., 1954. La végétation <strong>de</strong> sols salés d’Oranie. Les<br />

groupements à Atriplex dans les plaines sublittorales. Annales<br />

d’Agronomie, 2: 226-257.<br />

TADROS, T.M. & ATTA, B.M., 1958. Further contribution to<br />

the sociology and ecology of halophilous communities of<br />

Mareotis (Egypt). Veg<strong>et</strong>atio, 8: 137-160.<br />

TADROS, T.M. & EL-SHARKAWI, H.M., 1960. Phytosociological<br />

and ecological studies on the veg<strong>et</strong>ation of Fuka-Ras El Hekma<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

area. II. Consistency and homogeneity of the open <strong><strong>de</strong>s</strong>ert communities.<br />

Bull<strong>et</strong>in <strong>de</strong> l’Institut du Désert d’Egypte, 10: 61–63.<br />

TÄCKHOLM, V., 1974. Stu<strong>de</strong>nts’ Flora of Egypt (2 nd Edn.). Cairo<br />

University (Publ.) & Cooperative Printing Company, Beirut.<br />

888 pp.<br />

TAN, K. H., 1996. Soil Sampling, Preparation and Analysis. Marcel<br />

Dekker Inc. New York, USA.<br />

TER BRAAK, C.J.F., 1986. Canonical correspon<strong>de</strong>nce analysis: a<br />

new eigenvector technique for multivariate direct gradient<br />

analysis. Ecology, 67: 1167-1179.<br />

TER BRAAK, C.J.F., 1987-1992. Canoco-a fortran program for<br />

Canonical Community Ordination. Micro-computer Power,<br />

Ithaca, NY.<br />

TER BRAAK, C.J.F. & PRENTICE, I.C., 1988. A theory of gradient<br />

analysis. Advances in Ecological Researches, 18: 271-317.<br />

TIELBÖRGER, K., 1997. The veg<strong>et</strong>ation of linear <strong><strong>de</strong>s</strong>ert dunes in<br />

the north-western Negev, Israel. Flora, 192: 261-278.<br />

UNGAR, I.A., 1968. Species-soil-relationships on the great salt<br />

plains of northern Oklahoma. American Midland Naturalist,<br />

80: 392-406.<br />

UNGAR, I., 1974. Halophyte communities of Park county,<br />

Colorado. Bull<strong>et</strong>in of the Torrey Botanical Club, 101: 145-152.<br />

WALTER, H., 1963. Water supply of <strong><strong>de</strong>s</strong>ert plants. In: Rutter,<br />

A.J. & Whitehead, E.H. (eds.), The Water Relations of Plants,<br />

pp. 199-205. Blackwell, London. 394 pp.<br />

WHITE, F., 1993. The AETFAT chorological classification of<br />

Africa: History, m<strong>et</strong>hods and applications. Bull<strong>et</strong>in du Jardin<br />

botanique national <strong>de</strong> Belgique, 62: 225-281.<br />

WHITE, F. & LÉONARD, J., 1991. Phytogeographical links b<strong>et</strong>ween<br />

Africa and southwest Asia. Flora <strong>et</strong> Veg<strong>et</strong>atio Mundi, 9: 229-<br />

246.<br />

WHITTAKER, R.H., 1972. Evolution and measurement of species<br />

diversity. Taxon, 21: 213-251.<br />

WICKENS, G.E., 1992. Arid and semiarid ecosystems. Encyclopedia<br />

of Earth System Science, 1: 113-118.<br />

YAIR, A. & DANIN, A., 1980. Spatial variation as related to the<br />

soil moisture regime over an arid limestone hillsi<strong>de</strong>, northern<br />

Negev, Israel. Œcologia, 47: 83-88.<br />

ZAHRAN, M.A., EL-DEMERDASH, M.A. & MASHALY, I.A., 1990.<br />

Veg<strong>et</strong>ation types of the <strong>de</strong>ltaic <strong>mediterranea</strong>n coast of Egypt<br />

and their environment. Journal of Veg<strong>et</strong>ation Science, 1: 301-<br />

310.<br />

ZAHRAN, M.A., MURPHY, K.J., MASHALY, I.A. & KHEDR, A.A.,<br />

1996. On the ecology of some halophytes and psammophytes<br />

in the <strong>mediterranea</strong>n coast of Egypt. Verhandlungen <strong>de</strong>r<br />

Gesellschaft für Ökologie, 25: 133-146.<br />

ZAHRAN, M.A. & WILLIS, A.J., 1992. The Veg<strong>et</strong>ation of Egypt.<br />

Chapman & Hall, London. 424 pp.<br />

ZOHARY, M., 1962. Plant Life in Palestine. Ronald Press, New<br />

York. 262 pp.<br />

ZOHARY, M., 1973. Geobotanical Foundations of the Middle East.<br />

Vols 1-2. Gustav Fischer Verlag, Stuttgart.739 pp.<br />

29<br />

APPENDIX<br />

Species<br />

Anabasis articulata (Forssk.) Moq.<br />

Arthrocnemum macrostachyum (Moric.) K. Koch<br />

Atriplex portulacoi<strong><strong>de</strong>s</strong> L.<br />

Deverra tortuosa (Desf.) DC.<br />

Halocnemum strobilaceum (Pall. ) M. Bieb.<br />

Helianthemum lippii (L.) Dum. Cours.<br />

Lycium europaeum L.<br />

R<strong>et</strong>ama ra<strong>et</strong>am (Forssk.) Webb & Berthel.<br />

Salsola t<strong>et</strong>randra Forssk.<br />

Thymelaea hirsuta (L.) Endl.<br />

Zygophyllum album L.<br />

Abbreviations<br />

Aa<br />

Am<br />

Ap<br />

Dt<br />

Hs<br />

Hl<br />

Ll<br />

Rr<br />

St<br />

Th<br />

Za<br />

Appendix 1. Names and abbreviations of the indicator<br />

species displayed in figure 2. First l<strong>et</strong>ter for the genus<br />

and the second for the species.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

30<br />

Family Species Life form Chorotype<br />

Amaryllidaceae Pancratium maritimum L. Cr MED<br />

Apiaceae<br />

Bupleurum lancifolium Hornem. Th MED+IT<br />

Deverra tortuosa (Desf.) DC. Ch SA<br />

Asclepiadaceae Periploca angustifolia Labill. NPh SA+SZ<br />

Anthemis microsperma Boiss. & Kotschy Th MED<br />

Artemisia judaica L. Ch SA<br />

Atractylis carduus (Frossk.) C. Chr. H MED+SA<br />

Carduncellus mareoticus (Delile) Hanelt Th SA<br />

Carthamus glaucus M. Bieb. Th MED<br />

Centaurea glomerata Vahl Th SA<br />

Chilia<strong>de</strong>nus candicans (Delile) Brullo H MED+IT<br />

Asteraceae<br />

Echinops sipnosus L. H IT<br />

Hyoseris radiata L. subsp. graeca Halácsy Cr MED<br />

Hyoseris scabra L. Cr MED<br />

Koelpinia linearis Pall. Th SA+IT<br />

Launaea nudicaulis (L.) Hook. F. H SA+SZ+IT<br />

Launaea fragilis (Asso) Pau H SA<br />

Phagnalon barbeyanum Asch. & Schweinf. Ch SA<br />

Reichardia tingitana (L.) Roth Th SA+IT<br />

Scorzonera undulata Vahl Cr MED+IT<br />

Arnebia <strong>de</strong>cumbens (Vent) Coss. & Kralik Th SA+IT<br />

Boraginaceae<br />

Echiochilon fruticosum Desf. Ch SA<br />

Heliotropium lasiocarpum Fisch. & C.A. Mey. Ch MED+IT+ES<br />

Brassica tournefortii Gouan Th MED+SA<br />

Carrichtera annua (L.) DC. Th SA<br />

Enarthrocarpus lyratus (Forssk.) DC. Th MED<br />

Brassicaceae<br />

Erucaria microcarpa Boiss. Ch MED+IT<br />

Fars<strong>et</strong>ia aegyptia Turra Ch SA+SZ<br />

Sisymbrium irio L. Th MED+SA+IT<br />

Zilla spinosa (L.) Prantl. subsp. biparmata (O.E.Schulz) Maire & Weiller Ch SA<br />

Gymnocarpos <strong>de</strong>candrus Forssk. Ch MED+SA<br />

Herniaria hemistemon J. Gay H SA<br />

Caryophyllaceae<br />

Paronychia arabica (L.) DC. Th SA<br />

Silene succulenta Forssk. H MED<br />

Silene vivianii Steud. Th SA<br />

Anabasis articulata (Forssk.) Moq. Ch SA+IT<br />

Arthrocnemum macrostachyum (Moric.) K. Koch Ch MED+SA<br />

Atriplex halimus L. NPh MED+IT<br />

Atriplex portulacoi<strong><strong>de</strong>s</strong> L. Ch COSM<br />

Chenopodiaceae<br />

Bassia muricata (L.) Asch. Th SA+IT<br />

Halocnemum strobilaceum (Pall.) M. Bieb. Ch MED+SA+IT<br />

Haloxylon salicorincum (Moq.) Bunge ex Boiss. Ch SZ<br />

Noaea mucronata (Forssk.) Asch. & Schweinf. Ch MED+IT<br />

Salsola kali L. Th PAL<br />

Suaeda pruinosa Lange Ch MED<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


VEGETATION STRUCTURE AND ENVIRONMENTAL GRADIENTS IN THE SALLUM AREA, EGYPT ◆<br />

Cistaceae Helianthemum lippii (L.) Dum. Cours. Ch SA+SZ<br />

Convolvulaceae Convolvulus arvensis L. H COSM<br />

Cucurbitaceae Citrullus colocynthis (L.) Schrad. H SA<br />

Euphorbiaceae<br />

Euphorbia <strong>de</strong>ndroi<strong><strong>de</strong>s</strong> L. Ch MED<br />

Euphorbia r<strong>et</strong>usa Forssk. H SA<br />

Argyrolobium uniflorum (Decne.) Jaub. & Spach. Ch MED+SA+SZ<br />

Astragalus caprinus L. H SA<br />

Astragalus hamosus L. Th MED+IT<br />

Astragalus hispidulus DC. Th SA<br />

Astragalus peregrinus Vahl Th SA<br />

Astragalus schimperi Boiss. Th SA<br />

Astragalus sieberi DC. Ch SA<br />

Astragalus spinosus (Forssk.) Muschl. Ch SA+IT<br />

Fabaceae<br />

Lotus angustissimus L. Th MED+ES<br />

Lotus cr<strong>et</strong>icus L. H MED<br />

Lotus polyphllos E.D. Clarke H MED<br />

Medicago coronata (L.) Bartal. Th MED+IT<br />

Medicago laciniata (L.) Mill. Th SA<br />

Ononis vaginalis Vahl Ch SA+IT<br />

R<strong>et</strong>ama ra<strong>et</strong>am (Forssk.)Webb & Berthel. NPh MED+SA+IT<br />

Trigonella stellata Forssk. Th SA+IT<br />

Frankeniaceae Frankenia hirsuta L. H MED+IT+ES<br />

Erodium crassifolium L’Hér. Cr SA<br />

Geraniaceae<br />

Erodium laciniatum (Cav.) Willd. Th MED<br />

Erodium pulverulentum (Cav.) Wiild. Th SA<br />

Globulariaceae Globularia arabica Jaub. & Spach. Ch MED+SA<br />

Juncaceae<br />

Juncus acutus L. Cr COSM<br />

Juncus rigidus Desf. Cr MED+IT+ES<br />

Ajuga iva (L.) Schreb. H MED<br />

Lamiaceae<br />

Marrubium alysson L. Th MED+SA<br />

Salvia lanigera Poir. H MED+SA<br />

Asparagus aphyllus L. Cr MED<br />

Liliaceae<br />

Asparagus stipularis Forssk. Cr MED+SA<br />

Aspho<strong>de</strong>lus ramosus L. Cr MED<br />

Aspho<strong>de</strong>lus tenuifolius Cav. Th MED+SA+SZ<br />

Iridaceae Gynandriris sisyrinchium (L.) Parl. Cr MED<br />

Malvaceae Malva parviflora L. Th MED<br />

Neuradaceae Neurada procumbens L. Th SA<br />

Plantaginaceae Plantago albicans L. H MED+SA<br />

Limoniastrum monop<strong>et</strong>alum (L.) Boiss. Ch MED<br />

Plumbaginaceae<br />

Limonium narbonense Mill. H MED<br />

Limonium pruinosum (L.) Chaz. H SA<br />

31<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 15-32


◆ FAWZY M. SALAMA, MONIER M. ABD EL-GHANI, SALAH M. EL-NAGGAR, KHADIJA A. BAAYO<br />

32<br />

Aeluropus lagopoi<strong><strong>de</strong>s</strong> (L.) Trin. ex Thwaites Cr MED+IT<br />

Ammophila arenaria (L.) Link Cr MED<br />

Cynodon dactylon (L.) Pers. Cr COSM<br />

Cutandia memphitica (Sperng.) K. Richt. Th MED+SA+IT<br />

Poaceae<br />

Hor<strong>de</strong>um murinum L. subsp. leporinum (Link) Arcang. Th MED+IT<br />

Lygeum spartum Loefl. ex L. Cr MED<br />

Schismus barbatus (L.) Thell. Th SA+IT<br />

Sporobolus spicatus (Vahl) Kunth Cr MED+SA+SZ<br />

Stipa parviflora Desf. H MED+IT<br />

Resedaceae Reseda alba L. Th MED+IT<br />

Rubiaceae<br />

Galium tricornutum Dandy Th MED+IT+ES<br />

Crucianella maritima L. H MED<br />

Rutaceae Haplophyllum tuberculatum (Forssk.) Juss. H SA<br />

Santalaceae Thesium humile Vahl P MED<br />

Scrophulariaceae<br />

Kickxia aegyptiaca (L.) Nábelek Ch SA<br />

Verbascum l<strong>et</strong>ourneuxii Asch. & Schweinf. H MED<br />

Solanaceae<br />

Hyoscyamus muticus L. H SA+IT+SZ<br />

Lycium europaeum L. NPh MED+SA<br />

Tamaricaceae Reaumuria hirtella Janb. & Spach. Ch MED+IT<br />

Thymelaeaceae Thymelaea hirsuta (L.) Endl. NPh MED+SA<br />

Fagonia microphlla Pomel Ch SA+IT<br />

Zygophyllaceae<br />

Nitraria r<strong>et</strong>usa (Forssk.) Asch. NPh SA+SZ<br />

Peganum harmala L. H MED+SA+IT<br />

Zygophyllum album L.f. Ch MED+SA<br />

Appendix 2. Distribution of plant species recor<strong>de</strong>d in the Sallum area, tog<strong>et</strong>her with their life forms and chorotypes.<br />

Chorotype abbreviations: MED= Mediterranean, SA= Saharo-Arabian, IT = Irano-Turanian, SZ= Sudano-Zambezian,<br />

ES= Euro-Siberian, COSM= Cosmopolitan and PAL= Palaeotopical. Life-form Abbreviations: Th= Therophytes, Ch= Chamaephytes,<br />

H= Hemicryptophytes, Cr= Cryptophytes, P= Parasites and NPh= Nano-Phanerophytes.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


Phenological patterns of ground spi<strong>de</strong>rs (Araneae, Gnaphosidae)<br />

on Cr<strong>et</strong>e, Greece<br />

Phénologie <strong><strong>de</strong>s</strong> araignées édaphiques (Araneae, Gnaphosidae)<br />

en Crète, Grèce<br />

M. Chatzaki 1-2 , G. Markakis 3 & M. Mylonas 1-2<br />

1. Natural History Museum of Cr<strong>et</strong>e, University of Cr<strong>et</strong>e, Irakleio, Greece<br />

2. Department of Biology, University of Cr<strong>et</strong>e, Irakleio, Greece<br />

3. Technological Education Institute of Cr<strong>et</strong>e, Irakleio, Greece<br />

Correspon<strong>de</strong>nce: M. Chatzaki, Natural History Museum of Cr<strong>et</strong>e, University of Cr<strong>et</strong>e, PO Box 2208, 71409 Irakleio, Cr<strong>et</strong>e, Greece.<br />

E-mail: mchatzak@nhmc.uoc.gr<br />

33<br />

Summary<br />

The phenology of one of the dominant families of ground spi<strong>de</strong>rs<br />

of Greece and along the whole Mediterranean, the Gnaphosidae,<br />

is presented. Phenological patterns of the 11 most common and<br />

abundant species of this family are compared in relation to each<br />

other and b<strong>et</strong>ween 17 sites situated on the island of Cr<strong>et</strong>e, Greece. A<br />

major difference b<strong>et</strong>ween lowland and high elevation sites is recor<strong>de</strong>d<br />

for some species. This difference is attributed to a restriction of<br />

activity and/or a shifting of one to two months towards the summer<br />

and early autumn. Based on the similarities which exist among<br />

species a mo<strong>de</strong>l that <strong><strong>de</strong>s</strong>cribes phenological patterns of ground spi<strong>de</strong>rs<br />

in Mediterranean ecosystems is proposed. Most species present<br />

single peaks of activity during the dry period, from mid spring to<br />

mid autumn, which lead to a spectrum of high activity within this<br />

period. Most Gnaphosidae species on Cr<strong>et</strong>e are consi<strong>de</strong>red to be<br />

high comp<strong>et</strong>itors, which can very efficiently take advantage of the<br />

favourable period for this area. Based on their phenology, it is conjectured<br />

that they either have annual biological cycles or that they<br />

may produce two generations per year, although, in other latitu<strong><strong>de</strong>s</strong>,<br />

the same species may have biennial cycles. The flexibility of species,<br />

as far as their presence in both time and space is concerned, reveals<br />

the combined effect of their own physiological tolerance and the<br />

environmental h<strong>et</strong>erogeneity in their niche <strong>de</strong>finition.<br />

Key-words<br />

Ground spi<strong>de</strong>rs, Gnaphosidae, Cr<strong>et</strong>e, Greece, Mediterranean,<br />

phenology<br />

Résumé<br />

La phénologie <strong><strong>de</strong>s</strong> araignées Gnaphosidae, une <strong><strong>de</strong>s</strong> familles<br />

dominantes en Crète <strong>et</strong> dans toute la Méditerranée est analysée.<br />

La phénologie <strong><strong>de</strong>s</strong> onze espèces les plus communes est comparée <strong>et</strong><br />

leur stabilité entre les 17 sites <strong>de</strong> rêcolte est testée. La plupart <strong><strong>de</strong>s</strong><br />

espèces présentent un seul somm<strong>et</strong> d’activité pendant la pério<strong>de</strong><br />

sèche d’avril à octobre, formant un spectre <strong>de</strong> gran<strong>de</strong> activité tout<br />

au long <strong>de</strong> c<strong>et</strong>te pério<strong>de</strong>. Une différence entre les régions <strong>de</strong> plaine<br />

<strong>et</strong> <strong>de</strong> montagne est notée pour quelques espèces. C<strong>et</strong>te différence est<br />

attribuée à une diminution <strong>de</strong> l’activité <strong>et</strong>/ou un décalage d’un ou<br />

<strong>de</strong>ux mois vers l’été <strong>et</strong> le début <strong>de</strong> l’automne. Basé sur les similarités<br />

qui existent entre les espèces, un modèle définissant les combinaisons<br />

phénologiques <strong><strong>de</strong>s</strong> araignées du sol dans les écosystèmes méditerranéens<br />

est proposé. La plupart <strong><strong>de</strong>s</strong> Gnaphosidae <strong>de</strong> Crète sont considérées<br />

comme <strong>de</strong> grands compétiteurs qui peuvent tirer avantage <strong>de</strong><br />

c<strong>et</strong>te pério<strong>de</strong> favorable. Elles présentent soit <strong><strong>de</strong>s</strong> cycles annuels, soit<br />

<strong>de</strong>ux générations par an, alors que sous d’autres latitu<strong><strong>de</strong>s</strong>, les mêmes<br />

espèces ont un cycle biannuel. La fléxibilité <strong><strong>de</strong>s</strong> espèces révèle l’eff<strong>et</strong><br />

combiné <strong>de</strong> leur propre tolérance physiologique <strong>et</strong> <strong>de</strong> l’hétérogénéité<br />

environnementale <strong>de</strong> leur niche écologique.<br />

Mots-clés<br />

Araignées du sol, Gnaphosidae, Crète, Grèce, Méditerranée,<br />

phénologie<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

34<br />

INTRODUCTION<br />

Seasonality in climate is reflected in the activity of<br />

organisms. Varying activity of animals b<strong>et</strong>ween seasons<br />

is interrelated (in the sense of mutual causality) with<br />

the coexistence of groups sharing the same or similar<br />

food resources in the same environment (Tr<strong>et</strong>zel, 1954;<br />

Kuenzler, 1958; Williams, 1962; Breymeyer, 1966;<br />

Dondale <strong>et</strong> al., 1972; Milner, 1988; Pianka, 1994; Majadas<br />

& Urones, 2002). In Mediterranean climates seasonality<br />

is very clear. Organisms are confronted with two periods<br />

of stress (Mitrakos, 1980): one in the winter, due to<br />

low temperatures, and one in the summer, due to high<br />

drought. The two other seasons – autumn and spring –<br />

are the transitional phases b<strong>et</strong>ween the above seasons.<br />

Spi<strong>de</strong>rs are very tolerant to both kinds of climatic<br />

stress, i.e. high/low temperatures and aridity, and that is<br />

why they constitute the main group of ground predators<br />

throughout the year in most types of Mediterranean<br />

habitats (Paraschi, 1988; Ra<strong>de</strong>a, 1993). Although<br />

maximum species richness and activity in all studies<br />

of seasonal variation of most terrestrial organisms<br />

correspond to the warmest period of the year from<br />

mid-spring to mid-autumn (Majadas & Urones, 2002),<br />

irrespective of latitu<strong>de</strong>, elevation or habitat type (Bigot &<br />

Bodot, 1972; Hagvar <strong>et</strong> al., 1978; Paraschi, 1988; Lamotte<br />

& Blandin, 1989; Ra<strong>de</strong>a, 1993; Deltshev & Blagoev, 1994;<br />

Assi, 1998; Chatzaki, 1998; Chatzaki <strong>et</strong> al., 1998), the<br />

winter activity of spi<strong>de</strong>rs is also very important and it is<br />

mostly restricted to the families Linyphiidae, Dys<strong>de</strong>ridae,<br />

Clubionidae and Lycosidae (Schaefer, 1977; Ra<strong>de</strong>a,<br />

1993; Chatzaki <strong>et</strong> al., 1998).<br />

Organisms are able to withstand low temperatures of<br />

the winter in several ways:<br />

a) by using physiological adaptations, such as<br />

reduction of m<strong>et</strong>abolic rate to a negligible amount,<br />

or cryptobiosis (Barra <strong>et</strong> al., 1989), and lowering of<br />

the supercooling point, by accumulating antifreezing<br />

compounds (Block, 1996; Sømme, 1996),<br />

b) by using behavioral adaptations, such as winter<br />

diapause, restriction of activity, vertical migrations<br />

and search for winter r<strong>et</strong>reats (Stamou, 1998),<br />

c) by synchronizing their biological cycle with the<br />

seasons and overwintering in the egg phase, which<br />

is the most tolerant <strong>de</strong>velopmental stage (Schaefer,<br />

1977; Aitchison, 1984).<br />

Spi<strong>de</strong>rs which are active during the dry period<br />

increase their hunting activity at night 1 , r<strong>et</strong>reating to<br />

shady places (un<strong>de</strong>r stones, rocks or litter) during<br />

the day, or use vertical migrations to more favourable<br />

microenvironments (Duffey, 1968; Di Castri & Vitali, Di<br />

Castri, 1981; Cloudsley-Thompson, 1982; Lamotte &<br />

Blandin, 1989), in or<strong>de</strong>r to withstand the limiting factors<br />

of this period. Cryptobiosis and aestivation are also<br />

types of physiological adaptations to the summer stress,<br />

but these probably concern organisms which are more<br />

vulnerable to aridity than spi<strong>de</strong>rs (Stamou, 1998).<br />

Seasonality in the activity of spi<strong>de</strong>rs (Cloudsley-<br />

Thompson, 1978), as well as of most invertebrates<br />

(Pearson & White, 1964; Iatrou & Stamou, 1989;<br />

Lamotte & Blandin, 1989; Stamou, 1998), is mainly<br />

influenced by photoperiod and temperature, in relation<br />

to the physiological tolerance of individual species to<br />

temperature and humidity. These are the main factors<br />

controlling survival (Wise, 1993). However, experimental<br />

data has shown that prey <strong>de</strong>nsities (i.e. Diptera, Isopoda,<br />

Thysanura, Acarea, Collembola and Psocoptera) are<br />

important factors, which influence the abundance of<br />

spi<strong>de</strong>rs more than abiotic factors (i.e. air temperature,<br />

humidity and precipitation) in a pine forest on the island<br />

of Skopelos, Greece (Ra<strong>de</strong>a, 1993 and references therein).<br />

The latter affect spi<strong>de</strong>r <strong>de</strong>nsities only in an indirect way.<br />

The observation that the majority of species overwinter<br />

as immatures, and not as eggs, in or<strong>de</strong>r to be able to take<br />

advantage of the available prey early in the spring, shows<br />

that, <strong><strong>de</strong>s</strong>pite the harshness of the climate during winter,<br />

the main d<strong>et</strong>ermining factor of the biological cycles of<br />

spi<strong>de</strong>rs is food availability (Schaefer, 1977). For most<br />

arachnid species, the increase in availability of food and<br />

in daylight, enhance reproduction towards the end of<br />

spring and lead to an increase in their activity at that<br />

time (Coulson <strong>et</strong> al., 1975; Paraschi, 1988; Majadas &<br />

Urones, 2002).<br />

There are several patterns in the literature which<br />

<strong><strong>de</strong>s</strong>cribe the seasonal variation of spi<strong>de</strong>rs. According to<br />

Aitchison (1984) the following categorization is used as<br />

a standard:<br />

a) eurychronus species, having adults present<br />

during the whole or most of the year. This pattern was<br />

earlier <strong>de</strong>fined as diplochronism by Tr<strong>et</strong>zel (1954) to<br />

<strong><strong>de</strong>s</strong>cribe the double peak of activity in males, observed<br />

from pitfall traps collections. It is not clear when the<br />

reproductive period(s) of this pattern occurs (Toft,<br />

1. Nocturnal activity is common in most arachnids, especially those of the arid or semi-arid ecosystems. It is related to biotic (predation<br />

avoidance) and abiotic (reduction of water loss) factors (Cloudsley-Thompson, 1978).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

1976; Milner, 1988) and in general there is more than<br />

one type of biological cycle that could explain it, i.e.<br />

half, one or two years (Toft, 1976).<br />

b) stenochronous species, having adults present<br />

at a certain time of the year that corresponds to the<br />

reproductive period. Depending on the season when<br />

this happens, the pattern may be further divi<strong>de</strong>d to<br />

spring, summer and autumn stenochronous (Schaefer,<br />

1977; Foelix, 1981). When pitfall traps are used, these<br />

patterns are represented by one peak of male activity,<br />

indicating a search for females and copulation,<br />

followed by (or almost at the same time) a peak in<br />

female activity, indicating the intense search for food<br />

(Tr<strong>et</strong>zel, 1954) and/or for finding suitable places<br />

(Duffey, 1956) just prior to egg <strong>de</strong>position. Usually,<br />

this is followed by an increase of immature stages that<br />

represent the following generation. These patterns may<br />

be attributed to annual or biennial cycles. In the latter<br />

case, mature individuals are observed for a longer<br />

period (from may to october) but each generation<br />

matures in two years, whilst reproduction takes place<br />

in a shorter period (june-july) (Toft, 1976).<br />

c) winter-active species which are mostly active and<br />

reproduce during winter months.<br />

Studies analyzing the phenology of spi<strong>de</strong>rs at species<br />

level in Mediterranean ecosystems are very scarce (Assi,<br />

1986; Majadas & Urones, 2002). Other studies have<br />

been carried out at family level (Bigot & Bodot, 1972;<br />

Christophe, 1974; Paraschi, 1988; Chatzaki <strong>et</strong> al., 1998)<br />

or refer to different bioclimatic zones (Tr<strong>et</strong>zel, 1954;<br />

Toft, 1976; Aitchison, 1984; Milner, 1988; Deltshev &<br />

Blagoev, 1994). Although not shown earlier, it is unlikely<br />

that studies based on family level, albeit indicative of the<br />

actual phenological patterns of the taxa, are sufficient to<br />

account for the seasonal variation of ground spi<strong>de</strong>rs in<br />

Mediterranean ecosystems, since this is directly linked<br />

to the species’ biological cycles and to the climate of<br />

a region. In this study the phenology of one of the<br />

dominant families of ground spi<strong>de</strong>rs, Gnaphosidae, is<br />

presented. Phenological patterns of the 11 most common<br />

and abundant species of Cr<strong>et</strong>e, Greece are compared in<br />

relation to each other and among the 17 sites of the study<br />

area. The main goal of the present study is to answer the<br />

following questions:<br />

1. What is the phenological pattern followed by each<br />

one of the dominant species of the family Gnaphosidae<br />

on Cr<strong>et</strong>e?<br />

2. How stable is this pattern along the sites of Cr<strong>et</strong>e,<br />

knowing that there is great habitat and climate<br />

h<strong>et</strong>erogeneity along this island? What are the main<br />

reasons for any possible variation?<br />

3. What is the phenological pattern of the family as<br />

a whole at each site and how informative can this<br />

pattern be?<br />

MATERIALS AND METHODS<br />

Study area<br />

Cr<strong>et</strong>e is the largest island of the south Aegean island<br />

arc and is situated at its centre (34°.50’-35°.40’N latitu<strong>de</strong>,<br />

23°.30’-26°.20’E longitu<strong>de</strong>). It is the fifth largest island<br />

in the Mediterranean, after Sicily, Sardinia, Cyprus<br />

and Corsica, with total area covering 8.261 km 2 . Cr<strong>et</strong>e<br />

presents great geomorphological variation, being a<br />

“miniature continent”, as Rackham & Moody (1996)<br />

very illustratively report. Even within such a small area,<br />

a great vari<strong>et</strong>y of habitats and climatic factors are present,<br />

ranging from the insular character of the coasts to a fully<br />

continental character in the centre, where three main<br />

mountains of high altitu<strong>de</strong> (peaks of 2 000-2 400 m)<br />

exist: Lefka Ori in the western part, Psiloreitis in the<br />

central part and Lasithiotika Ori (Dikti and Thrypti) in<br />

the eastern part. As far as landscape, climate, veg<strong>et</strong>ation<br />

and human impact are concerned, Cr<strong>et</strong>e is very<br />

asymm<strong>et</strong>rical along its main axes, north-south, west-east<br />

and along the altitudinal gradients.<br />

Climate. The climate of Cr<strong>et</strong>e is typical Mediterranean,<br />

with 5-7 months of arid, hot and dry summers, alternating<br />

with smaller periods of rainy, mild winters. Along the<br />

main axes of the island there is a remarkable gradient<br />

of temperature, precipitation, winds and humidity. The<br />

south, east and inland lowlands are warmer and drier than<br />

the rest of regions (Rackham & Moody, 1996).<br />

Mean annual temperatures are 2 °C higher in the south<br />

than in the north of Cr<strong>et</strong>e (Pennas, 1977) and they fall by<br />

6 °C per 1 000 m altitu<strong>de</strong> (Grove <strong>et</strong> al., 1991). The range<br />

of temperatures is much narrower near the coasts than<br />

in the mountains, due to the more maritime character of<br />

the former (Strid, 1995). The southeastern coast of Cr<strong>et</strong>e<br />

is the warmest and most arid area throughout Greece<br />

(relative humidity can be as low as 20 % in the summer),<br />

while the northwestern parts of Lefka Ori belong to the<br />

more humid zones (Pennas, 1977; Strid, 1995).<br />

Mean annual precipitation for Cr<strong>et</strong>e is 400-650 mm.<br />

However, there is consi<strong>de</strong>rable variation in both time<br />

and space. The rainy period extends from october to<br />

35<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

36<br />

march (mainly from <strong>de</strong>cember to february), when 85-<br />

90 % of the total rain falls (Pennas, 1977). Precipitation<br />

is higher at the western and northern parts of Cr<strong>et</strong>e, as<br />

well as at the mountains. Although there are no records<br />

about the precipitation above 900 m, Rackham & Moody<br />

(1996) estimate that at the top of Lefka Ori the annual<br />

precipitation must be as high as 2 000 mm, while at the<br />

southeastern corner of Cr<strong>et</strong>e as low as 240 mm.<br />

Veg<strong>et</strong>ation. The dominant plant formations are<br />

phrygana and maquis, which on Cr<strong>et</strong>e are often<br />

intermixed due to overgrazing and human activities.<br />

Phrygana is the most wi<strong><strong>de</strong>s</strong>pread formation on the island.<br />

Lowland and middle altitu<strong>de</strong> phrygana are composed of<br />

thorny aromatic shrubs, such as: Sarcopoterium spinosum,<br />

Coridothymus capitatus, Phlomis spp., Cistus spp., Genista<br />

acanthoclada, Calicotome villosa, Euphorbia spp., Ballota<br />

spp. and many others. At higher elevations other species<br />

(chamephytes) dominate, such as: Berberis cr<strong>et</strong>ica,<br />

Rhamnus saxatilis, Prunus prostrata, Satureja spinosa,<br />

Astragalus angustifolius, <strong>et</strong>c. The upper limits of forest<br />

growth reach altitu<strong><strong>de</strong>s</strong> from 1 600 m (southern slopes) to<br />

1 800 m (northern slopes). Pinus brutia is the dominant<br />

tree species up to 1 200 m. This is the commonest forest<br />

formation on Cr<strong>et</strong>e, being found from sea level to such<br />

elevations. Beyond the timberline, only scarce veg<strong>et</strong>ation<br />

composed of small cushion-like shrubs exists.<br />

Sampling<br />

For the purposes of the present study 17 sites were<br />

selected along Cr<strong>et</strong>e, in or<strong>de</strong>r to cover its horizontal and<br />

vertical axes and the altitudinal gradients of the three<br />

main mountain massifs, Lefka Ori, Psiloreitis and Dikti<br />

(fig. 1). The veg<strong>et</strong>ation type of most of the lowland sites<br />

is phrygana. D<strong>et</strong>ails for each site are given in table 1.<br />

At all sites material was collected using pitfall traps<br />

containing <strong>et</strong>hylene glycole as preservative. Pitfalls were<br />

s<strong>et</strong> and changed at two-month intervals 2 . Collection<br />

of material lasted for one year at each site. Although<br />

this period does not sufficiently <strong><strong>de</strong>s</strong>cribe the temporal<br />

variation of species during an entire bioclimatic cycle<br />

– which in northern Greece (Stamou, 1998) as well as<br />

in most Mediterranean regions (P<strong>et</strong>anidou, 1991) lasts<br />

four years – it is however quite commonly used in similar<br />

analyses (Ra<strong>de</strong>a, 1993; Groppali <strong>et</strong> al., 1996; Assi, 1998).<br />

Fig. 1 Map of sites<br />

in the study area.<br />

2. In sites 3-6 and 11, material was collected every month. In most cases collecting periods were modified to shorter intervals in or<strong>de</strong>r to<br />

conform to the rest of data, unless the information they provi<strong>de</strong>d was very important, so they were presented in monthly intervals.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

Sites Locality Altitu<strong>de</strong> (m) Habitat type Dates of collection and corresponding groups for analysis<br />

Site 1 Gramvousa 0 Phrygana at sea level.<br />

a: 25/4/1996-26/6/1996; b: 26/6/1996-23/8/1996; c: 23/8/1996-<br />

29/10/1996; d: 29/10/1996-30/12/1996; e: 30/12/1996-14/3/1997; f:<br />

15/3/1997-12/5/1997. (A)<br />

Site 2 Elafonisi 0<br />

Phrygana-maquis (Juniperus oxycedrus, Pistacia lentiscus,<br />

Coridothymus capitatus and Ceratonia siliqua). Highly<br />

disturbed area due to touristic activities.<br />

a: 25/4/1996-26/6/1996; b: 26/6/1996-25/8/1996; c: 25/8/1996-<br />

29/10/1996; d: 29/10/1996-30/12/1996; e: 30/12/1996-13/3/1997; f:<br />

13/3/1997-7/5/1997. (A)<br />

Site 3<br />

Lefka Ori<br />

(above Anopoli village)<br />

800<br />

Mature pine forest (Pinus brutia) with very little un<strong>de</strong>rgrowth<br />

consisting mainly of Quercus coccifera.<br />

a: 18/10/1990-23/11/1990; b: 1/3/1991-28/3/1991; c: 28/3/1991-5/<br />

5/1991; d: 5/5/1991-8/6/1991; e: 8/6/1991-6/7/1991; f: 6/7/1991-4/<br />

8/1991; g: 4/8/1991-8/9/1991; h: 8/9/1991-5/10/1991; i: 5/10/1991-<br />

6/11/1991; j: 6/11/1991-7/12/1991; k: 7/12/1991-11/1/1992; l: 11/1/<br />

1992-8/3/1992; m: 9/3/1992-5/4/1992. (E)<br />

Site 4<br />

Site 5<br />

Site 6<br />

Lefka Ori<br />

(above Anopoli village)<br />

Lefka Ori<br />

(above Anopoli village)<br />

Lefka Ori<br />

(above Anopoli village)<br />

1200<br />

1600<br />

2000<br />

Old cypress wood (Cupressus sempervirens) with scarce<br />

Quercus coccifera and Acer sempervirens. Traps of this period<br />

were consi<strong>de</strong>red active only during the first 30 days<br />

Plateau over the timberline. Scarce veg<strong>et</strong>ation consisting of<br />

cushion-like bushes, mainly Juniperus oxycedrus oxycedrus,<br />

Berberis cr<strong>et</strong>ica, Prunus prostrata, Satureja spinosa.<br />

Valley with scarce veg<strong>et</strong>ation consisting of Berberis cr<strong>et</strong>ica,<br />

Prunus prostrata, Astragalus angustifolius and Satureja spinosa.<br />

a: 18/10/1990-23/11/1990; b: 1/3/1991-28/3/1991; c: 28/3/1991-5/<br />

5/1991; d: 5/5/1991-8/6/1991; e: 8/6/1991-6/7/1991; f: 6/7/1991-4/<br />

8/1991; g: 4/8/1991-8/9/1991; h: 8/9/1991-5/10/1991; i: 5/10/1991-<br />

6/11/1991; j: 7/11/1991-4/5/1992 4 . (E)<br />

a: 29/7/1990-1/9/1990; b: 1/9/1990-17/10/1990; c: 18/10/1990-23/11/<br />

1990; d: 28/3/1991-5/5/1991; e: 5/5/1991-8/6/1991; f: 8/6/1991-6/7/<br />

1991; g: 6/7/1991-4/8/1991; h: 4/8/1991-7/9/1991; i: 7/9/1991-5/10/<br />

1991; j: 5/10/1991-6/11/1991; k: 6/11/1991-6/6/1992 4 . (E)<br />

a: 29/7/1990-1/9/1990; b: 1/9/1990-16/10/1990; c: 8/6/1991-6/7/1991;<br />

d: 6/7/1991-4/8/1991; e: 4/8/1991-7/9/1991; f: 7/9/1991-6/10/1991; g:<br />

6/10/1991-7/8/1992. (E)<br />

37<br />

Site 7 Exantis 200<br />

Dense phrygana-maquis dominated by Quercus coccifera,<br />

Sarcopoterium spinosum, Corydothymus capitatus and<br />

Calicotome villosa.<br />

a: 22/4/2000-6/7/2000; b: 6/7/2000-14/9/2000; c: 14/9/2000-7/11/<br />

2000; d: 7/11/2000-13/1/2001; e: 13/1/2001-12/3/2001; f: 12/3/2001-<br />

8/5/2001. (C)<br />

Site 8<br />

Psiloreitis<br />

(above Kouroutes village)<br />

1650 Subalpine shrubs.<br />

a: 14/4/2000-2/7/2000; b: 2/7/2000-14/9/2000; c: 14/9/2000-30/10/<br />

2000; d: 30/10/2000-24/3/2001; e: 24/3/2001-12/6/2001. (D)<br />

Site 9<br />

Psiloreitis<br />

(above Lochria village)<br />

1950 Subalpine shrubs.<br />

a: 14/4/2000-2/7/2000; b: 2/7/2000-15/9/2000; c: 15/9/2000-30/10/<br />

2000; d: 30/10/2000-24/3/2001; e: 24/3/2001-12/6/2001. (D)<br />

Site 10 Panagia Almyri 100<br />

Site 11 Youchtas 200<br />

Site 12 Keratokampos 0<br />

Phrygana (Calicotome villosa, Sarcopoterium spinosum,<br />

Phlomis sp.) and Nerium olean<strong>de</strong>r by the riversi<strong><strong>de</strong>s</strong>.<br />

Phrygana (Quercus coccifera, Genista acanthoclada,<br />

Corydothymus capitatus, Ebenus cr<strong>et</strong>icus and Salvia fruticosa).<br />

Phrygana-maquis close to the beach. Abandoned cultivations<br />

close to the village.<br />

a: 16/3/1999-20/5/1999; b: 20/5/1999-26/7/1999; c: 26/7/1999-30/9/<br />

1999; d: 30/9/1999-26/1/2000; e: 26/1/2000-2/7/2000. (B)<br />

a: 16/12/1995-15/1/1996; b: 15/1/1996-18/2/1996; c: 18/2/1996-2/4/<br />

1996; d: 2/4/1996-28/4/1996; e: 28/4/1996-6/6/1996; f: 6/6/1996-2/7/<br />

1996; g: 2/7/1996-8/8/1996; h: 8/8/1996-16/9/1996; i: 16/9/1996-10/<br />

10/1996; j: 10/10/1996-14/11/1996 k: 14/11/1996-11/12/1996. (A)<br />

a: 27/11/1998-26/1/1999; b: 26/3/1999-26/5/1999; c: 26/5/1999-28/7/<br />

1999; d: 28/7/1999-28/9/1999; e: 28/9/1999-26/1/2000. (B)<br />

Site 13 Milatos 300 Degra<strong>de</strong>d phrygana.<br />

a: 21/4/2000-12/7/2000; b: 12/7/2000-11/10/2000; c: 11/10/2000-23/<br />

1/2001; d: 23/1/2001-9/3/2001; e: 9/3/2001-6/5/2001. (C)<br />

Site 14 Dikti-Limnakaro 1450 Phrygana over the plateau.<br />

a: 11/5/2000-5/8/2000; b: 5/8/2000-2/10/2000; c: 2/10/2000-9/1/2001;<br />

d: 9/1/2001-10/5/2001. (D)<br />

Site 15 Dikti-Limnakaro 1750 Subalpine shrubs.<br />

a: 12/5/2000-5/8/2000; b: 5/8/2000-2/10/2000; c: 2/10/2000-9/1/2001;<br />

d: 9/1/2001-10/5/2001. (D)<br />

Site 16 Bramiana 0<br />

Lake reservoir divi<strong>de</strong>d into a pond and a steppe-like area<br />

resulting from <strong><strong>de</strong>s</strong>iccation.<br />

a: 30/10/1998-4/1/1999; b: 4/1/1999-3/3/1999; c: 3/3/1999-4/5/1999;<br />

d: 4/5/1999-22/7/1999; e: 22/7/1999-22/9/1999; f: 22/9/1999-1/2/<br />

2000. (B)<br />

Site 17 Chamaitoulo-Xirokampos 280 Phrygana.<br />

a: 28/5/2000-6/8/2000; b: 6/8/2000-12/10/2000; c: 12/10/2000-23/1/<br />

2001; d: 23/1/2001-16/3/2001; e: 16/3/2001-6/5/2001. (C)<br />

Table 1. Description of the study sites.<br />

Symbols in brack<strong>et</strong>s (A to E) indicate sites where sampling was performed at the same year<br />

and that belong to the same group for the statistical analyses.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

38<br />

Experimental evi<strong>de</strong>nce also suggests that in spi<strong>de</strong>rs there<br />

is an impressive stability of phenological patterns, even<br />

b<strong>et</strong>ween years of great climatic divergence (Hagvar <strong>et</strong> al.,<br />

1978; Polis, 1998). It is also reported that the activity of<br />

organisms in Mediterranean ecosystems seems to <strong>de</strong>pend<br />

much more on the seasonal variations within one year<br />

than on the variation among years (Stamou, 1998). Based<br />

on this i<strong>de</strong>a, data from one year’s sampling were used here<br />

to <strong><strong>de</strong>s</strong>cribe the phenological patterns of species.<br />

Mature specimens (males and females) of the 11 most<br />

common and abundant species of the entire study area<br />

were counted at each site. All counts were transformed to<br />

numbers of individuals per 100 trap/days (td) in or<strong>de</strong>r to<br />

equate the sampling effort at all sites. Immature specimens<br />

were not taken into account, because taxonomical<br />

i<strong>de</strong>ntification at species level was not possible. Phenology<br />

of the family at each site was measured as the sum of the<br />

numbers of mature individuals per sample.<br />

Phenological patterns are presented in rabdograms.<br />

The most characteristic phenograms from the sites in<br />

which each species occurred in a relatively high number<br />

of individuals are shown in the figures. The symbol<br />

(-) is used to simplify comparison b<strong>et</strong>ween sites, when<br />

sampling periods did not fully correspond to each<br />

other, but do not correspond to an “actual” sampling.<br />

Phenology is presented as relative counts (%) of the total<br />

activity during the sampling periods. For each species,<br />

accompanying ecological comments on its habitat<br />

preferences are ad<strong>de</strong>d.<br />

Statistical analysis<br />

Two Factor ANOVA was used to test differences in<br />

phenological patterns of each species b<strong>et</strong>ween sites of<br />

the study area. Analysis was carried out with SPSS 8<br />

(SPSS Inc., 1989-1997). Seasons and sites were taken<br />

into account as the two factors, but only the sites<br />

comparisons were used in the results. Sites were divi<strong>de</strong>d<br />

into five groups of 3-6 sites (from A to E, see table 1),<br />

in which sampling was performed in the same year. For<br />

each species, counts (f) of male and female individuals<br />

were tested both separately and in total. Logarithmic<br />

transformation [log(f+1)] was used, because of great<br />

<strong>de</strong>viation among the counts. In or<strong>de</strong>r to be sure that<br />

the observed statistical differences did not result from<br />

differences in the absolute numbers of individuals, rather<br />

than of the activity patterns of the species, the analysis<br />

was also carried out by transforming the numbers<br />

of individuals into relative counts [log(rf+1)]. This<br />

transformation was calculated by dividing the number of<br />

individuals of a species collected at each period by the<br />

total number of individuals (of the same species) found<br />

at each site.<br />

In or<strong>de</strong>r to test statistically the similarities of patterns<br />

observed among species of this study, a further Two<br />

Factor ANOVA was performed using pairs of species as<br />

the first factor and season as a second. In this case we<br />

were only interested in testing the interaction b<strong>et</strong>ween<br />

season and species groups. In those cases where this<br />

interaction was not significant, patterns of the species<br />

involved were consi<strong>de</strong>red to fall into the same group of<br />

phenological pattern. The test was performed for each<br />

site group separately. Different pairs of species were<br />

tested and those that showed the greater percentage of<br />

no interaction among groups of sites were used for the<br />

creation of a mo<strong>de</strong>l representing the activity patterns<br />

which may be followed by Gnaphosidae on Cr<strong>et</strong>e.<br />

Percentages (rf) were arcsine-transformed, according to<br />

the formula y=arcsin(√rf) (Sokal & Rolhf, 1995).<br />

RESULTS<br />

Descriptive analysis<br />

Phenological patterns of species<br />

Callilepis cr<strong>et</strong>ica (Roewer, 1928)<br />

This species is quite common on Cr<strong>et</strong>e, occurring<br />

from sea level to 1 950 m. However it becomes more<br />

abundant at the zone 1 200-1 600 m and prefers rather<br />

cool and humid environments. In most lowland sites,<br />

mature individuals are found from may to september,<br />

with peak of males in may-june (fig. 2). Numbers of<br />

female individuals were too low to show a clear pattern.<br />

In the sites at higher elevations, sites 4-5 and 8-9, the<br />

activity of C. cr<strong>et</strong>ica is shortened and is shifted towards<br />

the end of summer.<br />

Drasso<strong><strong>de</strong>s</strong> oreinos (Chatzaki, 2002)<br />

This species occurs only on the mountains of Cr<strong>et</strong>e<br />

above 1 200 m and it becomes one of the dominant<br />

species above 1 650 m. At this latter elevation it is the<br />

only representative of the genus. The peak of male activity<br />

is in august-september (fig. 3). The activity of females<br />

is exten<strong>de</strong>d for a longer period, especially at the highest<br />

elevations. A similar, but less stable pattern, is observed<br />

in another high altitu<strong>de</strong> species, Gnaphosa bithynica<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

Fig. 2. Phenology of Callilepis cr<strong>et</strong>ica<br />

on Cr<strong>et</strong>e (relative counts (%) of the total<br />

catch per site).<br />

39<br />

Fig. 3. Phenology of Drasso<strong><strong>de</strong>s</strong> oreinos<br />

on Cr<strong>et</strong>e (relative counts (%) of the total<br />

catch per site).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

40<br />

(Kulczynski, 1903), with female individuals being present<br />

throughout the favourable period (Chatzaki, 2003).<br />

Drassyllus praeficus (L. Koch, 1866)<br />

This species is common on Cr<strong>et</strong>e from sea level to<br />

1 650 m. It prefers maquis of middle altitu<strong>de</strong>, mainly in<br />

central Cr<strong>et</strong>e. Mature specimens are present from midspring<br />

until mid-summer (fig. 4). Comparing the patterns<br />

at all sites, it may be conjectured that the peak of males<br />

is in april-may and that of females is in may. According<br />

to Urones, Jerardino & Barrientos (1995), D. praeficus<br />

has two generations per year, and this is also suggested<br />

by the data presented here, where females do not seem<br />

to present a stable pattern, thus indicating longer activity<br />

during the dry season.<br />

Haplodrassus cr<strong>et</strong>icus (Roewer, 1928)<br />

This species is the most common representative of the<br />

genus Haplodrassus on Cr<strong>et</strong>e having no special habitat<br />

preferences. It has a narrow activity period early in the<br />

spring with peaks of both sexes occurring at some time<br />

b<strong>et</strong>ween january and march with the female peak a bit<br />

later than that of the males (fig. 5).<br />

Micaria coarctata (Lucas, 1846)<br />

This species is the most common representative of the<br />

genus Micaria on Cr<strong>et</strong>e, reaching altitu<strong><strong>de</strong>s</strong> of 1 750 m.<br />

However it is not very active at the sites where it occurs,<br />

therefore no phenograms are presented for it. It has a<br />

rather stable phenological pattern with short activity<br />

towards the end of spring and beginning of summer<br />

(fig. 6).<br />

Nomisia excerpta (O.P. Cambridge, 1872)<br />

This species is one of the commonest on Cr<strong>et</strong>e.<br />

Mature specimens are found from mid-spring to end of<br />

summer (fig. 6) with male peak in may-june and female<br />

peak one or two months later.<br />

Fig. 4. Phenology of Drassyllus praeficus<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

41<br />

Fig. 5. Phenology of Haplodrassus cr<strong>et</strong>icus<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

Pterotricha lentiginosa (C.L. Koch, 1837)<br />

This species is the dominant species on Cr<strong>et</strong>e as far<br />

as both frequency and abundance are concerned, being<br />

common in most habitat types and altitu<strong><strong>de</strong>s</strong> of Cr<strong>et</strong>e up<br />

to 1 950 m. P. lentiginosa is one of the few species which<br />

is active in winter time as well as in the summer (fig. 7).<br />

It is also the only species that shows two distinct peaks<br />

of male activity (diplochronism) at most lowland sites<br />

and one female peak in may-june. At higher elevations<br />

the pattern changes with restriction of activity to only the<br />

warmer period. At these sites a single peak of male activity<br />

is observed in august-september, while the peak of female<br />

activity is observed a little earlier. Its close relative, P. kochi<br />

(O.P. Cambridge, 1872), shows similar activity pattern in<br />

Lebanon (Assi, 1998).<br />

Trachyzelotes malkini (Platnick, 1984)<br />

This species is the most common of all its congeners on<br />

Cr<strong>et</strong>e, reaching altitu<strong><strong>de</strong>s</strong> of 1 450 m. Mature specimens<br />

are found from mid-spring until the end of summer with<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

42<br />

Fig. 6. Phenology of Nomisia excerpta<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

male peak usually in may-june and female peak at the<br />

same time or a bit later (fig. 8). At higher elevations (i.e.<br />

site 14) activity is shifted towards the end of summer.<br />

Zelotes caucasius (L. Koch, 1866)<br />

This species is one of the commonest on Cr<strong>et</strong>e. Similar<br />

to most of its congeners (for instance Z. labilis, Z. scrutatus,<br />

Z. tenuis) the phenological pattern of Z. caucasius presents<br />

high activity throughout the dry period, with male peak<br />

in may-june and female peak at the same period or just<br />

afterwards (fig. 9). At higher elevations the pattern does<br />

not change, but it is more restricted to the summer<br />

months.<br />

Zelotes cr<strong>et</strong>icus (Kulczyski, 1903)<br />

This is a common species of middle and higher<br />

elevations of western Cr<strong>et</strong>e, but does not occur in eastern<br />

Cr<strong>et</strong>e. Its distribution at the lowland sites shows that it<br />

is rather sensitive to high aridity (Chatzaki <strong>et</strong> al., 2003).<br />

Its phenological pattern resembles that of D. oreinos with<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

43<br />

Fig. 7. Phenology of Pteroticha lentiginosa<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

Fig. 8. Phenology of Trachyzelotes malkini<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

44<br />

Fig. 9. Phenology of Zelotes caucasius<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

male peak in august-september and female peak in June,<br />

but with more exten<strong>de</strong>d presence of females during<br />

almost the whole year (fig. 10).<br />

Zelotes subterraneus (C.L. Koch, 1833)<br />

This species is very common on Cr<strong>et</strong>e. Tog<strong>et</strong>her with<br />

P. lentiginosa, they form the main bulk of Gnaphosidae<br />

present during winter time. The male peak is observed<br />

in september-october at the lowland sites and in augustseptember<br />

at the higher elevations (fig. 11), and female<br />

peak at the same time or a bit later. It is interesting to note<br />

that Aitchison (1984) classifies this species as summer<br />

stenochronous, which, as will be commented upon in<br />

the discussion, is due to latitudinal difference of the two<br />

study areas.<br />

There are not any winter-active Gnaphosidae,<br />

consequently there are no species that appear only in<br />

winter months. Instead, the few Gnaphosidae that are<br />

present during this period belong to the most cold-tolerant<br />

species that present their maximum activity within the dry<br />

season. These are: P. lentiginosa, Z. subterraneus, H. cr<strong>et</strong>icus<br />

and also Anagraphis pallens, Z. cf. ilotarum, Z. scrutatus,<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

Fig. 10. Phenology of Zelotes cr<strong>et</strong>icus<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

45<br />

Fig. 11. Phenology of Zelotes subterraneus<br />

on Cr<strong>et</strong>e (relative counts (%)<br />

of the total catch per site).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

46<br />

Z. tenuis, which are not presented here, due to lower<br />

numbers of catches.<br />

Total seasonal variation of Gnaphosidae<br />

In this section, the total phenological pattern of the<br />

family at each one of the sites is presented. In all sites<br />

maximum activity of the family is observed within the<br />

dry season of the year, irrespective of their geographical<br />

position and prevailing bioclimatic conditions. The main<br />

difference b<strong>et</strong>ween sites is in the exact time and duration<br />

of the high activity period. In each case the pattern is<br />

characterized by the dominant species at the sites. Based<br />

on these differences, phenological patterns of Gnaphosidae<br />

may be divi<strong>de</strong>d into three groups:<br />

a) those that have one narrow peak during the first<br />

period i.e. end of spring – mid summer (sites 1 and<br />

10), which is characterized by the dominance of<br />

members of the genus Zelotes.<br />

b) those that have one peak which lasts longer<br />

within the favourable period than that of (a) (sites<br />

12, 13, 16). These sites are characterized by the codominance<br />

of many species. Thus, the long activity<br />

period is produced by the conjunction of the activity<br />

patterns of many species whose peaks occur at<br />

different times within the favourable period: Zelotes<br />

spp. are responsible for the spring-summer activity,<br />

while P. lentiginosa, Z. subterraneus and Z. cr<strong>et</strong>icus are<br />

mainly responsible for the activity recor<strong>de</strong>d later in the<br />

summer and early autumn 3 .<br />

c) those that present two peaks of activity (sites 2,<br />

7, 11, 17), in which P. lentiginosa and Z. subterraneus<br />

dominate, the latter adding mainly to the autumn<br />

peak.<br />

At higher elevations some sites shown one relatively<br />

long peak of activity, while others shown two peaks of<br />

activity. However the two peaks, when present, do not<br />

result from the presence of eurychronous species as<br />

in the case of lowland sites of group (c), but instead<br />

they are produced by many species: Drassylus praeficus,<br />

Callilepis cr<strong>et</strong>ica, Haplodrassus cr<strong>et</strong>icus, Zelotes caucasius in<br />

mid-spring, Nomisia excerpta, Z. tenuis, Z. cr<strong>et</strong>icus, Z. labilis<br />

in summer and Drasso<strong><strong>de</strong>s</strong> oreinos, Pterotricha lentiginosa,<br />

Z. cr<strong>et</strong>icus, Z. subterraneus at the beginning of september.<br />

Statistical analysis<br />

Differences b<strong>et</strong>ween sites, based on the seasonal<br />

variation of each species (absolute counts), are shown<br />

in table 2. For most species there are not any significant<br />

differences in the phenological pattern they present<br />

among sites of the same group. For all species, statistically<br />

significant differences are recor<strong>de</strong>d at sites of higher<br />

elevations (group E). P. lentiginosa is the only species in<br />

which differences in the activity pattern are recor<strong>de</strong>d at<br />

a group of lowland sites (group C). When relative counts<br />

are taken into consi<strong>de</strong>ration (table 3), no differences in<br />

the patterns of each species are recor<strong>de</strong>d, except for<br />

females of P. lentiginosa and Z. subterraneus b<strong>et</strong>ween<br />

sites of group E. Consequently, most of the differences<br />

recor<strong>de</strong>d in table 2 are <strong>de</strong>rived from differences in the<br />

absolute numbers of the species at the sites of the study<br />

area.<br />

Taking into consi<strong>de</strong>ration the patterns of activity<br />

presented in the previous section, species were grouped<br />

in pairs and further tested for statistically significant<br />

differences (table 4). Non-significant P-values for the<br />

interaction b<strong>et</strong>ween species and seasons indicate cases in<br />

which pairs of species follow the same pattern of activity<br />

within groups of sites. Missing values exist in cases where<br />

there was only one species at a sites group. Several trials<br />

were performed in or<strong>de</strong>r to find those pairs of species<br />

which showed the highest similarity of patterns. In group V<br />

there is a greater number of significant interaction which<br />

implies that the activity pattern of Z. subterraneus is not<br />

close to that of P. lentiginosa, hence leaving the latter<br />

species as the main representative of activity type V.<br />

DISCUSSION<br />

Mo<strong>de</strong>l of phenological patterns<br />

From mid-spring to mid-autumn, Gnaphosidae is<br />

the dominant family of Cr<strong>et</strong>an arachnofauna. In winter<br />

time the activity of most gnaphosid species is restricted<br />

and the family is outnumbered by other families, such<br />

as Linyphiidae, Dys<strong>de</strong>ridae, Clubionidae (Chatzaki <strong>et</strong> al.,<br />

1998). Within the favourable period, there is a continuum<br />

3. Other species which are less active, but are still present in early spring or early autumn and add to this pattern, are: Drassyllus praeficus,<br />

Haplodrassus cr<strong>et</strong>icus, Haplodrassus dalmatensis, Trachyzelotes malkini, T. lyonn<strong>et</strong>i (spring), Zelotes solstitialis (autumn).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

Species Group Male Female Total<br />

Drasso<strong><strong>de</strong>s</strong> oreinos<br />

D 0,316 0,007 0,018<br />

E 0,086 0,004 0,004<br />

A 0,751 0,428 0,609<br />

B 0,949 0,391 0,837<br />

Nomisia excerpta<br />

C 0,391 0,799 0,433<br />

D 0,354 0,189 0,122<br />

E 0,054 0,013 0,011<br />

A 0,169 0,135 0,085<br />

B 0,069 0,191 0,149<br />

Pterotricha lentiginosa C 0,013 0,153 0,018<br />

D 0,049 0,118 0,668<br />

E 0,485 0,119 0,036<br />

Zelotes cr<strong>et</strong>icus E 0,726 0,007 0,039<br />

A 0,655 0,326 0,435<br />

B 0,735 0,425 0,493<br />

Zelotes subterraneus<br />

C 0,819 0,166 0,486<br />

D 0,628 0,221 0,336<br />

E 0,514 0,006 0,056<br />

Table 2. P-values of two factor ANOVA<br />

test among groups of sites – absolute counts of species.<br />

Values in bold indicate the significant results,<br />

in which phenological patterns within groups<br />

of sites are not the same. Species for which<br />

no significant values were recor<strong>de</strong>d,<br />

are not shown in the table.<br />

47<br />

Species Group Male Female Total<br />

Pterotricha lentiginosa<br />

Zelotes subterraneus<br />

A 0,871 0,823 0,865<br />

B 0,358 0,744 0,901<br />

C 0,523 0,836 0,843<br />

D 0,744 0,768 0,688<br />

E 0,702 0,026 0,376<br />

A 0,183 0,750 0,800<br />

B 0,482 0,695 0,636<br />

C 0,983 0,863 0,803<br />

D 0,705 0,937 0,903<br />

E 0,784 0,007 0,108<br />

Table 3. P-values of single factor ANOVA test among<br />

groups of sites – relative counts of species. Values in bold<br />

indicate the significant results, in which phenological<br />

patterns within groups of sites are not the same. Species<br />

for which no significant values were recor<strong>de</strong>d, are not<br />

shown in the table.<br />

in the peaks of species activity, a phenomenon that has<br />

already been observed by other authors, both in the<br />

Mediterranean (Urones, Jerardino & Barrientos, 1995)<br />

and in other temperate ecosystems (En<strong>de</strong>rs, 1976;<br />

Toft, 1976; U<strong>et</strong>z, 1977). This makes the division of<br />

phenological patterns into separate groups very difficult,<br />

especially when taking into consi<strong>de</strong>ration that the existing<br />

mo<strong>de</strong>ls of categorisation have been created to <strong><strong>de</strong>s</strong>cribe<br />

phenological patterns of spi<strong>de</strong>r species in very different<br />

ecosystems and latitu<strong><strong>de</strong>s</strong>.<br />

The best way to <strong><strong>de</strong>s</strong>cribe phenological patterns of<br />

Gnaphosidae of Cr<strong>et</strong>e – and perhaps of all Mediterranean<br />

ecosystems – is by dividing the two main periods of high<br />

activity into one which inclu<strong><strong>de</strong>s</strong> patterns with peaks<br />

from mid-spring to early summer, and another which<br />

inclu<strong><strong>de</strong>s</strong> patterns with peaks at the end of summer or at<br />

the beginning of autumn. These two rough groups may be<br />

further divi<strong>de</strong>d to subgroups, based on statistical analysis.<br />

As a result, the following categories of phenological<br />

patterns are proposed (fig. 12):<br />

I) Stenochronous species, with peak activity at the end<br />

of spring and/or beginning of summer (i.e. H. cr<strong>et</strong>icus,<br />

D. praeficus and M. coarctata).<br />

II) Species with peak activity similar to (I), but with<br />

longer total period of activity towards summer months<br />

(i.e. N. excerpta and Trachyzelotes spp.)<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

Fig. 12. Suggested mo<strong>de</strong>l of possible<br />

patterns of activity followed<br />

by Gnaphosidae on Cr<strong>et</strong>e.<br />

48<br />

Species group Site group Male Female Total<br />

A 0,071 0,021 0,001<br />

Table 4. P-values of interaction<br />

test (species*season) among grouped<br />

sites. Values in bold indicate<br />

cases in which interaction within<br />

groups of sites is not significant.<br />

(*) indicates cases of sites groups in<br />

which only one species was present<br />

and consequently no interaction<br />

could be d<strong>et</strong>ected.<br />

I<br />

II<br />

III<br />

IV<br />

V<br />

H. cr<strong>et</strong>icus, D. praeficus, M. coarctata<br />

Nomisia excerpta, Trachyzelotes malkini<br />

Callilepis cr<strong>et</strong>ica, Zelotes caucasius<br />

D. oreinos, Z. cr<strong>et</strong>icus<br />

P. lentiginosa, Z. subterraneus<br />

B - 0,342 -<br />

C 0,338 0,323 0,135<br />

D 0,274 0,796 0,299<br />

E - 0,183 -<br />

A 0,599 0,001 0,068<br />

B 0,511 0,517 0,693<br />

C 0,991 0,736 0,673<br />

D 0,453 0,629 0,001<br />

E


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

III) Species active during the whole favourable period,<br />

with peak activity in mid-summer (i.e. C. cr<strong>et</strong>ica,<br />

Z. caucasius and most other zelotine species such as<br />

Z. labilis, Z. scrutattus, Z. tenuis).<br />

IV) Stenochronous species with peak activity at the<br />

end of summer and/or beginning of autumn (i.e.<br />

D. oreinos and Z. cr<strong>et</strong>icus).<br />

V) Clearly eurychronous species with mature<br />

individuals occurring throughout the year and with<br />

two peaks of male activity (i.e. P. lentiginosa and to a<br />

lesser extent Z. subterraneus, which might as well be<br />

inclu<strong>de</strong>d in type IV).<br />

Although the <strong>de</strong>finition of phenological patterns for<br />

the rest of the gnaphosid species occurring on Cr<strong>et</strong>e, due<br />

to low abundance, is not very clear, the few individuals<br />

of each species were collected during the first period of<br />

high activity. Consequently, these species possibly belong<br />

to patterns (I) and (II) (Chatzaki, 2003). Gnaphosa<br />

bithynica, Anagraphis pallens and Zelotes cf. ilotarum<br />

possibly belong to pattern (V), Zelotes solstitialis to pattern<br />

(IV) and Drasso<strong><strong>de</strong>s</strong> lutescens to pattern (II), but they all<br />

present high flexibility in their activity patterns.<br />

According to Grime (1974; 1979) organisms pursue<br />

different strategies for survival, resulting from three factors:<br />

comp<strong>et</strong>ition, environmental stress and disturbance. Based<br />

on these three factors and used in conjunction with their<br />

phenologies, Milner (1988) divi<strong>de</strong>d the spi<strong>de</strong>rs of Oxleas<br />

Wood, UK into the following groups:<br />

a) stress-tolerant species, to which eurychronous or<br />

winter active species belong.<br />

b) high comp<strong>et</strong>itors, to which stenochronous species<br />

belong, but with extension of their presence during<br />

all summer.<br />

c) pioneer species, to which extreme stenochronous<br />

species belong.<br />

Following the above categorization, most Gnaphosidae<br />

of Cr<strong>et</strong>e (groups III and IV of our mo<strong>de</strong>l) belong to<br />

the “high comp<strong>et</strong>itors” group. These species are very<br />

efficient comp<strong>et</strong>itors compared to other predators (even<br />

other spi<strong>de</strong>rs), concentrating their energy expenditure to<br />

the most advantageous period. Species of group V are<br />

stress tolerant, and they are consi<strong>de</strong>red to be catholic<br />

fee<strong>de</strong>rs, preying on animals that are present all year<br />

round, or, finally, they are unable to outcomp<strong>et</strong>e other<br />

more vigorous species during the period of optimum<br />

conditions. Species of group I may be consi<strong>de</strong>red as<br />

pioneers. Milner (1988) suggested that these species<br />

are related to highly disturbed environments, where they<br />

show a pioneer character, although they may appear as<br />

eurychronous or stenochronous elsewhere.<br />

Concerning Mediterranean ecosystems, several<br />

mo<strong>de</strong>ls have been proposed for the survival strategies of<br />

organisms. Asikidis (1989) suggested that organisms in<br />

Mediterranean ecosystems have to adapt in response to<br />

three factors: maximum habitat h<strong>et</strong>erogeneity, maximum<br />

habitat predictability and mo<strong>de</strong>rate H/T (favourable<br />

reproductive period/generation period). According to<br />

Stamou (1998), Mediterranean arthropods have to<br />

be able to respond quickly to the abrupt changes in<br />

temperature, and to keep low levels of energy expenditure<br />

when temperatures remain stable, in or<strong>de</strong>r to optimize<br />

their energy balance. The same author postulates that<br />

these features <strong>de</strong>fine two main survival strategies: a)<br />

the conformists, i.e. organisms which synchronize<br />

their <strong>de</strong>mographic patterns to seasonal changes, being<br />

more vulnerable to low temperatures and having long<br />

hibernating or aestivating periods and b) the conservatists,<br />

i.e. organisms that are stress tolerant and are active during<br />

longer periods, keeping low and stable energy equilibria.<br />

The synchronization of <strong>de</strong>mographic events to seasons<br />

of the year implies critical ranges of environmental<br />

param<strong>et</strong>ers, outsi<strong>de</strong> of which, organisms cannot respond.<br />

As a result, conformist species are related to narrower<br />

niche factors which inclu<strong>de</strong> habitat and food.<br />

On an annual scale, most Gnaphosidae follow the<br />

conformist strategy, being mostly active during the<br />

dry period, but they possess mechanisms which allow<br />

them to respond to environmental conditions with<br />

more adaptability. If a narrow food selection results<br />

in the restriction of temporal and spatial distribution<br />

(Stamou, 1998), then the opposite should also happen.<br />

Hence, the generalized feeding of these spi<strong>de</strong>rs should<br />

allow them wi<strong>de</strong>r distributions in both time and space.<br />

A small percentage of species follow the conservative<br />

strategy, which corresponds to an even wi<strong>de</strong>r spatiotemporal<br />

distribution. Such species are found in most<br />

habitats of Cr<strong>et</strong>e, at most elevations and compose the<br />

main Gnaphosidae fauna in winter time. The main<br />

representative of this group – if not the only one – is<br />

P. lentiginosa.<br />

There is a view that processes which enhance the<br />

resistance of terrestrial arthropods to cold and to<br />

<strong><strong>de</strong>s</strong>iccation are complementary (Sømme, 1995; 1996),<br />

and that in most cases <strong><strong>de</strong>s</strong>iccation resistant species may<br />

be pre-adapted to cold tolerance (Block, 1996). This<br />

could explain why many of the Gnaphosidae occurring<br />

on the high mountains of Cr<strong>et</strong>e are those which are best<br />

adapted to the high aridity of lowland habitats. These<br />

49<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

50<br />

gnaphosid species comprise the dominant group among<br />

spi<strong>de</strong>r families, as well as among arthropods of the<br />

ground (Lymberakis, 2003). They belong to the most<br />

tolerant, conservative species that can also change their<br />

phenological patterns along altitudinal gradients in or<strong>de</strong>r<br />

to adapt to mountain conditions.<br />

Studies on a different taxonomical<br />

level give different results<br />

Until recently, the phenological pattern characterizing<br />

most Mediterranean arthropods (Di Castri & Vitali-Di<br />

Castri, 1981; Lamotte & Blandin, 1989), spi<strong>de</strong>rs inclu<strong>de</strong>d<br />

(Bigot & Bodot, 1972; Christophe, 1974; Chatzaki <strong>et</strong><br />

al., 1998; Majadas & Urones, 2002) and especially<br />

Gnaphosidae (Assi, 1986; Paraschi, 1988; Chatzaki <strong>et</strong> al.,<br />

1998), was the one that presents two peaks of activity:<br />

one at the end of spring and one at the beginning of<br />

autumn. Also in many cases, the activity of spi<strong>de</strong>rs was<br />

documented as being continuously high (Hagvar <strong>et</strong> al.,<br />

1978; Di Castri & Vitali-Di Castri, 1981; Ra<strong>de</strong>a, 1993).<br />

However, as it has been clearly shown in this study,<br />

phenological patterns are species specific (David, 1995;<br />

Stamou, 1998). The eurychronous pattern mentioned in<br />

the literature is followed by a small number of dominant<br />

species in the study area, and the high activity of the<br />

or<strong>de</strong>r as a whole, results from the conjunction of peaks<br />

of activity of different species, these peaks occurring at<br />

different times within the year.<br />

In the present study this <strong>de</strong>viation of species<br />

phenological patterns is shown for some lowland sites,<br />

where many species co-dominate, as well as in mountain<br />

sites. In the latter sites, the compartmentalization of<br />

species activity is maximized so as to allow co-existence<br />

in an environment where food availability becomes<br />

restricted.<br />

Phenological patterns are also different when different<br />

m<strong>et</strong>hods of collecting are used. Apart from the fact that<br />

pitfall traps do not give an accurate estimation of the<br />

<strong>de</strong>nsities of species (U<strong>et</strong>z & Unzicker, 1976; Adis,<br />

1979), they also lead to certain types of phenological<br />

patterns, which mostly correspond to those behavioural<br />

tactics which increase their activity on the ground (for<br />

instance searching for a mate) (Toft, 1976). Differences<br />

b<strong>et</strong>ween phenological patterns recor<strong>de</strong>d by pitfall traps<br />

and other quantitative m<strong>et</strong>hods have been reported for<br />

other arthropods in Mediterranean ecosystems as well<br />

(Magioris & Tsiourlis, 1992). Paraschi (1988) used<br />

different m<strong>et</strong>hods to study spi<strong>de</strong>r communities in two<br />

maquis ecosystems in Greece. She conclu<strong>de</strong>d that the<br />

main differences observed when different m<strong>et</strong>hods are<br />

used, are the following:<br />

1. differences in the seasonal variation and peaks of<br />

activity,<br />

2. differences in the ratio of mature/immature<br />

individuals per sampling effort,<br />

3. differences in the family composition<br />

The reason why adult Gnaphosidae are not sampled by<br />

quadrate m<strong>et</strong>hod may be related to the mechanisms they<br />

use to avoid high levels of aridity, i.e. to their nocturnal<br />

activity and to their hiding in more protected r<strong>et</strong>reats<br />

during the day.<br />

Biological cycles in relation<br />

to phenological patterns<br />

Pitfall traps do not give accurate information about<br />

biological cycles of organisms. Field observations and<br />

female dissections would give clues to specify them<br />

more accurately. Although phenological patterns of<br />

species are usually stable and are <strong>de</strong>finitely related to<br />

specific <strong>de</strong>mographic events, there are often several<br />

ways to interpr<strong>et</strong> them. For instance, many species of<br />

the genus Zelotes present one peak of activity, but they<br />

remain mature for long periods, even in winter (personal<br />

observations). Based on the analysis of Toft (1976), this<br />

pattern may be interpr<strong>et</strong>ed as stenochronous (perhaps<br />

with a biennial cycle) or as eurychronous, supposing<br />

that mature individuals survive for longer periods, but<br />

are not caught in the traps, due to low activity during<br />

winter months.<br />

More than half of spi<strong>de</strong>r species in Denmark (Toft,<br />

1976), Swe<strong>de</strong>n (Almquist, 1969) and Canada (Aitchison,<br />

1984) are reported to have biennial cycles. In Central<br />

Europe most of the species are annual (Schaefer, 1977).<br />

Grimm (1985) verified this for Gnaphosidae, with<br />

copulation occurring in spring, egg laying in summer,<br />

egg hatching in summer and autumn and overwintering<br />

as immatures. These observations are in accordance<br />

with the results presented in this study. According to the<br />

same author, some species of the genus Zelotes may have<br />

two generations per year, while biennial cycles are rare<br />

in Gnaphosidae, except for species from higher latitu<strong><strong>de</strong>s</strong><br />

(for instance Scandinavia, Lohman<strong>de</strong>r, 1942). Similarly,<br />

biennial cycles are reported by Schmoller (1970) for<br />

four Gnaphosidae species in the alpine tundras of<br />

Colorado. Apparently the duration of biological cycles<br />

is <strong>de</strong>pen<strong>de</strong>nt on the mean temperatures of a region,<br />

and on the duration of the cold period (Almquist, 1969;<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

Schaefer, 1977; Aitchison, 1984). It is therefore expected<br />

that in Mediterranean climates, biological cycles are either<br />

annual or with two generations per year, for groups of<br />

animals which, in higher latitu<strong><strong>de</strong>s</strong>, may have biennial<br />

cycles. In Spain, Urones, Jerardino & Barrientos (1995)<br />

reported annual cycles for most Gnaphosidae. However,<br />

it is possible that D. oreinos and Z. cr<strong>et</strong>icus (as well as<br />

G. bithynica, not presented here) may have biennial cycles,<br />

as suggested by the more exten<strong>de</strong>d presence of female<br />

activity within the year, without being accompanied by<br />

increased activity of males (Toft, 1976).<br />

The change in the duration of biological cycles is a<br />

phenomenon wi<strong>de</strong>ly reported in the literature, and is<br />

related to either latitu<strong>de</strong> or altitu<strong>de</strong> (Schmoller, 1970; Toft,<br />

1976 and references therein; Schaefer, 1977; Aitchison,<br />

1984). Often this variation is consi<strong>de</strong>red as an adaptation<br />

of species which extend their range of distribution to<br />

geographical zones with a different climate (Coulson <strong>et</strong><br />

al., 1975; Reiskind, 1981), even though changes of annual<br />

cycles to biennial have been reported in the same area<br />

during “bad” years (Kajak, 1967) or vice versa during<br />

“good” years (Dondale, 1961). This flexibility of species<br />

to change their <strong>de</strong>velopmental rates at any time shows<br />

that their presence in time and space results from the<br />

combined effect of their own physiological tolerance and<br />

the environment. As a result the <strong>de</strong>finition of their niche<br />

is a highly dynamic measure and not a static one, as was<br />

also observed by Lymberakis (2003).<br />

Ground spi<strong>de</strong>rs (Hagvar, Ostbye & Melaen, 1978)<br />

and especially Gnaphosidae (Deltshev & Blagoev, 1994)<br />

are consi<strong>de</strong>red to present stable phenological patterns,<br />

even when biological rates change for reasons previously<br />

mentioned (Toft, 1976). Along the vertical axis of Cr<strong>et</strong>e<br />

there are cases in which the activity of species is restricted<br />

(i.e. M. coarctata, Z. caucasius, P. lentiginosa) or is shifted 1-2<br />

months towards summer and early autumn (i.e. C. cr<strong>et</strong>ica,<br />

H. cr<strong>et</strong>icus, N. excerpta, T. malkini). In our view, these are<br />

responses to the more extreme climatic conditions of sites<br />

at higher elevations, without necessarily implying that a<br />

change in the biological cycle of these species actually<br />

takes place. According to Lymberakis (2003), the period<br />

b<strong>et</strong>ween the end of summer and beginning of autumn is<br />

the most stable, and hence the most predictable, as far as<br />

climate is concerned, so it is selected by some organisms<br />

as being the most appropriate for reproduction.<br />

However, when the two generations per year change<br />

into one, then a change in the phenology of the species<br />

becomes evi<strong>de</strong>nt (Toft, 1976). In Cr<strong>et</strong>e, this may be the<br />

case for P. lentiginosa, having two generations per year at<br />

the lowland sites and one at sites above 800 m. It could<br />

also be that the species has two reproductive periods<br />

at the lowland sites, leading to only one generation in<br />

springtime, so that an annual cycle takes place there as<br />

well. Even in this case, <strong>de</strong>velopmental stages occur at<br />

different moments along the altitudinal gradient, each<br />

having different duration. Two cycles, one short in the<br />

summer (5 months) and one longer in winter (7 months)<br />

is also reported for its congener P. kochi (O.P. Cambridge,<br />

1872), which also presents a similar phenological pattern<br />

(Assi, 1986).<br />

ACKNOWLEDGEMENTS<br />

This work is part of the PhD thesis of the first author,<br />

which was fun<strong>de</strong>d by the Alexan<strong>de</strong>r Onassis Public<br />

Benefit Foundation and by the University of Cr<strong>et</strong>e. We<br />

are grateful to the working team of the Natural History<br />

Museum of the University of Cr<strong>et</strong>e for the collection and<br />

sorting of the material and to Dr K. Thaler for his help in<br />

the i<strong>de</strong>ntification of species. We are also grateful to John<br />

Murphy for linguistic revision of the manuscript.<br />

References<br />

ADIS, J., 1979. Problems of interpr<strong>et</strong>ing arthropod sampling with<br />

pitfall traps. Zoologische Anzeitlung 202: 177-184.<br />

AITCHISON, C.W., 1984. The phenology of winter-active spi<strong>de</strong>rs.<br />

J. Arachnol. 12: 249-271.<br />

ALMQUIST, S., 1969. Seasonal growth of some dune-living<br />

spi<strong>de</strong>rs. Oikos 20: 392-408.<br />

ASIKIDIS, M. D., 1989. Dynamics and activity of oribatids<br />

(Acarea: Cryptostigmata) in evergreen – sclerophilous<br />

plant formations (Chortiatis). PHD thesis, University of<br />

Thessaloniki, Thessaloniki (in Greek).<br />

ASSI, F., 1986. Recherches écologiques sur le peuplement <strong><strong>de</strong>s</strong><br />

araignées d’une garrigue du Liban. PHD thesis, Université<br />

<strong>de</strong> Paris IV, Paris.<br />

ASSI, F., 1998. Eff<strong>et</strong>s <strong>de</strong> la désertification dans l’Anti-Liban<br />

sur les populations d’araignées. I. Mise au point sur<br />

les Gnaphosidae Gnaphosinae (Araneae). II. Étu<strong>de</strong> <strong><strong>de</strong>s</strong><br />

populations <strong>de</strong> Thomisidae <strong>et</strong> Philodromidae (Araneae). Rev.<br />

arachnol. 12: 135-145.<br />

BARRA, J.A., BELGNAOUI, S. & POINSOT-BALAGUER, N., 1989.<br />

Sécheresse, froid même stratégies, un exemple type : le<br />

collembole Folsomi<strong><strong>de</strong>s</strong> angularis. Bull. Ecol. 20: 65-66.<br />

51<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


◆ M. CHATZAKI, G. MARKAKIS & M. MYLONAS<br />

52<br />

BIGOT, L. & BODOT, P., 1972. Contribution à l’étu<strong>de</strong> biocœnotique<br />

<strong>de</strong> la garrigue à Quercus coccifera. I. Étu<strong>de</strong> <strong><strong>de</strong>s</strong>criptive<br />

<strong>de</strong> l’habitat <strong>et</strong> <strong>de</strong> la faune <strong><strong>de</strong>s</strong> invértébrés inventoriés. Vie <strong>et</strong><br />

Milieu 23: 23-43.<br />

BLOCK, W., 1996. Cold or drought – the lesser of two evils for<br />

terrestrial arthropods? Eur. J. Entomol. 93: 325-339.<br />

BREYMEYER, A., 1966. Relations b<strong>et</strong>ween wan<strong>de</strong>ring spi<strong>de</strong>rs<br />

and other epigeic predatory Arthropoda. Ecol. Polska (A)<br />

14: 27-71.<br />

CHATZAKI, M., 1998. Systematics and phenology of ground<br />

living spi<strong>de</strong>rs of the island group Gavdos – Gavdopoula.<br />

Master Thesis, University of Cr<strong>et</strong>e, Irakleio (in Greek).<br />

CHATZAKI, M., 2003. Ground spi<strong>de</strong>rs of Cr<strong>et</strong>e (Araneae,<br />

Gnaphosidae): taxonomy, ecology and biogeography. PHD<br />

Thesis, University of Cr<strong>et</strong>e, Irakleio (in Greek).<br />

CHATZAKI, M., THALER, K. & MYLONAS, M., 2003. Ground<br />

spi<strong>de</strong>rs (Gnaphosidae; Araneae) of Cr<strong>et</strong>e and adjacent areas<br />

of Greece. Taxonomy and distribution. III: Zelotes and allied<br />

genera. Rev. suisse Zool. 110: 45-89.<br />

CHATZAKI, M., TRICHAS, A., MARKAKIS, G. & MYLONAS, M.,<br />

1998. Seasonal activity of the ground spi<strong>de</strong>r fauna in a<br />

Mediterranean ecosystem (Mt. Youchtas, Cr<strong>et</strong>e, Greece).<br />

Proceedings of the 17th European Colloquium of Arachnology,<br />

Edinburgh 1997: 235-243.<br />

CHRISTOPHE, T., 1974. Etu<strong>de</strong> écologique du peuplement<br />

d’araignées d’une litière <strong>de</strong> châtaigneraie (forêt <strong>de</strong> Mont-<br />

Morency, Val d’Oise). Publications du laboratoire <strong>de</strong> Zoologie,<br />

Ecole normale supérieure, Paris, n o 3.<br />

CLOUDSLEY-THOMPSON, J.L., 1978. Biological clocks in<br />

Arachnida. Bull. Brit. arachnol. Soc. 4: 184-190.<br />

CLOUDSLEY-THOMPSON, J.L., 1982. Desert adaptations in<br />

spi<strong>de</strong>rs. Scientific Review of Arid Zone Residuals 1: 1-14.<br />

COULSON, J. C., HOROBIN, J.C., BUTTERFIELD, J. & SMITH, R. J.,<br />

1975. The maintenance of annual life-cycles in two species<br />

of Tipulidae (Diptera); a field study relating <strong>de</strong>velopment,<br />

temperature and altitu<strong>de</strong>. J. Anim. Ecol. 44: 215-233.<br />

DAVID, J. F., 1995. Seasonal abundance of millipe<strong><strong>de</strong>s</strong> in a<br />

Mediterranean oak forest (Southern France). Isr. J. Zool.<br />

41: 23-31.<br />

DELTSHEV, C. & BLAGOEV, G., 1994. Biotopical distribution and<br />

seasonal activity of mo<strong>de</strong>l species of the family Gnaphosidae<br />

(Araneae) in Zemen gorge (SW Bulgaria). Arachnol. Mitt.<br />

7: 20-30.<br />

DI CASTRI, F. & VITALI-DI CASTRI, V., 1981. Soil fauna of<br />

<strong>mediterranea</strong>n-climate regions. In: Di Castri, D. W. Goodall<br />

& R. L. Specht (eds), Ecosystems of the World, Elsevier, 11:<br />

445-478.<br />

DONDALE, C.D., 1961. Life histories of some common spi<strong>de</strong>rs<br />

from trees and shrubs in Nova Scotia. Can. J. Zool. 39:<br />

777-787.<br />

DONDALE, C. D., REDNER, J.H. & SEMPLE, R.B., 1972. Diel<br />

periodicities in meadow arthropods. Can. J. Zool. 50: 1155-<br />

1163.<br />

DUFFEY, E., 1956. Aerial dispersal in a known spi<strong>de</strong>r population.<br />

J. Anim. Ecol. 25: 85-111.<br />

DUFFEY, E., 1968. An ecological analysis of the spi<strong>de</strong>r fauna of<br />

sand dunes. J. Anim. Ecol. 37: 641-665.<br />

ENDERS, F., 1976. Size, food finding and Dyar’s constant.<br />

Environ. Entomol. 5: 1-10.<br />

FOELIX, R.F., 1981. Biology of Spi<strong>de</strong>rs. Harvard University Press,<br />

Cambridge (Massachus<strong>et</strong>ts).<br />

GRIME, J.P., 1974. Veg<strong>et</strong>ation classification by reference to<br />

strategies. Nature 250: 26-31.<br />

GRIME, J.P., 1979. Plant strategies and veg<strong>et</strong>ation processes. John<br />

Wiley, London.<br />

GRIMM, U., 1985. Die Gnaphosidae Mitteleuropas (Arachnida,<br />

Araneae). Abhandlungen <strong><strong>de</strong>s</strong> Naturwissenschaftlichen Vereins in<br />

Hamburg (NF) 26: 1-317.<br />

GROPPALI, R., PRIANO, M. & PESARINI, C., 1996. Fenologia<br />

araneologica (Arachnida, Araneae) in una siepe mista <strong>de</strong>lla<br />

pianura padana centrale. Boll<strong>et</strong>ino <strong>de</strong>l’Istituto Entomologico “G.<br />

Grandi” <strong>de</strong>l’Universita di Bologna 50: 113-125.<br />

GROVE, A.T., MOONEY, J. & RACKHAM, O., 1991. Cr<strong>et</strong>e and<br />

the South Aegean Islands: effects of changing climate on the<br />

environment. Robinson College, Oxford.<br />

HAGVAR, S., OSTBYE, E. & MELAEN, J., 1978. Pit-fall catches<br />

of surface-active arthropods in some mountain habitats at<br />

Finse, south Norway. II. General results at group level, with<br />

emphasis on Opiliones, Araneida, and Coleoptera. Norw. J.<br />

Entomol. 25: 195-205.<br />

IATROU, G. D. & STAMOU, G. P., 1989. Preliminary studies<br />

on certain macroarthropod groups of a Quercus coccifera<br />

formation (Mediterranean-type ecosystem) with special<br />

reference to the diplopod Glomeris balcanica. Pedobiol. 33:<br />

301-306.<br />

KAJAK, A., 1967. Productivity of some populations of web<br />

spi<strong>de</strong>rs. In: P<strong>et</strong>rusewicz (ed.), Secondary productivity of<br />

terrestrial ecosystems, Warszawa-Krakow: 807-820.<br />

KUENZLER, E. J., 1958. Niche relations of three species of<br />

Lycosid spi<strong>de</strong>rs. Ecology 39: 494-503.<br />

LAMOTTE, M. & BLANDIN, P., 1989. Originalité <strong>et</strong> diversité <strong><strong>de</strong>s</strong><br />

écosystèmes méditerranéens terrestres. Biol. Gallo-hellen. 16:<br />

5-36.<br />

LOHMANDER, 1942. Südschwedische Spinnen. Med<strong>de</strong>lan<strong>de</strong>n fran<br />

Göteborgs Musei Zoologiska Av<strong>de</strong>lning 98: 1-163.<br />

LYMBERAKIS, P., 2003. Altitudinal differentiation of the fauna of<br />

Lefka Ori, Cr<strong>et</strong>e. PHD Thesis, University of Athens, Athens<br />

(in Greek).<br />

MAGIORIS, S. N. & TSIOURLIS, G. M., 1992. The role of the<br />

shrubs Quercus coccifera in the community structure of soil<br />

arthropods in two insular ecosystems (Is. Naxos, Cycla<strong><strong>de</strong>s</strong>,<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


PHENOLOGICAL PATTERNS OF GROUND SPIDERS (ARANEAE) ON CRETE, GREECE ◆<br />

Greece). Procceedings of the 6 th International Conference of<br />

Mediterranean Climate Ecosystems, 140-146.<br />

MAJADAS, A. & URONES, C., 2002. Communauté d’araignées<br />

<strong><strong>de</strong>s</strong> maquis méditerranéens <strong>de</strong> Cyticus oromediterraneus Rivas<br />

Mart. <strong>et</strong> al. Rev. arachnol., 14: 31-48.<br />

MILNER, J.E., 1988. Oxleas Wood: Observations on the spi<strong>de</strong>rs,<br />

their phenology and ecological strategies. The London<br />

Naturalist 67: 97-118.<br />

MITRAKOS, K., 1980. A theory for Mediterranean plant life. Acta<br />

Œcologica, Œcol. Plant. 1: 245-252.<br />

PARASCHI, L., 1988. Study of spi<strong>de</strong>rs in maquis ecosystems of<br />

southern Greece. PHD Thesis, University of Athens, Athens<br />

(in Greek).<br />

PEARSON, R.G. & WHITE, E., 1964. Factors contributing to<br />

the annual cycles of surface-active arthropods in moorland<br />

country. Entomologist’s month Magazine, 201-206.<br />

PENNAS, P., 1977. The climate of Cr<strong>et</strong>e. PHD Thesis, University<br />

of Thessaloniki, Thessaloniki (in Greek).<br />

PETANIDOU, T., 1991. Epiconiasis in phryganic ecosystems. PHD<br />

Thesis, University of Thessaloniki, Thessaloniki (in Greek).<br />

PIANKA, E. R., 1994. Evolutionary Ecology (5 th edition). Harper<br />

Collins College Publishers, NY.<br />

POLIS, G. A., 1998. Multifactor population limitation: variable<br />

spatial and temporal control of spi<strong>de</strong>rs on Gulf of California<br />

Islands. Ecology 79: 490-502.<br />

RACKHAM, O. & MOODY, J., 1996. The making of the Cr<strong>et</strong>an<br />

landscape. Manchester University Press.<br />

RADEA, C., 1993. Environmental factors that influence the<br />

temporal variation of predatory macroarthropods in the<br />

organic horizon of a Mediterranean pine forest. Biol. Gallohellen.<br />

20: 249-258.<br />

REISKIND, J., 1981. Phenology of two species of Castianeira<br />

(Araneae: Clubionidae) in central Florida: evi<strong>de</strong>nce of their<br />

geographic origins. Florida Entomologist 64: 457-458.<br />

SCHAEFER, M., 1977. Winter ecology of spi<strong>de</strong>rs (Araneida).<br />

Zeitschrift für angewandte Zoologie 83: 113-134.<br />

SCHMOLLER, R., 1970. Life histories of alpine tundra Arachnida<br />

in Colorado. The American Midland Naturalist 83: 119-133.<br />

SOKAL R.R. AND ROHLF F.J., 1995. Biom<strong>et</strong>ry (3 rd edition). W.H.<br />

Freeman and Co, NY.<br />

SØMME, L., 1995. Invertebrates in hot and cold environments.<br />

Springer, Berlin.<br />

SØMME, L., 1996. Anhydrobiosis and cold tolerance in tardigra<strong><strong>de</strong>s</strong>.<br />

Eur. J. Entomol. 93: 349-357.<br />

STAMOU, G. P., 1998. Arthropods of Mediterranean-type ecosystems.<br />

Springer, Berlin, NY, London.<br />

STRID, A., 1995. Desertification in the White Mountains of<br />

Cr<strong>et</strong>e. A botanical study with special reference to the<br />

effects of grazing and wildfires. Environment Research<br />

Programme 1991-1994: Climatology and Natural Hazards:<br />

Desertification in the Mediterranean area.<br />

TOFT, S., 1976. Life histories of spi<strong>de</strong>rs in a Danish beech wood.<br />

Natura Jutlandica 19: 5-40.<br />

TRETZEL, E., 1954. Reife und Fortpflanzungszeit bei Spinnen.<br />

Morph. Ökol. Tiere, 42: 634-691.<br />

UETZ, G. W., 1977. Coexistence in a guild of wan<strong>de</strong>ring spi<strong>de</strong>rs.<br />

J. Anim. Ecol., 46: 531-541.<br />

UETZ, G. W. & UNZICKER, J. D., 1976. Pitfall trapping in<br />

ecological studies of wan<strong>de</strong>ring spi<strong>de</strong>rs. J. Arachnol. 3: 101-<br />

111.<br />

URONES, C., JERARDINO, M. & BARRIENTOS, J. A., 1995. Datos<br />

fenologicos <strong>de</strong> Gnaphosidae (Araneae) capturados con<br />

trampas <strong>de</strong> caida en Salamanca (Espana). Rev. arachnol. 11:<br />

47-63.<br />

WILLIAMS, G., 1962. Seasonal and diurnal activity of harvestmen<br />

and spi<strong>de</strong>rs in contrasted habitats. J. Anim. Ecol. 31: 21-42.<br />

WISE, D. H., 1993. Spi<strong>de</strong>rs in ecological webs. Cambridge<br />

University Press.<br />

53<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 33-53


On the seed ecology of two life forms of Spergularia<br />

(Caryophyllaceae)<br />

Écologie <strong>de</strong> la germination chez <strong>de</strong>ux types biologiques différents<br />

<strong>de</strong> Spergularia (Caryophyllaceae)<br />

L.M.M. Bidak<br />

Botany Department, Faculty of Science, Alexandria University, Egypt.<br />

E-mail<br />

Abstract<br />

Two species representing two different life forms of the genus<br />

Spergularia have been chosen for the present study: the short lived<br />

perennial S. media (L.) C. Presl with smooth, brownish and winged<br />

seeds and the annual form S. bocconii (Scheele) Graebner,<br />

with brown, tuberculate and wingless seeds. The present study aims<br />

to compare b<strong>et</strong>ween the two species regarding seed germination and<br />

the effect of salinity and to evaluate the relation b<strong>et</strong>ween seed size<br />

and wingedness and to <strong>de</strong>monstrate the adaptive value of wings.<br />

The study showed that seeds of the perennial species attained larger<br />

size, mass and seed production than those of the annual species. The<br />

study also revealed that wingedness in the perennial species may<br />

serve in dispersal by water. Susceptibility to salt stress is increased<br />

after the emergence of radicle and plumule. Growth rates were<br />

strongly affected by increasing salinity and inhibition was clearer<br />

in the annual species. Larger seed size and <strong>de</strong>layed germination of<br />

the perennial species was associated with increasing salinity.<br />

Key-words<br />

Seed germination, seed production, dispersal, salinity<br />

Résumé<br />

Deux espèces du genre Spergularia représentant <strong>de</strong>ux types biologiques<br />

différents ont été choisies dans c<strong>et</strong>te étu<strong>de</strong> : S. media (L.)<br />

C. Presl est une espèce pérenne éphémère qui possè<strong>de</strong> <strong><strong>de</strong>s</strong> graines<br />

brunâtres, lisses <strong>et</strong> ailées, <strong>et</strong> S. bocconii (Scheele) Graebner, espèce<br />

annuelle avec <strong><strong>de</strong>s</strong> graines aptères brunes <strong>et</strong> tuberculeuses. C<strong>et</strong>te<br />

étu<strong>de</strong> a pour objectifs <strong>de</strong> comparer les <strong>de</strong>ux espèces sur le plan <strong>de</strong><br />

la germination <strong><strong>de</strong>s</strong> graines <strong>et</strong> <strong>de</strong> tester l’eff<strong>et</strong> <strong>de</strong> la salinité. Elle<br />

vise également à évaluer la relation entre la taille <strong><strong>de</strong>s</strong> graines <strong>et</strong> la<br />

présence d’ailes ainsi que <strong>de</strong> démontrer la valeur adaptative <strong>de</strong> ces<br />

appendices ailés. C<strong>et</strong>te étu<strong>de</strong> montre que l’espèce pérenne possè<strong>de</strong> <strong><strong>de</strong>s</strong><br />

graines <strong>de</strong> taille, poids <strong>et</strong> production plus importants que celle <strong>de</strong><br />

l’espèce annuelle. L’étu<strong>de</strong> montre également que la présence d’ailes<br />

chez l’espèce pérenne peut servir à la dispersion par l’eau. La sensibilité<br />

au sel s’accroît après l’émergence <strong>de</strong> la radicule <strong>et</strong> <strong>de</strong> la plumule.<br />

Les taux <strong>de</strong> croissance sont fortement affectés par un accroissement<br />

<strong>de</strong> la salinité <strong>et</strong> une inhibition apparaît clairement pour l’espèce<br />

annuelle. Le r<strong>et</strong>ard <strong>de</strong> germination <strong><strong>de</strong>s</strong> graines <strong>de</strong> gran<strong>de</strong> taille <strong>de</strong><br />

l’espèce pérenne est associé à un accroissement <strong>de</strong> la salinité.<br />

Mots-clés<br />

Germination <strong><strong>de</strong>s</strong> graines, production <strong>de</strong> graines, dispersion,<br />

salinité<br />

55<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 55-63


◆ L.M.M. BIDAK<br />

56<br />

INTRODUCTION<br />

Well-<strong>de</strong>veloped dispersal structures are more common<br />

in perennial than in annual species (Werner, 1979).<br />

Venable and Levin (1983) argue that Werner’s conclusion<br />

supports the i<strong>de</strong>a that dispersal in space may be more<br />

important for perennials than for annuals. Unfortunately<br />

both studies lack data on seed mass. Differences in seed<br />

size are always associated with differences in germination<br />

rate and establishment and variation in seed shape may<br />

lead to dissimilar dispersal of different seed types<br />

(Telenius & Torstensson, 1991). Seeds can become more<br />

complicated by adaptation to special mo<strong><strong>de</strong>s</strong> of dispersion<br />

(hairs, wings, appendages, <strong>et</strong>c.). However, winged seeds<br />

are generally wind dispersed (i.e. anemochorous) (Rauh<br />

<strong>et</strong> al., 1975).<br />

The number of species in the study area varies from<br />

habitat to another. The total number of perennial species<br />

in the various habitats of the study area was 42. On the<br />

other hand, the number of annuals encountered was 52.<br />

About 27 % of the species are restricted to the narrow<br />

coastal strip (ca. 15 km broad) along the Mediterranean.<br />

About 19 % of the species are also present in this coastal<br />

strip, and extend their distribution to the Nile <strong>de</strong>lta and<br />

the newly reclaimed lands (El-Ghareeb & Rezk, 1989).<br />

For most of the <strong><strong>de</strong>s</strong>ert plants soil moisture and<br />

rainfall are limiting factors influencing seed germination<br />

and establishment (Freas & Kemp, 1983: Agami,<br />

1986). Harper <strong>et</strong> al. (1965) found that variation in the<br />

microtopography of the soil surface could d<strong>et</strong>ermine<br />

the success or failure of establishment of seedlings. The<br />

shape and size of seeds may interact with h<strong>et</strong>erogeneity<br />

in soil microtopography, which d<strong>et</strong>ermines the abundance<br />

and proportions of different species in the community.<br />

One topic of germination ecology that needs further<br />

investigation is the pH requirements for germination<br />

of seeds un<strong>de</strong>r high salinity. Seeds of a number of<br />

species may have the ability to increase the hydrogen ion<br />

concentration in their immediate surroundings and thus<br />

lower the pH and hence may succeed to germinate un<strong>de</strong>r<br />

high salinity conditions (Okusanya, 1978). Germination<br />

inhibitors and salts may occur in the dispersal units (or<br />

in other parts of the plants) act as “rainclocks” which<br />

insure that no germination will take place until the soil<br />

is w<strong>et</strong>ted by several rains and seeds of some species do<br />

not germinate until the salts leached out of the seed’s<br />

microhabitat (Chapin, 1991).<br />

Spergularia (Pers.) J. <strong>et</strong> C. Presl (Caryophyllaceae,<br />

subfamily Parnychioi<strong>de</strong>ae) is commonly found in saline<br />

areas and salt marshes. The genus is represented in<br />

Egypt by five species, mostly in two life-forms; annual<br />

or short-lived perennials (S. rubra, S. boconnii, S. diandra<br />

and S. marina) and perennial herbs (S. media), som<strong>et</strong>imes<br />

with a woody base (Boulos, 1995). Seeds are winged or<br />

wingless (Boulos, 1995). Many species (e.g. Spergularia<br />

rubra) have medicinal value. The medicinal action of the<br />

plant is due to the large proportion of aromatic resins.<br />

The genus Spergularia is rich in saponins, which is wi<strong>de</strong>ly<br />

used as a domestic d<strong>et</strong>ergent (Neimann, 1993).<br />

The aims of this study is to provi<strong>de</strong> informations<br />

about the seed germination of the two investigated<br />

species, a perennial (Spergularia media) and an annual<br />

(S. bocconii) and to compare the <strong>de</strong>gree of adaptation for<br />

habitat performance and the relation b<strong>et</strong>ween seed size<br />

and wings b<strong>et</strong>ween the two species.<br />

MATERIALS AND METHODS<br />

Study area<br />

The study area extends for a distance of about 20 km<br />

along the Mediterranean coast from lake Edku in the east<br />

to Ros<strong>et</strong>ta in the west and to a <strong>de</strong>pth of 2 km. The climate<br />

is arid, warm coastal <strong><strong>de</strong>s</strong>ert type (Meig, 1973), with a<br />

mean winter temperature above 10 °C and rainy during<br />

winter. The annual rainfall ranges from 91 to 175 mm.<br />

The mean relative humidity is lower in summer than in<br />

winter (65 % and 81 % respectively) and evaporation is<br />

higher in summer than in winter (7.8 and 2.8 mm/day<br />

respectively). Eight main physiographic categories were<br />

distinguished: 1- unstabilized dunes, lying close to the<br />

seashore; 2- stabilized dunes distinguished into leeward<br />

si<strong>de</strong>, the windward si<strong>de</strong>, and the summit; 3- fields<br />

abandoned owing to rise of un<strong>de</strong>rground saline water;<br />

4- salt marshes covered by sand <strong>de</strong>posits from adjacent<br />

dunes; 5- salt flats; 6- canal banks; 7- cultivated orchards;<br />

and 8- cultivated crop fields. The coastal salt marshes<br />

extending from the foot of the youngest dunes to the sea<br />

shore and the inland salt marshes bor<strong>de</strong>ring the irrigation<br />

canals are the main habitats from where the studied<br />

species have been collected.<br />

Sampling strategy<br />

Mature individuals of the two selected species<br />

(Spergularia media and S. bocconii) were collected<br />

from their natural habitats. Four stands were selected<br />

to represent the natural habitats in which the studied<br />

species are distributed. These stands differ as regards to<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ON THE SEED ECOLOGY OF TWO LIFE FORMS OF SPERGULARIA ◆<br />

their distance from the sea and the commonly associated<br />

species but do not differ much in their soil characteristics.<br />

Two stands located near the coast (400 m) and the others<br />

were 1 km away from the coast and located in the inland<br />

salt marshes. Fresh specimens were pressed, dried and<br />

kept in the herbarium of the Botany Department, Faculty<br />

of Science, Alexandria University.<br />

A bulk of seeds was collected from many individuals<br />

of both plant species. Seeds were air dried at laboratory<br />

temperature for several days, placed in poly<strong>et</strong>hylene bags<br />

and stored at about 5 °C. Five individuals from each stand<br />

were used to study the lengths of shoot, lateral branches<br />

and root. The number of capsules per branch, seeds per<br />

capsules and the number of branches per individual were<br />

used to estimate seed production per plant. Seeds were<br />

weighed to the nearest mg, and seed dimensions were<br />

measured by microscope using a standard microm<strong>et</strong>er.<br />

Three soil samples at two <strong>de</strong>pths (0-5, 5-15 cm)<br />

were collected from each site of the study area for the<br />

d<strong>et</strong>ermination of pH and soil salinity. The concentration<br />

of Na, K, and Mg was d<strong>et</strong>ermined using an atomic<br />

absorption spectrophotom<strong>et</strong>er. The mixed acid digestion<br />

m<strong>et</strong>hod was used for elements d<strong>et</strong>ermination (Allen <strong>et</strong><br />

al., 1974). One Way-ANOVA test was applied for the soil<br />

characteristics.<br />

Only few species tolerate more than 2 % NaCl solution<br />

(Chapman, 1966; Zahran, 1975). The success or failure of<br />

seed germination in saline solution is taken as an indicator<br />

of seed establishment and salt tolerance. For this purpose,<br />

seven concentrations of NaCl solution (0.1, 0.2, 0.3, 0.5,<br />

1.0, 1.5 and 2 % w/v that equivalent to 17, 34, 51, 86,<br />

172, 259 and 344 mm respectively) were prepared. P<strong>et</strong>ridishes<br />

with filter paper moistened with distilled water or<br />

NaCl solution were prepared to examine the percentage<br />

seed germination un<strong>de</strong>r the different levels of salinity.<br />

Duplicate dishes, each with 30 seeds were used for each<br />

treatment. Observations were ma<strong>de</strong> every 24 hours.<br />

Emergence of radicle and/or plumule was taken as the<br />

criterion of successful germination. To assess the effect<br />

of salinity on germination rate the lengths of radicle and<br />

plumule (mm) were recor<strong>de</strong>d daily for 8 days from the<br />

beginning of the experiment. All the data were subjected<br />

to one-way analysis of variance. All statistical analysis<br />

applied using MINITAB 13.1 release-PC computer<br />

program (Minitab, 2000)<br />

Results<br />

Description of physical, chemical characteristic of<br />

the soil and associated species of the natural localities is<br />

illustrated in table 1. The soil of the study area is loamy<br />

sand and alkaline (table 1). The habit of growth varied<br />

from prostrate to ascending. Individuals of S. media were<br />

taller than those of S. bocconii, with <strong>de</strong>eper roots. The main<br />

branches were 5-6 and were markedly longer in S. media.<br />

Leaves of S. media were linear and fleshy whereas those<br />

of S. bocconii were narrowly linear. Leaves and interno<strong><strong>de</strong>s</strong><br />

were longer in S. media than in S. bocconii (table 2a).<br />

Average seed mass varied from 6.4 to 7.2 µg and seed<br />

length from 5.2 to 8.1 µm in S. media and S. bocconii<br />

respectively. The number of seeds/capsule was markedly<br />

higher in S. media and the number of seeds/individual<br />

was 1.4-fold the corresponding number in S. bocconii<br />

(table 2b).<br />

Seeds of S. bocconii can germinate immediately<br />

after being collected, whereas those of S. media exhibit<br />

<strong>de</strong>layed germination and seem to need a dormancy<br />

period. Hundred percent germination in S. bocconii un<strong>de</strong>r<br />

salinity conditions was attained at 0.1 % (17 mm) Nacl<br />

and thereafter germination rate <strong>de</strong>clined steadily to reach<br />

approximately 27 % at 1.5 % (259 mm) Nacl within the<br />

end of the experimental period (18 days).<br />

Up to 0.3 % (51 mm) Nacl, the percentage of<br />

germination in S. media was 100 % thereafter germination<br />

rate <strong>de</strong>clined so that 4 out of the 30 seeds germinated in<br />

2 % (344 mm) Nacl at the end of experimental period.<br />

At this salinity level, germination was totally inhibited in<br />

S. bocconii (table 3). It should be noted that during the<br />

first four days 26 seeds of S. bocconii germinated whereas<br />

no seeds of S. media could germinate.<br />

The maximum radicle and plumule lengths of S. media<br />

(56 and 75 mm respectively) were attained using distilled<br />

water. With increasing salinity, the length of both radicle<br />

and plumule were significantly <strong>de</strong>creased (fig. 1a).<br />

At 1 % (172 mm) NaCl concentration the radicle’s<br />

length of germinated seeds was more affected than the<br />

plumule’s. However, at 1.5 % (259 mm) NaCl no plumule<br />

emergence was observed.<br />

Highest germination rates were obtained for seeds<br />

of Spergularia bocconii w<strong>et</strong>ted with distilled water or<br />

dilute NaCl solution (0.1 % (17 mm), 0.2 % (34 mm).<br />

Concentration over 0.2 % <strong>de</strong>layed germination rate<br />

and r<strong>et</strong>ar<strong>de</strong>d the germination percentage (table 3). No<br />

seed of S. bocconii germinated at 2 % (344 mm) NaCl<br />

solution. The maximum radicle and plumule lengths (53<br />

& 65 mm respectively) were obtained using distilled water<br />

(fig. 1b). Lengths of both radicle and plumule as well as<br />

germination efficiency of S. bocconii were significantly<br />

affected by increasing salinization. No plumule was<br />

observed at 0.5 % (86 mm) NaCl solution. The growth<br />

57<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 55-63


◆ L.M.M. BIDAK<br />

Soil Character Value ± S. E. Associated species<br />

pH 8.61± 0.17 Alhagi graecorum Boiss<br />

E.C. (mmohs cm -1 ) 2.93 ± 1.0 Phragmites australis (Cav.) Trin. ex Steud<br />

Soil Texture (%)<br />

Sand<br />

Silt<br />

Clay<br />

81.7 ± 4.4<br />

17.7 ± 2.9<br />

0.57 ± 0.46<br />

Juncus rigidus Desf.<br />

*Aeluropus lagopoi<strong><strong>de</strong>s</strong> (L.) Trin. ex Thwaites<br />

Atriplex halimus L.<br />

Suaeda pruinosa Lange<br />

Soluble ions (meq./L.)<br />

58<br />

Table 1. Physical and chemical characteristics<br />

of the soil in the study area, the common associated<br />

species in the sites of the perennial (*)<br />

and that of the annual.<br />

Ca +2<br />

3.4 ± 1.8<br />

Mg +2<br />

Na +<br />

K +<br />

Cl -<br />

HCO<br />

- 3<br />

SO<br />

-2 4<br />

CaCO 3<br />

3.29 ± 1.17<br />

5.49 ± 2.67<br />

0.42 ± 0.13<br />

15.73 ± 4.62<br />

2.1 ± 0.49<br />

11.42 ± 3.24<br />

1.35 ± 0.29<br />

*Aster squamatus (Spreng.) Hieron.<br />

*Halocnemum strobiceum (Pall.) M. Bieb<br />

Inula crithmoi<strong><strong>de</strong>s</strong> L.<br />

*Traganum nudatum Delile<br />

*Zygophyllum album L<br />

Juncus acutus L.<br />

*Silene succulenta Forssk.<br />

*Cakile maritima Scop.<br />

Organic matter (%) 0.17 ± 0.01 *Mesembryanthemum crystallinum L.<br />

Soil Type<br />

Loamy sand<br />

rate (mm/day) of both radicles and plumules of the<br />

two studied species <strong>de</strong>creased with increasing salinity.<br />

However, the growth rate of plumule excee<strong>de</strong>d that of<br />

radicle with a few exceptions (fig. 1a&b).<br />

DISCUSSION<br />

Telenius and Torstensson (1991) report that the<br />

habitat characteristics can explain the variability in seed<br />

size of the genus Spergularia. Presence or absence of<br />

wings, for example, affect seed dispersal trait and this<br />

pattern is tightly linked with seed size. In this investigation<br />

the seeds of the perennial species (S. media) attained a<br />

larger size and mass than those of the annual (S. bocconii).<br />

Differences in seed size b<strong>et</strong>ween life histories have been<br />

reported by many authors (e.g. Baker, 1972; Pitelka,<br />

1977; Silvertown, 1981).<br />

Assuming that the pattern of seed dispersal is adaptive<br />

(Thompson, 1973; Augspurger & Franson, 1987; Matlack,<br />

1987), the evolution of larger seeds is constrained by its<br />

effect on seed dispersal. Thompson and Robinwitz (1989)<br />

hypothesized that big plants can produce big seeds and<br />

automatically brings enhanced seed dispersal. Venable<br />

and Levin (1983) found a correlation of wind dispersal<br />

adaptation and the perennial habit: well-<strong>de</strong>veloped<br />

dispersal structures were more common in perennial<br />

than in annual species. Telenius and Torstensson (1991)<br />

reported that the winged strategy is associated entirely<br />

with a perennial life history and reflected the fact that the<br />

perennial species of Spergularia produce larger seeds than<br />

do the annuals (fig. 2).<br />

Many authors emphasized the relation b<strong>et</strong>ween<br />

the morphology of the diasporas and the dispersal<br />

agent (e.g. Rauh <strong>et</strong> al., 1975; Werner, 1979; Venable &<br />

Levin, 1983; El-Sheikh, 1996). Dansereau and Lens<br />

(1957) have previously proposed a simple classification<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ON THE SEED ECOLOGY OF TWO LIFE FORMS OF SPERGULARIA ◆<br />

A<br />

B<br />

59<br />

Figure 1. Growth<br />

rate (mm/day)<br />

of radicle (R) &<br />

plumule lengths (P) of<br />

S. media (fig. 1a) and<br />

S. bocconii (fig. 1b)<br />

after 2, 4, 6 and 8<br />

days from sowing at<br />

different concentration<br />

of salinity level and<br />

distilled water (C).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 55-63


◆ L.M.M. BIDAK<br />

Attribute Spergularia media Spergularia bocconii P Value<br />

Habit of growth Prostrate or ascending Ascending --<br />

Plant height (cm) 53.4 ±2 21.3 ±0.9 *4.69<br />

Table 2a. Mean (at least 5<br />

individuals) ± SE of some<br />

morphological characters<br />

of the studied species.<br />

* P


ON THE SEED ECOLOGY OF TWO LIFE FORMS OF SPERGULARIA ◆<br />

Figure 2. Seed morphology<br />

and seed coat ornamentation<br />

pattern of S. media (A, B, C)<br />

and S. bobbonii (D, E)<br />

as shown by the SEM.<br />

61<br />

the conditions experienced by seeds in natural habitats<br />

<strong>de</strong>pends on the possession of some information on the<br />

level of variability occurring b<strong>et</strong>ween populations of<br />

different species occupying similar habitats, or with<br />

similar geographical distribution.<br />

In discussing the correlation b<strong>et</strong>ween seed size and<br />

adaptive value of wings, Sterk (1996) focused on the seed<br />

size variation and dispersal characteristics in S. marina<br />

and S. media. He reported that the unwinged and winged<br />

seed types would represent respectively the r and K-<br />

strategies. Willson (1983) instead consi<strong>de</strong>red seed types<br />

as representative of different dispersal strategies. The<br />

present study may reveal that Spergularia species, which<br />

primarily inhabit “marshy” habitats, are present now in<br />

a range of habitats mainly as a result of human impact.<br />

Wingedness in the perennial species may serve in the<br />

pattern of secondary dispersal by water.<br />

Zayed and Zeid (1997) reported that there is an<br />

inverse relationship b<strong>et</strong>ween the osmotic potential of<br />

the growth medium and the growth param<strong>et</strong>ers. The<br />

present study showed that the susceptibility to salt stress<br />

is increased after the emergence of radicle and plumule,<br />

so that their lengths as well as their growth rates were<br />

strongly affected. The inhibition was notable in the annual<br />

than in the perennial species. The radicle length was more<br />

affected than the plumule length. This inhibitory effect<br />

is in agreement with the results obtained by Hajar <strong>et</strong> al.<br />

(1996) on their studies on Nigella sativa.<br />

Tolerance mechanisms require energy expenditure and<br />

may consequently be associated with large seed reserves<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 55-63


◆ L.M.M. BIDAK<br />

Days<br />

Salinity Level (%)<br />

Distilled water 0.1 (17 mm) 0.2 (34 mm) 0.3 (51 mm) 0.5 (86 mm) 1.0 (172 mm) 1.5 (259 mm) 2.0 (344 mm)<br />

Spergularia bocconii<br />

62<br />

21/6/2002 10 9 1 0 0 0 0 0<br />

23 26 15 4 1 0 0 0 0<br />

25 30 24 12 5 11 3 2 0<br />

27 30 28 23 10 13 9 5 0<br />

29 30 28 23 22 18 10 8 0<br />

30 30 30 28 22 21 10 8 0<br />

1/7/2002 30 30 28 24 21 11 8 0<br />

3 30 30 28 25 23 11 8 0<br />

5 30 30 28 25 23 11 8 0<br />

6 30 30 28 25 23 11 8 0<br />

Spergularia media<br />

21/6/2002 0 11 5 7 8 0 0 0<br />

22 0 13 19 10 10 4 0 0<br />

23 0 19 23 19 18 4 0 0<br />

25 5 22 24 24 25 9 4 0<br />

27 12 24 24 26 26 13 6 0<br />

29 20 27 26 30 26 15 7 2<br />

30 20 27 26 30 27 19 7 2<br />

1/7/2002 22 27 28 30 27 19 7 2<br />

3 25 27 30 30 27 19 8 3<br />

5 25 27 30 30 27 19 8 4<br />

6 25 27 30 30 27 19 8 4<br />

Table 3. Results of germination percentages on the seeds of the studied species un<strong>de</strong>r different levels of salinity,<br />

compared with that of distilled water. Values are means of duplicate P<strong>et</strong>ri dishes each containing 30 seeds.<br />

and slow relative growth rate (Nieman <strong>et</strong> al., 1992).<br />

Larger seed size of Spergularia media was associated<br />

with <strong>de</strong>lay of germination un<strong>de</strong>r high salinity levels; this<br />

may enable seedlings to persist for longer time at low soil<br />

moisture and/or high soil salinity which might increase the<br />

chance of survival of these seeds. However, knowledge of<br />

the phylogen<strong>et</strong>ic interrelations in the genus still requires<br />

further investigations.<br />

ACKNOWLEDGEMENTS<br />

The authors appreciates the valuable comments of Dr.<br />

S. Barakat Prof. of Plant Physiology, Faculty of Science,<br />

Alexandria University Egypt.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ON THE SEED ECOLOGY OF TWO LIFE FORMS OF SPERGULARIA ◆<br />

References<br />

AGAMI, M. 1986. The effect of different soil water potentials,<br />

temperature and salinity on germination of seeds of the<br />

<strong><strong>de</strong>s</strong>ert shrub Zygophyllum dumosum. Physiol. Plant. 67: 305-<br />

309.<br />

ALLEN, S., GRIMSHAY, H.M., PARKINSON, J.A. & QUARMBY, C.<br />

1974. Analysis of Ecological Materials. Blackwell Scientific<br />

publications. Osney, Oxford, London, 565 p.<br />

AUGSPURGER, C.K. & FRANSON, S.E. 1987. Wind dispersal<br />

of artificial fruits varying in mass, area and morphology.<br />

Ecology, 68: 27-42.<br />

BAKER, H.G. 1972. Seed weight in relation to environmental<br />

conditions in California. Ecology, 53: 997-1010.<br />

BOULOS, L. 1995. Flora of Egypt Checklist. Cairo: Al-Hadara<br />

Publishing. 287 p.<br />

CHAPMAN, V.J. 1966. Veg<strong>et</strong>ation and salinity. In: Salinity and<br />

aridity. Dr.W.Junk. The Hage, pp. 23-42.<br />

CHAPIN, F.S.III. 1991. Integrated responses of plants to stress.<br />

BioScience, 41: 29-36.<br />

DANSEREAU, P. & LEMS, K. 1957. The grading of dispersal<br />

types in plant communities and their ecological significance.<br />

Contrib. Inst. Bot. Univ. Montreal, 71, 52 p.<br />

EL-GHAREEB, R. & REZK, M. 1989. A preliminary study on<br />

the veg<strong>et</strong>ation of the <strong>mediterranea</strong>n coastal land at Bousseli<br />

(Egypt). J. Univ. Kuwait (Sci.), 16: 115-128.<br />

FREAS, K.E., & P.R. KEMP. 1983. Some relationships b<strong>et</strong>ween<br />

environmental reliability and seed dormancy in <strong><strong>de</strong>s</strong>ert annual<br />

plants. J. Ecol., 71: 211-217.<br />

HAJAR, A.S., ZIEDAN, M.A., AL-ZAHRANI, H.S. 1996. Effect of<br />

salinity stress on the germination, growth and some physiological<br />

activities of black cumin (Nigella sativa L.). Arabian<br />

Gulf J. Sci. Res., 14: 445-454.<br />

HARPER, J.L. WILIAMS, J.T. AND SAGAR, G.R. 1965. The behaviour<br />

of seeds in the soil. J. Ecol., 53: 273-86.<br />

MATLACK, G.R. 1987. Diaspore size, shape, and fall behavior in<br />

wind-dispersal plant species. Am. J. Bot. 74: 1150-1160.<br />

MCMILLAN, C. 1959. The role of ecotype variation in the distribution<br />

of the central grassland of North America. Ecol.<br />

Monogr., 29: 285-208.<br />

MEIG, P. 1973. World distribution of coastal <strong><strong>de</strong>s</strong>erts. In: Amiran,<br />

D.H.K. & Wilson, A. W. (eds.), Coastal <strong><strong>de</strong>s</strong>erts, their natural<br />

and human environments, Univ. of Arizona Press, Phoenix<br />

AZ, pp. 3-13.<br />

NIEMANN, G.J. 1993. Anthranilami<strong>de</strong> phytoalexins of the<br />

Caryophyllaceae. Phytochem., 34: 319.<br />

OKUSANYA,O.T. 1978. The effect of acid on the germination<br />

and early growth of some maritime cliff species. Oikos, 30:<br />

549-554.<br />

PITELKA, L.F. 1977. Energy allocation in annual and perennial<br />

lupines (Lupinus, Leguminosae). Ecology, 58: 1055-1065.<br />

RAUH, W., BARTHLOTT, W. & EHLER, N. 1975. Morphologie und<br />

Funktion <strong>de</strong>r Testa staubformiger Flugsamen. Bot. Jahr. Syst.<br />

96: 353-374.<br />

SILVERTOWN, J.W. 1981. Seed size, life spain, and germination<br />

date as co-adapted features of plant life history. Am. Nat.,<br />

118: 860-864.<br />

STERK, A.A. 1996. Biosystematic studies in Spergularia media<br />

and S. marina in the N<strong>et</strong>herlands III. The variatiability of<br />

S. media and S. marina in relation to the environment. Acta<br />

Bot. Neerl., 18: 561-577.<br />

TELENIUS, A. & TORSTENSSON, P. 1991. Seed wings in relation to<br />

seed size in the genus Spergularia. Oikos, 61: 216-222.<br />

THOMPSON, P.A. 1973. Seed germination in relation to ecological<br />

and geographical distribution. In: Taxonomy and Ecology,<br />

Heywood, V.H. (ed.), Aca<strong>de</strong>mic Press, London, pp. 93-119.<br />

THOMPSON, K. & ROBINOWITZ, D. 1989. Do big plants have big<br />

seeds? Am. Nat., 133: 722-728.<br />

VENABLE, D.I. & LEVIN, D.A. 1983. Morphological dispersal<br />

structures in relation to growth habit in the Compositae.<br />

Pl. Syst. Evol., 143: 1-16.<br />

WERNER, P.A. 1979. Comp<strong>et</strong>ition and coexistence of similar<br />

species. In: Solbrig, O.T., Jain, S., Johnson, G. & Raven, P.H.<br />

(eds.). Topics in plant population biology. Columbia Univ.<br />

Press. New York.<br />

WILLSON, M.F. 1983. Plant reproductive ecology. Wiley, New<br />

York.<br />

ZAHRAN, M.A. 1975. On the germination of seeds of Juncus<br />

rigidus C.A. Mey and J. acutus L. Bull. Fac. Sc. Mansoura<br />

Univ., 3: 75-84.<br />

ZAYED M.A., ZEID, I.M. 1997. Effect of water and salt stresses<br />

on growth, chlorophyll, mineral ions and organic solutes<br />

contents and enzymes activity in mung bean seedlings. Biol.<br />

Plant., 40: 351-356.<br />

63<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 55-63


Factors structuring land snail communities in South-Eastern<br />

France: a comparison of two estimation m<strong>et</strong>hods<br />

Facteurs structurant les communautés malacologiques terrestres<br />

du SE <strong>de</strong> la France : comparaison <strong>de</strong> <strong>de</strong>ux métho<strong><strong>de</strong>s</strong> d’échantillonnage<br />

Sébastien Aubry* & Frédéric Magnin<br />

Institut méditerranéen d’écologie <strong>et</strong> <strong>de</strong> paléoécologie (IMEP-UMR 6116 CNRS), bâtiment Villemin,<br />

Europole <strong>de</strong> l’Arbois, BP80, F13545 Aix-en-Provence, CEDEX 04<br />

* Corresponding author: email: sebastien.aubry@univ.u-3mrs<br />

Abstract<br />

In or<strong>de</strong>r to shed light on the influence of sampling m<strong>et</strong>hods on the<br />

accuracy with which factors structuring land snail communities<br />

are gauged, the results of two studies were compared. The two<br />

studies, un<strong>de</strong>rtaken in the same area in South-Eastern France<br />

near Marseilles, differed in m<strong>et</strong>hods and initial aims. One was<br />

un<strong>de</strong>rtaken using a stratified sampling strategy which collected only<br />

large species within a 25 m 2 square while the other was un<strong>de</strong>rtaken<br />

using a systematic sampling strategy and collecting species of all sizes<br />

within a 400 m 2 area.<br />

Results indicate that thirty samples (using either technique) are<br />

sufficient to <strong><strong>de</strong>s</strong>cribe the main factors structuring land snail<br />

assemblages. In addition, the collection of only large species<br />

provi<strong><strong>de</strong>s</strong> an a<strong>de</strong>quate indication of the main factors structuring<br />

these assemblages. It is suggested that malacological quadrats are<br />

optimised when they cover a limited area (here 25 m 2 ) and inclu<strong>de</strong><br />

the collection of several turves.<br />

The comparison of the results of both studies revealed that human<br />

activities are the main factor structuring molluscan communities<br />

at the scale of the parish. It also highlights that this scale, which<br />

takes into account topography and human activities, is relevant to<br />

un<strong>de</strong>rstanding the distribution of land snails.<br />

Key-words<br />

Community ecology, landscape, land snail, m<strong>et</strong>hodology, South-<br />

Eastern France, succession<br />

Résumé<br />

Dans le but <strong>de</strong> révéler l’influence <strong>de</strong> la métho<strong>de</strong> d’échantillonnage<br />

sur la précision avec laquelle les facteurs structurant les<br />

communautés malacologiques sont estimés, les résultats <strong>de</strong> <strong>de</strong>ux<br />

étu<strong><strong>de</strong>s</strong> sont comparés. Ces <strong>de</strong>ux étu<strong><strong>de</strong>s</strong>, entreprises dans la même<br />

région du sud-est <strong>de</strong> la France, près <strong>de</strong> Marseille, diffèrent par<br />

leurs métho<strong><strong>de</strong>s</strong> ainsi que par leurs objectifs initiaux. L’une utilise<br />

un échantillonnage stratifié <strong>et</strong> ne prend en compte que les grosses<br />

espèces récoltées à l’intérieur d’un carré <strong>de</strong> 25 m² ; l’autre est fondée<br />

sur un échantillonnage systématique <strong>et</strong> prend en compte les espèces<br />

<strong>de</strong> toutes tailles à l’intérieur d’un carré <strong>de</strong> 400 m².<br />

Les résultats indiquent que trente échantillons (quelle que soit la<br />

technique) sont suffisants pour décrire les facteurs structurant les<br />

assemblages malacologiques à l’échelle d’une commune. De plus,<br />

la récolte <strong><strong>de</strong>s</strong> seules grosses espèces fournit une indication adéquate<br />

<strong><strong>de</strong>s</strong> principaux facteurs structurant ces assemblages. Il est suggéré<br />

que les quadrats malacologiques sont optimisés quand ils couvrent<br />

une surface limitée (ici 25 m²) <strong>et</strong> incluent la collecte <strong>de</strong> plusieurs<br />

prélèvements <strong>de</strong> sol pour la recherche <strong><strong>de</strong>s</strong> p<strong>et</strong>ites espèces.<br />

La comparaison <strong><strong>de</strong>s</strong> résultats <strong><strong>de</strong>s</strong> <strong>de</strong>ux étu<strong><strong>de</strong>s</strong> révèle que les activités<br />

humaines sont le principal facteur structurant les communautés<br />

malacologiques à l’échelle <strong>de</strong> la commune. Elle souligne aussi que<br />

c<strong>et</strong>te échelle, qui prend en compte la topographie <strong>et</strong> les activités<br />

humaines, est adéquate pour comprendre la distribution <strong><strong>de</strong>s</strong><br />

mollusques terrestres au sein du paysage.<br />

Mots-clés<br />

Écologie <strong><strong>de</strong>s</strong> communautés, paysage, mollusques terrestres, méthodologie,<br />

Sud-Est <strong>de</strong> la France, succession<br />

65<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 65-74


◆ S. AUBRY & F. MAGNIN<br />

66<br />

INTRODUCTION<br />

The role of micro-habitat in the composition of land<br />

snail communities has long been recognised (Boycott,<br />

1934). In particular, the structure of the veg<strong>et</strong>ation is one<br />

of the main factors controlling the occurrence of species.<br />

The role of habitat h<strong>et</strong>erogeneity on the structure of land<br />

snail communities has been studied at several scales and<br />

has been shown to be influential from the micro-scale<br />

(Davies & Grimes, 1999) to the landscape scale (Magnin<br />

<strong>et</strong> al., 1995).<br />

In contrast with phytosociology, where a standardised<br />

m<strong>et</strong>hod exists, sampling m<strong>et</strong>hods have always been a<br />

source of <strong>de</strong>bate in malacology and different m<strong>et</strong>hods<br />

have been used <strong>de</strong>pending on the aims of the study (e.g.<br />

Cameron & Morgan-Huws, 1975; Bishop, 1977; Boag,<br />

1982; Emberton <strong>et</strong> al., 1996; Hawkins <strong>et</strong> al., 1998; Davies<br />

& Grimes, 1999; Menez, 2001; Cameron, 2002).<br />

The aim of the present work was to compare two<br />

studies in or<strong>de</strong>r to assess both the influence of sampling<br />

m<strong>et</strong>hods and strategies in general, and the factors that<br />

structure land snail communities in rural Mediterranean<br />

environments. The two studies sampled the same area of<br />

the French Mediterranean region but differed in their<br />

aims, sampling strategies and scales. One was conducted<br />

in 1989 (Magnin & Tatoni, 1995) and the second, the<br />

results of which are presented here, was conducted in<br />

1995.<br />

METHODS<br />

Study site<br />

Auriol is situated near Marseilles (coastal) in the<br />

calcareous lower Provence on the bank of the river<br />

Huveaune (fig. 1). It has a Mediterranean climate with<br />

a mean annual temperature of 14 °C, two dry months<br />

(P < 2T, where P is precipitation of a given month in<br />

mm and T is mean temperature of the month in °C) and<br />

two to three cold months (T < 7 °C) (CNRS, 1975).<br />

The parish of Auriol, <strong>de</strong>limited to the north and south<br />

by two mountain chains reaching 900 m, covers an area<br />

of 4 464 ha. Once an agricultural village (cultivated in<br />

terraces since at least the 12 th century), it is close to<br />

an enlarging urban centre, so that the landscape has<br />

un<strong>de</strong>rgone many changes since the beginning of the<br />

20 th century. In<strong>de</strong>ed, at the <strong>de</strong>mographic maximum<br />

during the 19 th century, the entire area was covered with<br />

cultivated terraces. After World War II, abandonment<br />

of the agricultural terraces has led to the replacement<br />

of agricultural lands by woodland (Grove & Rackham,<br />

2001). More recently, the expansion of human habitations<br />

and roads has been influential.<br />

Aims of each m<strong>et</strong>hod<br />

The 1989 study aimed to <strong>de</strong>fine post-agricultural<br />

successions on abandoned cultivation terraces in<br />

calcareous Provence for both plant and land snail<br />

communities (Tatoni <strong>et</strong> al., 1994; Magnin & Tatoni,<br />

1995). The 1995 study aimed to shed light on the many<br />

factors influencing land snail species diversity at several<br />

spatial scales within the parish of Auriol.<br />

Description of each m<strong>et</strong>hod<br />

In 1989, all living and <strong>de</strong>ad snails larger than five<br />

millim<strong>et</strong>res were taken during a standard period of fifteen<br />

minutes for each sampling site. This involved searching<br />

beneath fallen logs and stones, investigating crevices,<br />

un<strong>de</strong>r the bark of trees and in other places <strong>de</strong>emed<br />

suitable for snails. In total, 65 samples were collected<br />

along nine terraced hill slopes (fig. 1a). For each of the 9<br />

slopes several cultivation terraces were sampled according<br />

to their time of abandonment. Each sample was taken in<br />

an area of, approximately, 25 m 2 .<br />

In 1995, samples were taken according to a systematic<br />

sampling strategy whereby sampling sites were chosen a<br />

priori on a map. Twenty-five samples were taken from<br />

sites (20 x 20 m square) aligned on a grid (fig. 1b).<br />

Sampling was performed in two ways. First, a visual<br />

search involving the collection of all living and <strong>de</strong>ad<br />

snails was un<strong>de</strong>rtaken for 20 minutes over the entire<br />

400 m 2 area. This involved searching beneath fallen logs<br />

and stones, investigating crevices, un<strong>de</strong>r the bark of trees<br />

and in other places <strong>de</strong>emed suitable for snails. Second, in<br />

or<strong>de</strong>r to collect shells less than 5 mm diam<strong>et</strong>er, veg<strong>et</strong>ation,<br />

litter and surface soil covering an area of 25 x 25 cm and<br />

a <strong>de</strong>pth of 5 cm were collected at five points within each<br />

sampling site, bagged, and brought back to the laboratory.<br />

There, samples were dried in an oven (40-75 °C), then<br />

immersed in water. Floating material was collected in a 0.5<br />

mm mesh sieve and dried again. The sieved samples were<br />

separated into four fractions using a s<strong>et</strong> of gra<strong>de</strong>d soil<br />

sieves (10, 2, 1 and 0.5 mm). Shells were then separated<br />

from plant material, using a binocular microscope for the<br />

smallest fractions.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


STRUCTURING FACTORS OF LAND SNAIL COMMUNITIES IN SOUTH-EASTERN FRANCE ◆<br />

67<br />

Figure 1. Locations of sampling<br />

sites in the Auriol parish: a)<br />

1989; b) 1995.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 65-74


◆ S. AUBRY & F. MAGNIN<br />

68<br />

ANALYSES<br />

Inventories of species collected during each study were<br />

compared. Nomenclature follows Kerney <strong>et</strong> al. (1983)<br />

except for Xeropicta <strong>de</strong>rbentina (Krynicki, 1836), a species<br />

recently introduced in Provence that was not inclu<strong>de</strong>d by<br />

these authors. Randomised species accumulation curves<br />

(sample-based rarefaction curves) were calculated using<br />

the Estimate v6.0b1 software (Colwell, 2000) in or<strong>de</strong>r to<br />

assess the compl<strong>et</strong>eness of each inventory. Five hundred<br />

iterations were performed for each s<strong>et</strong> of data. Species/<br />

samples data matrices for each study were examined by<br />

correspon<strong>de</strong>nce analyses performed with CANOCO<br />

for Windows 4.0 (ter Braak & Smilauer, 1998). Species<br />

abundance data were logarithmically transformed (log<br />

(X +1)) in or<strong>de</strong>r to reduce the importance of the most<br />

abundant species and to normalise their distributions<br />

(Legendre & Legendre, 1984; Labaune & Magnin,<br />

2001). Also, rare species abundance was down-weighted<br />

by an algorithm available in CANOCO.<br />

RESULTS<br />

Inventory of biodiversity<br />

Thirty-two species were recovered from the 65<br />

samples collected in 1989 (table 1). Of these, four are<br />

small species (less than 5 mm) that were not specifically<br />

sought. The list of species recovered by this m<strong>et</strong>hod<br />

therefore comprises only 28 species.<br />

Fifty-eight species were recovered from the 25<br />

samples collected in 1995 (table 1). Of these, five species,<br />

all hygrophilous, were represented only as sub-fossils,<br />

witnesses of a past environment. Therefore 53 species<br />

are found living in the area. Only 22 species were found<br />

during the visual search in 1995 (table 1).<br />

Many species, with various ecologies, were found<br />

during both studies. All the species found in 1989 were<br />

also collected during the 1995 study (table 1). Three<br />

categories of species missing from the 1989 study in<br />

comparison to the 1995 one can be highlighted. In fact,<br />

in addition to the expected absence of species less than<br />

5 mm in size, open-w<strong>et</strong>land species and forest species<br />

were also missing. This absence of species from the latter<br />

categories is a result of the 1989 sampling strategy that<br />

<strong>de</strong>liberately ignored habitats such as irrigated agricultural<br />

crops and closed woodlands that were not present on<br />

abandoned terraces. Thus, <strong><strong>de</strong>s</strong>pite a much larger number<br />

of samples, some large species were not recovered from<br />

the 1989 study.<br />

Accumulation curves<br />

The m<strong>et</strong>hod used in 1989 led to collection of a<br />

large number of species bigger than 5 mm. The sample<br />

accumulation curves (fig. 2), computed using EstimateS<br />

(Colwell, 2000), show that the commonest species were<br />

all found during this study. Only a few species larger<br />

than 5 mm were still to be found since the asymptotes<br />

are reached early in the accumulation. In fact, 30 samples,<br />

rather than the 65 taken, would have probably sufficed<br />

to record the same number of species. When the four<br />

small species are inclu<strong>de</strong>d the asymptote is not reached.<br />

Obviously, some species smaller than 5 mm were<br />

missed.<br />

The species accumulation curve computed with the<br />

25 samples and 53 species of the 1995 study shows that<br />

this inventory comes close to finding all the species in the<br />

area. However, the curve does not reach a clear asymptote<br />

(fig. 2) and some rare species are still missing. The<br />

incorporation of the five sub-fossil species into the list,<br />

by inflating the number of rare species, strongly increases<br />

the slope of the curve.<br />

Figure 2. Accumulation curves computed after 500 iterations: 1989a,<br />

all species collected during the 1989 study; 1989b, as 1989a but excluding four<br />

species smaller than 5 mm; 1996a, all species collected during the 1996 study;<br />

1996b, as 1996a but excluding the five hygrophilous species.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


Species CODES 1989<br />

1995<br />

Total Visual<br />

Acanthinula aculeata (Müller, 1774) AAC (1) 3 894<br />

Abida polyodon (Draparnaud, 1801) APO 11 48<br />

Bythiospeum sp. BYT (2)<br />

Cecilioi<strong><strong>de</strong>s</strong> (Cecilioi<strong><strong>de</strong>s</strong>) acicula (Müller, 1774) CAC 2 891<br />

Chondrina avenacea (Bruguière, 1792) CAV 1<br />

Ciliella ciliata (Hartmann, 1821) CCI 12<br />

Candidula gigaxii (Pfeiffer, 1850) CGI 334 264 13<br />

Cepaea (Cepaea) nemoralis (Linnaeus, 1758) CNE 4 15 9<br />

Cochlicella acuta (Müller, 1774) COA 213<br />

Cochlicella barbara (Linnaeus, 1758) COB 7<br />

Cochlostoma (Turritus) patulum (Draparnaud, 1801) CPA 1 329<br />

Carychium tri<strong>de</strong>ntatum (Risso, 1826) CTR (3)<br />

Candidula unifasciata (Poir<strong>et</strong>, 1801) CUN 57 295<br />

Cernuella (Microxeromagna) vestita (Rambur, 1868) CVE 95 9<br />

Cernuella (Cernuella) virgata (da Costa, 1778) CVI 48 1 051 32<br />

Euconulus (Euconulus) fulvus (Müller, 1774) EFU 846<br />

Ena (Ena) obscura (Müller, 1774) EOB 20 310<br />

Eobania vermiculata (Müller, 1774) EVE 90 302 156<br />

Granopupa granum (Draparnaud, 1801) GGR (6) 2 615<br />

Galba truncatulla (Müller, 1774) GTR (683)<br />

Granaria variabilis (Draparnaud, 1801) GVA 37 624<br />

Helix (Cornu) aspersa (Müller, 1774) HAS 103 114 76<br />

H. conspurcata or C. vestita HCV<br />

Hygromia cinctella (Draparnaud, 1801) HCI 6 1<br />

Hellicella (Xerotricha) conspurcata (Draparnaud, 1801) HCO 13 74<br />

Helicigona lapicida (Linnaeus, 1758) HLA 1 1<br />

Helix (Helix) melanostoma (Draparnaud, 1801) HME 34 6 6<br />

Jaminia (Jaminia) quadri<strong>de</strong>ns (Müller, 1774) JQU 32 118<br />

Lauria (Lauria) cylindracea (da Costa, 1778) LCY 339<br />

Monacha (Monacha) cantiana (Montagu, 1803) MAN 65 199 18<br />

Monacha (Monacha) cartusiana (Müller, 1774) MAR 8 246 20<br />

Oxychilus (Oxychilus) draparnaudi (Beck, 1837) ODR 64 513 8<br />

Oxychilus (Oxychilus) hydatinus (Rossmässler, 1838) OHY 20<br />

Pomatias elegans (Müller, 1774) PEL 643 1 997 883<br />

Phenacolimax (Phenacolimax) major (Férussac, 1807) PMA 182<br />

Pupilla (Pupilla) muscorum (Linnaeus, 1758) PMU 37<br />

Punctum (Punctum) pygmaeum (Draparnaud, 1801) PPY 1 434<br />

Pyramidula rupestris (Draparnaud, 1801) PRU 11<br />

Papilifera solida (Draparnaud, 1805) PSO 97 364 8<br />

Pseudotachea splendida (Draparnaud, 1801) PSP 12 129 129<br />

Sphincterochila (Albea) candidissima (Draparnaud, 1801) SCA 33 26<br />

Succinea (Succinella) oblonga (Draparnaud, 1801) SOB (1)<br />

Solatopupa similis (Bruguière, 1792) SSI 56 228 9<br />

Truncatellina callicratis (Scacchi, 1833) TCA (1) 2 246<br />

Trochoi<strong>de</strong>a (Trochoi<strong>de</strong>a) elegans (Gmelin, 1791) TEL 188 1 066 21<br />

Testacella (Testacella) halioti<strong>de</strong>a (Draparnaud, 1801) THA 2<br />

Trichia (Trichia) hispida (Linnaeus, 1758) THI 16<br />

Theba pisana (Müller, 1774) TPI 29 986 456<br />

Trochoi<strong>de</strong>a (Trochoi<strong>de</strong>a) pyramidata (Draparnaud, 1805) TPY 3<br />

Trochoi<strong>de</strong>a (Trochoi<strong>de</strong>a) trochoi<strong><strong>de</strong>s</strong> (Poir<strong>et</strong>, 1789) TTR 43 1 586 106<br />

Perforatella (Monachoi<strong><strong>de</strong>s</strong>) ventouxiana (Forcart, 1946) UVE 118 5<br />

Vallonia costata (Müller, 1774) VAC 2 806<br />

Vitrea (Crystallus) contracta (Westerlund, 1871) VCO (1) 3 807<br />

Vallonia enniensis (Gredler, 1856) VEN (75)<br />

Vallonia pulchella (Müller, 1774) VPU 438<br />

Vertigo (Vertigo) pygmaea (Draparnaud, 1801) VPY 811<br />

Cernuella (Xeromagna) cespitum (Draparnaud, 1801) XCE 94 153 115<br />

Xeropicta <strong>de</strong>rbentina (Krynicki, 1836) XDE 600 7 017 639<br />

Zonites (Zonites) algirus (Linnaeus, 1758) ZAL 102 60 46<br />

Total number of shells 3 007 41543 2 778<br />

Table 1. Names, co<strong><strong>de</strong>s</strong> and number<br />

of individuals of the 58 species collected<br />

during the two studies.<br />

Numbers for species that were exclu<strong>de</strong>d<br />

from statistical analyses are given<br />

in parentheses. Nomenclature follows<br />

Kerney <strong>et</strong> al. (1983).<br />

The distinction b<strong>et</strong>ween individuals<br />

collected during the visual search<br />

and the total is ma<strong>de</strong> for the 1995 study.<br />

69<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 65-74


◆ S. AUBRY & F. MAGNIN<br />

70<br />

Ecological results<br />

1989 study<br />

The four small species were exclu<strong>de</strong>d from the<br />

correspon<strong>de</strong>nce analysis, which was therefore applied<br />

to 28 species and 65 samples. The first two axes explain<br />

34.2 % of the total variation (λ = 2.21414) (fig. 3a).<br />

On axis 1 the species with negative values inclu<strong>de</strong><br />

Xeropicta <strong>de</strong>rbentina, Trochoi<strong>de</strong>a elegans and Theba<br />

pisana, and those with positive values inclu<strong>de</strong> Pomatias<br />

elegans, Oxychilus draparnaudi, Cepaea nemoralis and<br />

Ena obscura. The first group of species is characteristic<br />

of dry and open habitats with herbaceous veg<strong>et</strong>ation<br />

or ru<strong>de</strong>ral environments. The second group of species<br />

is characteristic of open woodlands or environments<br />

with abundant leaf-litter. On axis 2 the species with the<br />

most positive values inclu<strong>de</strong> Pomatias elegans, Oxychilus<br />

draparnaudi, Cepaea nemoralis, Monacha cantiana and<br />

Zonites algirus, and those with the most negative values<br />

inclu<strong>de</strong> Candidula unifasciata, Papillifera solida, Granaria<br />

variabilis and Jaminia quadri<strong>de</strong>ns.<br />

On the same factorial plane, samples from cultivated<br />

and herbaceous wastelands are distinguished on axis 1<br />

(negative values) from woodland samples (positive<br />

values). Axis 2 separates samples taken in garrigues and<br />

grassland with chamaephytes (negative values) from<br />

samples taken from woodland.<br />

This analysis shows succession patterns of land snail<br />

communities in relation to the succession patterns of<br />

plant communities, from cultivation to woodland. For<br />

veg<strong>et</strong>ation, two dynamic trajectories exist <strong>de</strong>pending on<br />

perturbations or <strong>de</strong>gradation of soil. Without perturbation<br />

and on thick soil, the main trajectory links cultivated areas<br />

to broad-leaved woodlands, through grassy fallow lands<br />

and closed scrublands. This trajectory corresponds to the<br />

upper part of the first factorial plane. If perturbations<br />

(such as fire) occur, another trajectory leads to garrigues<br />

through a continuous <strong>de</strong>gradation of the terraces and<br />

soils. This trajectory corresponds to the lower part of the<br />

first factorial plane. Land snail communities, un<strong>de</strong>r the<br />

influence of veg<strong>et</strong>ation structure, are strongly <strong>de</strong>pen<strong>de</strong>nt<br />

on the age of abandonment of the terrace. They follow<br />

the two trajectories taken by plant communities along<br />

secondary successions.<br />

1995 study<br />

The five hygrophilous species were exclu<strong>de</strong>d from the<br />

correspon<strong>de</strong>nce analysis, which was therefore applied to<br />

53 species and 25 samples. The first three axes explain<br />

56.6 % of the total variation (λ = 1.32682) with 33.7, 12.3<br />

and 10.6 % respectively.<br />

A strong arch effect is apparent on the first factorial<br />

plane of the correspon<strong>de</strong>nce analysis (not shown here).<br />

Axes 1 and 2 represent the same strong contrast as in the<br />

analysis of the 1989 data b<strong>et</strong>ween two very different types<br />

of malacological communities. They contrast open-land<br />

species, such as Cochlicella acuta, C. barbara, Trochoi<strong>de</strong>a<br />

elegans, Theba pisana and Trochoi<strong>de</strong>a trochoi<strong><strong>de</strong>s</strong> to species<br />

characteristic of woodland, such as Acanthinula aculeata,<br />

Euconulus fulvus and Cepaea nemoralis. This arch effect<br />

results from the presence of two samples collected in<br />

agricultural crops. Despite the removal of the five subfossil<br />

species from these agricultural crop samples, their<br />

mo<strong>de</strong>rn fauna is still very different from that of other<br />

open-land samples. In<strong>de</strong>ed, the irrigation of these crops<br />

apparently leads to a fauna characteristic of humid open<br />

lands of southeast France such as Cochlicella spp., Trichia<br />

hispida, Vallonia pulchella and Vertigo pygmaea.<br />

The second factorial plane of this analysis (axes 1<br />

and 3; fig. 3b) is similar to the first factorial plane of<br />

the 1989 study (fig. 3b). Secondary successions are the<br />

main structuring factor on this plane. Axis 3 distinguishes<br />

saxicolous species found in garrigues, such as Jaminia<br />

quadri<strong>de</strong>ns, Pseudotachea splendida, Helicigona lapicida and<br />

Chondrina avenacea, with negative values, from litterdwelling<br />

and sha<strong>de</strong>-loving species found in woodland,<br />

such as Punctum pygmaeum, Euconulus fulvus and Ciliella<br />

ciliata, with positive values. Intermediate stages of the<br />

succession are found in the centre of the plane, where<br />

open land species, such as Cernuella cespitum, Candidula<br />

gigaxii and Granopupa granum, or open woodland species,<br />

such as Pomatias elegans, are found.<br />

DISCUSSION<br />

Comparison of the two sampling m<strong>et</strong>hods<br />

In studies of terrestrial gastropods, the area nee<strong>de</strong>d for<br />

a<strong>de</strong>quate sampling and the number of samples required<br />

from each plot has long been a source of <strong>de</strong>bate (e.g.<br />

Bishop, 1977; Menez, 2001). In his review stressing<br />

the need for quantitative sampling of molluscan faunas,<br />

Bishop (1977) suggested that the size of a quadrat should<br />

be less than 1 000 m² and that 30 (25 x 25 cm) units<br />

should be sampled within a 10 x 10 m quadrat. Menez<br />

(2001) consi<strong>de</strong>red that, in or<strong>de</strong>r to recover the entire<br />

molluscan fauna within a 1 km 2 square of Mediterranean<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


STRUCTURING FACTORS OF LAND SNAIL COMMUNITIES IN SOUTH-EASTERN FRANCE ◆<br />

71<br />

Figure 3. Correspon<strong>de</strong>nce<br />

analysis applied to the species/sample data matrix, open<br />

circles are samples and closed circles are species a) of the<br />

1989 study, axes 1 & 2; b) of the 1995 study, axes 1 &<br />

3. Arrows are the two secondary succession trajectories<br />

leading to either ‘woodland’ or ‘garrigue’.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 65-74


◆ S. AUBRY & F. MAGNIN<br />

72<br />

habitat, 2.5 hours of searching and 4.2 litres of soil and<br />

litter are necessary. However, such a sampling regime was<br />

not possible within the constraints of the present project,<br />

which aimed to i<strong>de</strong>ntify variation in faunal composition<br />

over much larger areas rather than to obtain compl<strong>et</strong>e<br />

inventories. Several different m<strong>et</strong>hods can be employed<br />

<strong>de</strong>pending on the aims of the study. For instance, Cameron<br />

(1986) sampled 5 litres of litter and soil within a 30 x 30 m<br />

square, whereas for another study (Cameron & Morgan-<br />

Huws, 1975), he sampled 10 small quadrats (20 x 20 cm,<br />

further reduced to 15 x 15 cm) within 100 m². In or<strong>de</strong>r<br />

to study small-scale variation in the molluscan fauna,<br />

Davies and Grimes (1999) sampled five 25 x 25 cm<br />

squares within an un<strong>de</strong>fined area. In conclusion, the<br />

sampled area has to be large enough to find the majority<br />

of species present in a specific environment but not so<br />

large as to inclu<strong>de</strong> too much h<strong>et</strong>erogeneity, which would<br />

reduce the information provi<strong>de</strong>d.<br />

The sampling m<strong>et</strong>hods used in both studies were<br />

intensive and conservative consi<strong>de</strong>ring the small areas<br />

involved. In 1989, 15 minutes searches were employed<br />

in quadrats of approximately 25 m 2 (middle of terrace).<br />

Using this m<strong>et</strong>hod, few large species would have been<br />

missed within the quadrat. In 1995, 20 minutes searches<br />

were employed in 400 m 2 quadrats, and all snails in the<br />

litter and soil of a 0.3125 m 2 area were collected.<br />

It is impossible to know wh<strong>et</strong>her either m<strong>et</strong>hod<br />

resulted in a compl<strong>et</strong>e inventory of the species that were<br />

being searched for (i.e. large species only in 1989 or<br />

all species in 1995). However, the difference b<strong>et</strong>ween<br />

the species list generated in 1989 (25 m 2 searched for<br />

15 minutes) with that resulting from the visual search of<br />

1995 (400 m 2 searched for 20 minutes) indicates that 20<br />

minutes is not sufficient to record all the large species in<br />

a 400 m 2 area, whereas 15 minutes searching in 25 m 2<br />

resulted in missing few large species, when compared to<br />

the 1995 compl<strong>et</strong>e list of species. Therefore it seems that<br />

the enlargement of the sampling area in fact <strong>de</strong>creased<br />

sampling efficiency, and collection of litter and soil was<br />

necessary to recover the large species that were missed.<br />

The more rapid saturation of the accumulation curve<br />

of the 25 m 2 samples of the 1989 study is counterintuitive.<br />

In<strong>de</strong>ed less h<strong>et</strong>erogeneity should be inclu<strong>de</strong>d<br />

within smaller areas and therefore more of these small<br />

areas should be sampled to obtain the same number of<br />

species. Two factors can explain this effect. First, the 1995<br />

study inclu<strong>de</strong>d more diverse habitat types, which led to<br />

a slower saturation of the curves. Second, for areas of<br />

this magnitu<strong>de</strong> (b<strong>et</strong>ween 25 and 400 m 2 ), micro-habitat<br />

h<strong>et</strong>erogeneity is the most important factor in structuring<br />

land snail communities. Here, it seems that most of this<br />

h<strong>et</strong>erogeneity is inclu<strong>de</strong>d in small 25 m 2 squares and that<br />

no more large species would be found in larger areas<br />

unless a compl<strong>et</strong>ely different type of veg<strong>et</strong>ation were<br />

present. This suggests that a quadrat size of 25 m 2 , similar<br />

to that adopted by Labaune and Magnin (2001, 2002),<br />

strikes a good balance b<strong>et</strong>ween maximising the habitat<br />

h<strong>et</strong>erogeneity sampled and minimising sampling effort.<br />

Quadrats of approximately this size are thus likely to be<br />

the most appropriate for studies of terrestrial molluscs.<br />

M<strong>et</strong>hods to estimate diversity<br />

and shed light on factors structuring<br />

land snail communities<br />

The systematic sampling of the 1995 study has led<br />

to the <strong><strong>de</strong>s</strong>cription of various land snail communities<br />

occurring in different habitats, from irrigated agricultural<br />

cropland to closed woodland. The 1989 study of postcultural<br />

succession did not sample such extreme<br />

environments but all the intermediate stages of the<br />

succession were encountered. Each species maps to a<br />

similar place on the 1989 and 1995 factorial planes.<br />

Only Cepaea nemoralis maps to a different place on the<br />

two graphs. It falls among woo<strong>de</strong>d habitats in the 1989<br />

study but in garrigues in the 1995 study. In<strong>de</strong>ed, this<br />

mostly litter-dwelling species is known to occur in various<br />

environments (Kerney <strong>et</strong> al., 1983).<br />

The two m<strong>et</strong>hods revealed the importance of the<br />

structure of veg<strong>et</strong>ation as well as that of the nature of<br />

ground cover. However, collection of soil samples at<br />

regular intervals allowed the recovery of many more<br />

species and a more accurate inventory of species<br />

diversity within the parish. Both studies showed that it<br />

is not necessary to collect an extremely large number of<br />

samples to have a good image of the factors influencing<br />

species distribution at this scale. However, the exploration<br />

of rare and spatially restricted habitat such as riparian<br />

forests seems necessary if the compl<strong>et</strong>e list of species of<br />

such an area is to be known. Neither of the present studies<br />

inclu<strong>de</strong>d such habitats and the total of 58 species is an<br />

un<strong>de</strong>restimate of the total richness of the area.<br />

The sampling strategies differed b<strong>et</strong>ween the two<br />

studies not only in the size of the quadrats but also in<br />

the initial aims and protocols. In 1989, only a few slopes<br />

in the northern and western part of the area were sampled<br />

but many samples were collected, whereas in 1995, the<br />

whole parish was covered but only a few samples were<br />

collected. The 1989 study aimed to <strong><strong>de</strong>s</strong>cribe molluscan<br />

communities along secondary successions and in or<strong>de</strong>r<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


STRUCTURING FACTORS OF LAND SNAIL COMMUNITIES IN SOUTH-EASTERN FRANCE ◆<br />

to study this structuring factor, sampling controlled for<br />

the stage of succession where land snails were collected.<br />

The 1995 study aimed to explore molluscan diversity at<br />

different spatial scales within the parish. An important<br />

result is that both studies revealed the same pattern of<br />

species distribution and the same powerful structuring<br />

factor, that is, secondary successions. This factor applies<br />

as much to the entire community as to a section of<br />

the community (i.e. large species) and highlights the<br />

strong influence of humans on the present landscape.<br />

Furthermore, the geographical position of the samples<br />

from the two studies sheds light on the landscape<br />

organisation of the studied area. At present, agricultural<br />

crops are found at lower altitu<strong>de</strong>, close to the village<br />

centre and the river, whereas habitats at the end of the<br />

succession are found at higher altitu<strong>de</strong> and further from<br />

the village.<br />

The ‘parish’ or ‘finage’ is a critical<br />

scale for landscape ecology<br />

Landscapes are forged by human activities (Forman<br />

& Godron, 1986). In the context of a rural French<br />

landscape, the scale of the parish is the most appropriate<br />

at which to <strong><strong>de</strong>s</strong>cribe this landscape and shed light<br />

on factors structuring it. The ‘parish’ (or ‘finage’ in<br />

French) is a well-<strong>de</strong>limited territory managed by a<br />

human community or village. This territory is divi<strong>de</strong>d<br />

into zones of different land uses, creating a mosaic of<br />

different elements (habitations, agricultural crops, pasture<br />

and forest). These elements are organised according to<br />

the topography, the agricultural potential of the area and<br />

the distance from the village. Thus, habitations are usually<br />

found close to a river or to any water source and are<br />

most closely surroun<strong>de</strong>d agricultural crops, then pastures,<br />

and most distantly, forests. For a given region, the same<br />

pattern of land-use is found in all parishes, creating a<br />

mosaic of these repeated elements.<br />

This structure has existed for centuries. In the<br />

Mediterranean region, during Antiquity, three zones were<br />

<strong>de</strong>fined: ‘sylva’ (managed forest) ‘ager’ (agriculture) and<br />

‘saltus’ (scrublands and pasture). Because of the difficulty<br />

of access and the steep slopes that preclu<strong>de</strong>d agriculture,<br />

‘sylva’ correspon<strong>de</strong>d to zones at higher altitu<strong>de</strong> and<br />

distant from habitations. ‘Ager’ surroun<strong>de</strong>d habitations<br />

and ‘saltus’ was where the soil could not support crops.<br />

The mo<strong>de</strong>rn landscape of the Auriol parish is similar in<br />

structure, although this similarity does not result directly<br />

from the antique structure, as it has un<strong>de</strong>rgone several<br />

changes. Un<strong>de</strong>r the pressure of human population<br />

increase, agriculture covered the entire area in the<br />

nin<strong>et</strong>eenth century. Later, following the mechanization<br />

of agriculture and the movement of population to towns<br />

most of this land was abandoned (Grove & Rackham,<br />

2001) and left to ecological succession. Furthermore,<br />

the mo<strong>de</strong>rn landscape, although similar to that of the<br />

Antiquity in appearance, supports different functions.<br />

Today’s landscape structure at Auriol is explained in<br />

terms of secondary succession following abandonment<br />

of terraces because of the greater difficulty of accessing<br />

them. Garrigues correspond to poor stony soils and more<br />

arid environments and can be created by perturbations<br />

such as fire. In terms of secondary succession, these<br />

garrigues are usually found on <strong>de</strong>gra<strong>de</strong>d terraces with<br />

ero<strong>de</strong>d soil. However, they also result from human<br />

activities. Historically, they result from the opening of<br />

the environment by cattle and the collection of woody<br />

plants.<br />

The activities of the village, as a human community,<br />

structure the landscape. They are organised according<br />

to the interaction b<strong>et</strong>ween soil <strong>de</strong>pth, access to water<br />

sources and topography. This explains why both studies<br />

show the same pattern. By studying abandoned terraces<br />

along a few slopes, the 1989 study in fact studied the<br />

main structuring factor of the ‘finage’, while the 1995<br />

study revealed the spatial structure of this factor at the<br />

‘finage’ scale.<br />

Each zone <strong>de</strong>fined by human activities offers<br />

peculiar veg<strong>et</strong>ation structure and microhabitats to which<br />

molluscan communities are responding closely. Land snail<br />

communities are the result of historic management and<br />

are influenced by the recent evolution of the landscape,<br />

which reconstructs, to some extent, the antique spatial<br />

mo<strong>de</strong>l of land use. This recent evolution is taking two<br />

paths: reforestation following land abandonment and<br />

urbanisation. The 1995 study highlighted the importance<br />

of the former path in structuring land snail communities<br />

at the scale of the parish. However, the importance of the<br />

latter will certainly grow dramatically in the future.<br />

ACKNOWLEDGEMENTS<br />

The authors thank Errol Vela, Sébastien Della Casa<br />

and Bernard Hill for their help in the field. They also<br />

thank Dr R.H. Cowie, Dr N. Pike and an anonymous<br />

referee for their helpful comments on an earlier version<br />

of the manuscript. This work was supported by the<br />

programme of the EGPN (Écologie <strong>et</strong> gestion du<br />

73<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 65-74


◆ S. AUBRY & F. MAGNIN<br />

74<br />

patrimoine naturel) committee of the French Ministry<br />

of Environment « Dynamique <strong>de</strong> la biodiversité <strong>et</strong><br />

action <strong>de</strong> l’homme » programme: « Changement dans la<br />

structuration du paysage <strong>et</strong> dynamique <strong>de</strong> la biodiversité<br />

en région méditerranéenne – Approche à différentes<br />

échelles d’espace <strong>et</strong> <strong>de</strong> temps ».<br />

References<br />

BISHOP M.J., 1977. Approaches to the quantitative <strong><strong>de</strong>s</strong>cription<br />

of terrestrial mollusc populations and habitats. Malacologia,<br />

16: 61-66.<br />

BOAG D.A., 1982. Overcoming sampling bias in studies of terrestrial<br />

gastropods. Canadian Journal of Zoology, 60: 1289-<br />

1292.<br />

BOYCOTT A.E., 1934. The habitats of land Mollusca in Britain.<br />

Journal of Ecology, 22: 1-38.<br />

CNRS, 1975. Carte climatique détaillée <strong>de</strong> la France. Feuille <strong>de</strong><br />

Marseille. Ophrys, Gap.<br />

CAMERON R.A.D., 1986. Environment and diversities of forest<br />

snail faunas from coastal British Columbia. Malacologia, 27:<br />

341-355.<br />

CAMERON R.A.D., 2002. The land molluscs of North Ronaldsay,<br />

Orkney: human intervention and island faunal diversity.<br />

Journal of Conchology, 37: 445-453.<br />

CAMERON R.A.D. & MORGAN-HUWS D.I., 1975. Snail faunas<br />

in the early stages of a chalk grassland succession. Biological<br />

Journal of the Linnean Soci<strong>et</strong>y, 7: 215-229.<br />

COLWELL R.K., 2000. Estimates: Statistical estimation of species<br />

richness and shared species from samples (Software and user’s<br />

gui<strong>de</strong>) In: http://viceroy.eeb.uconn.edu/estimates<br />

DAVIES P. & G RIMES C.J., 1999. Small-scale spatial variation<br />

of pasture molluscan faunas within a relic watermeadow<br />

system at Wylye, Wiltshire, U.K. Journal of Biogeography, 26:<br />

1057-1063.<br />

EMBERTON K.C., PEARCE T.A. & RANDALANA R., 1996.<br />

Quantitatively sampling land snail species richness<br />

Madagascan rainforests. Malacologia, 38: 203-212.<br />

FORMAN R.T.T. & GODRON M., 1986. Landscape Ecology. John<br />

Wiley & Sons, New York, 619 pp.<br />

GROVE A.T. & RACKHAM O., 2001. The nature of Mediterranean<br />

Europe, an ecological history. Yale University Press, New<br />

Haven, 384 pp.<br />

HAWKINS J.W., LANKESTER M.W. & NELSON R.R.A., 1998.<br />

Sampling terrestrial gastropods using cardboard she<strong>et</strong>s.<br />

Malacologia, 39: 1-9.<br />

KERNEY M.P., CAMERON R.A.D. & JUNGBLUTH J.H., 1983. Die<br />

landschnecken Nord und Mitteleuropas: fremdländische gewächschausarten.<br />

Verlag, Berlin, 384 pp.<br />

LABAUNE C. & MAGNIN F., 2001. Land snail communities in<br />

Mediterranean upland grasslands: the relative importance of<br />

four s<strong>et</strong>s of environmental and spatial variables. Journal of<br />

Molluscan Studies, 67: 463-474.<br />

LABAUNE C. & MAGNIN F., 2002. Pastoral management vs.<br />

land abandonment in Mediterranean uplands: impact on<br />

land snail communities. Global Ecology and Biogeography,<br />

11: 237-245.<br />

LEGENDRE L. & LEGENDRE P., 1984. Ecologie numérique. Masson<br />

& Presses <strong>de</strong> l’Université du Québec, Paris & Montréal.<br />

MAGNIN F., 1991. Mollusques continentaux <strong>et</strong> histoire quaternaire<br />

<strong><strong>de</strong>s</strong> milieux méditerrannéens (Sud-Est <strong>de</strong> la France,<br />

Catalogne) Ph.D. Thesis, UFR <strong><strong>de</strong>s</strong> Sciences géographiques<br />

<strong>et</strong> <strong>de</strong> l’aménagement, Aix-Marseille II, 340 pp.<br />

MAGNIN F. & TATONI T., 1995. Secondary successions on<br />

abandoned cultivation terraces in calcareous Provence. II.<br />

The gastropod communities. Acta Œcologica, 16: 89-101.<br />

MAGNIN F., TATONI T., ROCHE P. & BAUDRY J., 1995. Gastropod<br />

communities, veg<strong>et</strong>ation dynamics and landscape changes<br />

along an old-field succession in Provence, France. Landscape<br />

and Urban Planning, 31: 249-257.<br />

MENEZ A., 2001. Assessment of land snail sampling efficacy<br />

in three Mediterranean habitat types. Journal of Conchology,<br />

37: 171-175.<br />

TATONI T., MAGNIN F., BONIN G. & VAUDOUR J., 1994.<br />

Secondary successions on abandoned cultivation terraces in<br />

calcareous Provence. I. Veg<strong>et</strong>ation and soil. Acta Œcologia,<br />

15: 431-447.<br />

TER BRAAK C.F.J. & SMILAUER P., 1998. CANOCO 4.0. GLW-<br />

CPRO, Wageningen, The N<strong>et</strong>herlands.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


Évolution <strong>de</strong> la croissance radiale du pin d’Alep (Pinus<br />

halepensis Mill.) en Provence calcaire (sud-est <strong>de</strong> la France)<br />

Evolution of Aleppo pine (Pinus halepensis Mill.)<br />

radial growth in calcareous Provence (South-Eastern France)<br />

Cyrille B. K. Rathgeber 1 , Antoine Nicault 2 & Joël Guiot 3<br />

1. Auteur pour correspondance : Centre INRA <strong>de</strong> Nancy, UMR- INRA-ENGREF 1092, Laboratoire d’étu<strong>de</strong> <strong>de</strong> la ressource forêt-Bois (LERFoB),<br />

Équipe qualité <strong><strong>de</strong>s</strong> bois, 54280 Champenoux, France. Tél. : +33 3 83 39 40 64 ; Fax : +33 3 83 39 40 69. Courrier électronique : cyrille.rathgeber@<br />

nancy.inra.fr<br />

2. Centre d’étu<strong><strong>de</strong>s</strong> nordiques (CEN), Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada<br />

3. CEREGE, CNRS-UMR 6635, BP80, Europôle méditerranéen <strong>de</strong> l’Arbois, 13545 Aix-en-Provence Ce<strong>de</strong>x 4, France<br />

Résumé<br />

Les changements planétaires (changements climatiques, augmentation<br />

du taux <strong>de</strong> CO 2 atmosphérique <strong>et</strong> augmentation <strong><strong>de</strong>s</strong><br />

dépôts azotés) sont susceptibles d’avoir un eff<strong>et</strong> sur la production<br />

<strong><strong>de</strong>s</strong> écosystèmes forestiers. La <strong>de</strong>ndrochronologie offre un moyen <strong>de</strong><br />

vérifier c<strong>et</strong>te hypothèse en milieu naturel, car les données <strong>de</strong> croissance<br />

radiale peuvent être interprétées comme <strong><strong>de</strong>s</strong> indicateurs <strong>de</strong> la<br />

productivité <strong><strong>de</strong>s</strong> écosystèmes forestiers. Les données <strong>de</strong>ndrochronologiques<br />

utilisées dans c<strong>et</strong>te étu<strong>de</strong> proviennent <strong>de</strong> 21 peuplements<br />

<strong>de</strong> pin d’Alep localisés en Provence calcaire, dans le sud-est <strong>de</strong> la<br />

France. Les variables analysées sont : la <strong>de</strong>nsité minimale, la <strong>de</strong>nsité<br />

du bois initial, la largeur du bois initial, la <strong>de</strong>nsité maximale, la<br />

<strong>de</strong>nsité du bois final, la largeur du bois final, ainsi qu’un indice<br />

synthétique <strong>de</strong> croissance. Les tendances sont détectées sur la pério<strong>de</strong><br />

1950-1990. C<strong>et</strong>te étu<strong>de</strong> n’a pas permis <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce <strong>de</strong><br />

tendances générales positives <strong>et</strong> significatives concernant les variables<br />

relatives à la largeur <strong><strong>de</strong>s</strong> cernes, contrairement à ce que laissait<br />

prévoir la littérature scientifique. Ce travail a cependant permis <strong>de</strong><br />

m<strong>et</strong>tre en évi<strong>de</strong>nce une augmentation <strong>de</strong> la <strong>de</strong>nsité moyenne du bois<br />

initial <strong>et</strong> une diminution <strong>de</strong> la <strong>de</strong>nsité moyenne du bois final ainsi<br />

que <strong>de</strong> la <strong>de</strong>nsité maximale. Ces résultats montrent que la baisse <strong>de</strong><br />

<strong>de</strong>nsité du bois final observée par différents auteurs pour le nord<br />

<strong>et</strong> le centre <strong>de</strong> l’Europe semble également être vali<strong>de</strong> pour le sud <strong>de</strong><br />

l’Europe. Cela suggère l’influence d’un facteur commun à toutes ces<br />

régions qui pourrait être l’augmentation <strong><strong>de</strong>s</strong> dépôts azotés.<br />

Mots-clés<br />

Changements planétaires, <strong>de</strong>ndrochronologie, <strong>de</strong>nsité du bois,<br />

pin d’Alep, Provence<br />

Abstract<br />

Global changes: climatic change, atmospheric CO 2 rise and nitrogen<br />

<strong>de</strong>position increase, are likely to have an effect on forest production.<br />

Dendrochronology offers the possibility to verify this hypothesis in<br />

natural conditions since tree-ring data can be interpr<strong>et</strong>ed as indicators<br />

of forest ecosystem productivity. Numerous studies of radial<br />

tree growth have been carried out, mainly in temperate and cold<br />

climate regions. However, the Mediterranean region appears particularly<br />

promising for researching the causes of the observed trends.<br />

Dendrochronological data used in this study come from 21 Aleppo<br />

pine stands located in South-Eastern France. Analysed variables<br />

are: minimal <strong>de</strong>nsity, earlywood <strong>de</strong>nsity, earlywood width, maximal<br />

<strong>de</strong>nsity, latewood <strong>de</strong>nsity, latewood width, and a tree growth in<strong>de</strong>x.<br />

Raw data are used for minimal and maximal <strong>de</strong>nsity, whilst the<br />

other variables are standardised. Trends are d<strong>et</strong>ected using simple<br />

linear regressions over the period from 1950 to 1990. In contrast to<br />

the results published in the scientific literature, this study does not<br />

find out positive general significant trends regarding ring widths.<br />

However, this work shows an increase of earlywood <strong>de</strong>nsity and a<br />

<strong>de</strong>crease of latewood and maximum <strong>de</strong>nsity. These observations<br />

are coherent with some recent experimental results, suggesting that<br />

the increase of the earlywood <strong>de</strong>nsity could be a consequence of<br />

CO 2 increase, whilst the <strong>de</strong>crease of latewood <strong>de</strong>nsity could be a<br />

consequence of the increase of nitrogen <strong>de</strong>position. Moreover, these<br />

results show that the <strong>de</strong>crease of latewood <strong>de</strong>nsity, observed by several<br />

authors for North and Central Europe, seems also to be pertinent for<br />

South Europe. This suggests the influence of a common factor to all<br />

these regions which could be the increase of nitrogen <strong>de</strong>position.<br />

Key-words<br />

Global change, tree-ring, wood <strong>de</strong>nsity, Aleppo pine,<br />

French Mediterranean region<br />

75<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 75-82


◆ C.B.K. RATHGEBER, A. NICAULT & J. GUIOT<br />

76<br />

INTRODUCTION<br />

L’augmentation du taux <strong>de</strong> CO 2 atmosphérique, <strong>de</strong>puis<br />

une concentration préindustrielle <strong>de</strong> 280 µmol.mol -1<br />

jusqu’à une concentration actuelle <strong>de</strong> 370 µmol.mol -1<br />

(Keeling & Worf, 2001), est susceptible d’avoir un eff<strong>et</strong><br />

fertilisant sur les écosystèmes forestiers (Hättenschwiler<br />

<strong>et</strong> al., 1997 ; Curtis, 1998 ; Norby <strong>et</strong> al., 1999). Son<br />

action peut être directe : l’augmentation du substrat le<br />

plus limitant <strong>de</strong> la photosynthèse <strong>de</strong>vrait perm<strong>et</strong>tre une<br />

accélération <strong>de</strong> c<strong>et</strong>te <strong>de</strong>rnière ; <strong>et</strong> indirecte : limitation <strong>de</strong><br />

la photorespiration (Mousseau, 1998) <strong>et</strong> amélioration <strong>de</strong><br />

l’efficience <strong>de</strong> l’utilisation <strong>de</strong> l’eau (Scarascia-Mugnozza<br />

& Angelis, 1998). De plus, les changements climatiques,<br />

provoqués par l’augmentation <strong><strong>de</strong>s</strong> gaz à eff<strong>et</strong> <strong>de</strong> serre,<br />

ainsi que la pollution atmosphérique sont également<br />

susceptibles <strong>de</strong> modifier la productivité <strong><strong>de</strong>s</strong> écosystèmes<br />

forestiers.<br />

La largeur <strong>et</strong> la <strong>de</strong>nsité <strong><strong>de</strong>s</strong> cernes annuels <strong>de</strong> croissance<br />

peuvent être considérées comme <strong><strong>de</strong>s</strong> indicateurs <strong>de</strong><br />

la productivité <strong><strong>de</strong>s</strong> écosystèmes forestiers (Graumlich <strong>et</strong><br />

al., 1989). Ainsi, <strong>de</strong> nombreuses analyses <strong>de</strong> la tendance<br />

à long terme ont été réalisées sur <strong><strong>de</strong>s</strong> séries <strong>de</strong> largeurs<br />

<strong>de</strong> cernes provenant <strong>de</strong> peuplements <strong>de</strong> feuillus ou <strong>de</strong><br />

résineux, principalement en France, Suisse, Allemagne<br />

<strong>et</strong> Amérique du Nord (Innes, 1991 ; Graybill & Idso,<br />

1993 ; Ba<strong>de</strong>au <strong>et</strong> al., 1996 ; Spiecker <strong>et</strong> al., 1996). La<br />

détection <strong>et</strong> l’analyse <strong><strong>de</strong>s</strong> tendances à long terme en<br />

région méditerranéenne apparaissent particulièrement<br />

intéressantes dans la recherche actuelle <strong>de</strong> l’attribution<br />

<strong><strong>de</strong>s</strong> causes responsables <strong><strong>de</strong>s</strong> augmentations <strong>de</strong> croissance<br />

observées <strong>et</strong> <strong>de</strong> leurs conséquences pour l’avenir. En eff<strong>et</strong>,<br />

en région méditerranéenne les arbres sont généralement<br />

plus sensibles à l’eff<strong>et</strong> du bilan hydrique qu’à celui du<br />

bilan thermique (Cherubini <strong>et</strong> al., 2003). Les ligneux<br />

<strong>de</strong>vraient donc également être plus sensibles à l’eff<strong>et</strong><br />

<strong>de</strong> l’augmentation du taux <strong>de</strong> CO 2 (amélioration <strong>de</strong><br />

l’efficience <strong>de</strong> l’utilisation <strong>de</strong> l’eau) qu’à l’eff<strong>et</strong> <strong>de</strong> l’augmentation<br />

<strong><strong>de</strong>s</strong> températures (Feng <strong>et</strong> al., 1999 ; Knapp <strong>et</strong><br />

al., 2001). Malgré cela, peu <strong>de</strong> travaux ont été consacrés<br />

à c<strong>et</strong>te région (Scarascia-Mugnozza <strong>et</strong> al., 2000). Il est<br />

également intéressant <strong>de</strong> noter que peu d’étu<strong><strong>de</strong>s</strong> sur la<br />

tendance à long terme prennent en compte la <strong>de</strong>nsité du<br />

bois. Or, l’utilisation <strong><strong>de</strong>s</strong> différentes variables <strong>de</strong> <strong>de</strong>nsité<br />

<strong>de</strong>vrait perm<strong>et</strong>tre <strong>de</strong> mieux apprécier la répartition <strong><strong>de</strong>s</strong><br />

augmentations <strong>de</strong> productivité au cours <strong>de</strong> l’année <strong>et</strong> ainsi<br />

<strong>de</strong> mieux analyser leurs causes.<br />

C<strong>et</strong> article a donc pour objectif : (1) <strong>de</strong> détecter<br />

l’existence potentielle <strong>de</strong> tendances à long terme dans<br />

les séries <strong>de</strong> largeur <strong>et</strong> <strong>de</strong> <strong>de</strong>nsité <strong>de</strong> cernes provenant <strong>de</strong><br />

21 peuplements <strong>de</strong> pins d’Alep (Pinus halepensis Mill.)<br />

situés en Provence calcaire (sud-est <strong>de</strong> la France) ; (2)<br />

d’analyser les causes possibles <strong><strong>de</strong>s</strong> tendances mises en<br />

évi<strong>de</strong>nce ; <strong>et</strong> (3) <strong>de</strong> confronter les résultats obtenus à la<br />

fois aux résultats d’autres étu<strong><strong>de</strong>s</strong> <strong>de</strong>ndrochronologiques<br />

<strong>et</strong> aux résultats d’expériences réalisées sous conditions<br />

contrôlées en laboratoire.<br />

MATÉRIEL ET MÉTHODES<br />

Les données <strong>de</strong>ndrochronologiques utilisées dans c<strong>et</strong>te<br />

étu<strong>de</strong> proviennent <strong>de</strong> 21 peuplements <strong>de</strong> pin d’Alep localisés<br />

en Provence calcaire, dans le sud-est <strong>de</strong> la France<br />

(fig. 1). Ces données sont présentées en détail dans<br />

les thèses <strong>de</strong> Nicault (1999) <strong>et</strong> Rathgeber (2002). Les<br />

variables analysées au cours <strong>de</strong> la présente étu<strong>de</strong> sont : la<br />

<strong>de</strong>nsité minimale (ND), la <strong>de</strong>nsité du bois initial (ED), la<br />

largeur du bois initial (EW), la <strong>de</strong>nsité maximale (XD), la<br />

<strong>de</strong>nsité du bois final (LD), la largeur du bois final (LW) ;<br />

ainsi qu’un indice <strong>de</strong> croissance synthétique (TGI), défini<br />

comme suit : TGI = EW×ED + LW×LD. (1)<br />

L’intérêt <strong>de</strong> ce <strong>de</strong>rnier indice est <strong>de</strong> mieux prendre en<br />

compte la production <strong>de</strong> biomasse en combinant à la fois<br />

les variables <strong>de</strong> largeur <strong>et</strong> <strong>de</strong> <strong>de</strong>nsité (Hättenschwiler &<br />

Körner, 1996 ; Rathgeber <strong>et</strong> al., 2000).<br />

Dans c<strong>et</strong>te étu<strong>de</strong>, les variables ND <strong>et</strong> XD n’ont pas<br />

été standardisées car elle sont moins sensibles à l’eff<strong>et</strong><br />

<strong>de</strong> l’âge que les autres variables <strong>de</strong>ndrochronologiques<br />

(Schweingruber, 1990). Les variables ED, EW, LD <strong>et</strong><br />

LW sont tout d’abord standardisées par un indice <strong>de</strong><br />

productivité spécifique à chaque site ce qui perm<strong>et</strong> d’éliminer<br />

les différences <strong>de</strong> fertilité entre les peuplements<br />

(voir Rathgeber <strong>et</strong> al., 2000). L’indice utilisé est calculé en<br />

faisant la somme <strong><strong>de</strong>s</strong> 50 premières valeurs <strong>de</strong> la variable à<br />

standardiser. C<strong>et</strong>te métho<strong>de</strong> est communément employée<br />

pour standardiser les largeurs <strong>de</strong> cernes à l’ai<strong>de</strong> du rayon<br />

<strong>de</strong> l’arbre à 50 ans (Rathgeber <strong>et</strong> al., 1999). Ces variables<br />

sont ensuite standardisées à l’ai<strong>de</strong> <strong>de</strong> la loi biologique<br />

afin d’éliminer l’eff<strong>et</strong> <strong>de</strong> l’âge (Becker, 1989). Le TGI<br />

est calculé à partir <strong><strong>de</strong>s</strong> variables standardisées. Enfin,<br />

une chronologie régionale valable pour l’ensemble <strong>de</strong><br />

l’aire d’étu<strong>de</strong> est calculée pour chacune <strong><strong>de</strong>s</strong> variables<br />

<strong>de</strong>ndrochronologiques en moyennant les chronologies<br />

<strong><strong>de</strong>s</strong> 21 populations.<br />

La tendance à long terme est examinée sur la pério<strong>de</strong><br />

1950-1990, pour chaque variable <strong>et</strong> pour chaque population,<br />

à l’ai<strong>de</strong> <strong>de</strong> régressions linéaires simples en fonction<br />

du temps. C<strong>et</strong>te pério<strong>de</strong> est cependant marquée par un<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ÉVOLUTION DE LA CROISSANCE RADIALE DU PIN D’ALEP EN PROVENCE ◆<br />

Figure 1. Localisation <strong><strong>de</strong>s</strong> 21 peuplements <strong>de</strong> pin d’Alep.<br />

Les points indiquent les peuplements <strong>et</strong> le carré noir la station<br />

météorologique. Le co<strong>de</strong> <strong><strong>de</strong>s</strong> peuplements fait référence au tableau 1.<br />

Figure 1. Locations of the 21 Aleppo pine stands.<br />

Black dots mark the stands and the square represents<br />

the m<strong>et</strong>eorological station. Stands co<strong>de</strong> refers to table 1.<br />

77<br />

phénomène climatique d’une ampleur exceptionnelle :<br />

le gel <strong>de</strong> février 1956. C<strong>et</strong> événement a très fortement<br />

réduit la croissance <strong>de</strong> l’année en cours <strong>et</strong> même parfois<br />

<strong><strong>de</strong>s</strong> années suivantes (Devaux & Le Bourhis, 1978). Nous<br />

avons préféré ne pas le prendre en compte dans l’analyse<br />

<strong><strong>de</strong>s</strong> tendances <strong>et</strong> r<strong>et</strong>irer systématiquement les années susceptibles<br />

d’être affectées (1956, 1957, 1958 <strong>et</strong> 1959).<br />

Les données météorologiques utilisées dans ce travail<br />

ont été fournit par Météo France <strong>et</strong> proviennent <strong>de</strong> l’observatoire<br />

du Palais Longchamp à Marseille. À partir <strong>de</strong><br />

ces données, les tendances climatiques observées au cours<br />

du XX e siècle en Provence ont été décrites par Rathgeber<br />

(2002).<br />

Les relations cernes-climat concernant une partie <strong><strong>de</strong>s</strong><br />

variables utilisées ont été analysées par Nicault (1999) <strong>et</strong><br />

Rathgeber <strong>et</strong> al. (2000) à l’ai<strong>de</strong> <strong>de</strong> fonctions <strong>de</strong> réponse<br />

(Guiot, 1991). À partir <strong>de</strong> ces travaux, nous déterminerons<br />

si les changements climatiques observés peuvent être<br />

rendus responsables <strong><strong>de</strong>s</strong> tendances mises en évi<strong>de</strong>nce sur<br />

la croissance.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 75-82


◆ C.B.K. RATHGEBER, A. NICAULT & J. GUIOT<br />

RÉSULTATS<br />

À l’échelle régionale, on observe pour le bois initial une<br />

diminution <strong>de</strong> la <strong>de</strong>nsité minimale (fig. 2a) alors que la<br />

<strong>de</strong>nsité moyenne ne présente pas <strong>de</strong> tendance significative<br />

(tableau 1). Pour le bois final, on observe une diminution<br />

très n<strong>et</strong>te <strong>de</strong> la <strong>de</strong>nsité minimale <strong>et</strong> <strong>de</strong> la <strong>de</strong>nsité moyenne<br />

(fig. 2b). La série régionale <strong>de</strong> TGI ainsi que les largeurs<br />

<strong>de</strong> bois initial <strong>et</strong> final ne présentent pas <strong>de</strong> tendance significative<br />

lorsque l’on considère l’ensemble <strong>de</strong> la pério<strong>de</strong><br />

1950-1999. Mais c<strong>et</strong>te pério<strong>de</strong> peut être décomposée en<br />

<strong>de</strong>ux phases distinctes : (1) une pério<strong>de</strong> <strong>de</strong> relative stabilité<br />

allant <strong>de</strong> 1950 à 1976 <strong>et</strong> (2) une pério<strong>de</strong> <strong>de</strong> forte<br />

diminution allant <strong>de</strong> 1977 à 1990 (fig. 2c).<br />

Au niveau local, on observe une tendance générale à<br />

l’augmentation pour la <strong>de</strong>nsité du bois initial : 9 populations<br />

présentent <strong><strong>de</strong>s</strong> tendances significatives positives<br />

alors qu’une seule population présente une tendance<br />

significative négative (tableau 1). La <strong>de</strong>nsité minimale,<br />

en revanche, présente <strong><strong>de</strong>s</strong> tendances négatives significatives<br />

pour 7 populations sans présenter aucune tendance<br />

positive. En ce qui concerne la largeur du bois initial, 7<br />

populations montrent <strong><strong>de</strong>s</strong> tendances significatives négatives<br />

alors que 2 populations seulement montrent <strong><strong>de</strong>s</strong><br />

tendances significatives positives. Une forte tendance<br />

générale à la baisse se manifeste pour les variables <strong>de</strong><br />

<strong>de</strong>nsité du bois final. En ce qui concerne la <strong>de</strong>nsité du<br />

bois final, 12 populations présentent <strong><strong>de</strong>s</strong> tendances néga-<br />

78<br />

Peuplements<br />

ND EDS EWS XD LDS LWS TGI<br />

α S a α S a α S a α S a α S a α S a α S a<br />

AUR NS *** + 2 NS *** - 1.36 ** - 0.61 NS NS<br />

CIO NS NS NS *** - 0.96 ** - 0.88 NS NS<br />

CVI ** - 0.19 NS NS *** - 1.53 * - 0.75 * - 9.0 NS<br />

FAR *** - 0.40 *** + 1 NS *** - 1.52 *** - 1.00 * + 14.0 * + 15.0<br />

FOO NS NS NS * - 0.43 NS NS NS<br />

GAR abs abs abs NS ** - 3.00 abs abs abs ** - 0.91 NS ** - 2.0<br />

MAL NS NS * - 2.00 *** - 1.62 NS NS ** - 4.0<br />

MAN *** - 0.64 *** - 1 NS *** - 1.54 *** - 0.00 NS ** - 11.0<br />

MEE NS ** + 0.78 NS *** - 0.81 NS NS NS<br />

MOU NS NS NS *** - 1.06 NS NS NS<br />

MUR NS NS NS *** - 1.23 *** - 0.60 *** - 9.0 ** - 13.0<br />

NYO NS *** + 2 ** - 6.00 *** - 1.42 NS * - 5.0 ** - 10.0<br />

PER *** - 0.93 NS *** + 18.00 ** - 0.57 NS *** + 16.0 *** + 33.0<br />

PNM *** - 0.67 NS NS *** - 1.46 ** - 1.00 NS NS<br />

RDA *** - 0.51 NS * + 4.00 *** - 1.21 NS NS * + 9.0<br />

RIA NS *** + 2 NS *** - 1.73 *** - 1.00 NS NS<br />

ROB *** - 0.38 NS *** - 7.00 *** - 2.13 *** - 2.00 *** - 13.0 *** - 20.0<br />

ROG NS *** + 2 ** - 7.00 *** - 1.65 NS NS NS<br />

ROU NS ** + 1 *** - 16.00 ** - 0.86 NS NS ** - 22.0<br />

SIM NS *** + 1 NS *** - 1.54 ** - 0.77 NS NS<br />

SIS NS ** + 0.56 *** - 10.00 *** - 2.96 *** - 3.00 ** - 12.0 *** - 24.0<br />

Régional ** - 0.18 NS 0.67 NS 0.17 *** - 1.32 *** - 0.88 NS 2.0 NS 2.00<br />

Total NS 13 11 12 0 9 14 10<br />

Total + 0 9 2 0 0 2 3<br />

Total - 8 1 7 21 12 5 8<br />

Tableau 1. Tendances à long terme observées. Pour chaque population <strong>et</strong> chaque variable <strong>de</strong>ndrochronologique : <strong>de</strong>nsité minimale (ND), <strong>de</strong>nsité du bois initial (ED), largeur<br />

du bois initial (EW), <strong>de</strong>nsité maximale (XD), <strong>de</strong>nsité du bois final (LD), largeur du bois final (LW) <strong>et</strong> indice synthétique <strong>de</strong> croissance (TGI), la tendance est détectée sur la<br />

pério<strong>de</strong> 1950-1990 par régression linéaire simple. Les années 1956 à 1959 ne sont pas prises en compte. Le niveau <strong>de</strong> significativité α (NS pour p > 0.1, * pour p ≤ 0.1,<br />

** pour p ≤ 0.05 <strong>et</strong> *** pour p ≤ 0.01) <strong>de</strong> la tendance, ainsi que le signe s <strong>et</strong> la pente a (×10 3 ) <strong>de</strong> la droite <strong>de</strong> régression sont fournis en colonne.<br />

Table 1. Observed long term trend. For each population and each <strong>de</strong>nrochronological variable : minimal <strong>de</strong>nsity (ND), earlywood <strong>de</strong>nsity (ED), earlywood width (EW),<br />

maximal <strong>de</strong>nsity (XD), latewood <strong>de</strong>nsity (LD), latewood width (LW) and tree growth in<strong>de</strong>x (TGI), trend is d<strong>et</strong>ected on the 1950–1990 period using simple linear regression.<br />

Years from 1956 to 1959 are not taken into account. Significance level α (NS for p > 0.1, * for p ≤ 0.1, ** for p ≤ 0.05 and *** for p ≤ 0.01) of the trend, as well<br />

as the sign s and the slope a (×10 3 ) of the regression line are given in column.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ÉVOLUTION DE LA CROISSANCE RADIALE DU PIN D’ALEP EN PROVENCE ◆<br />

79<br />

Fig. 2. Tendances régionales à long terme.<br />

a. Densité minimale (ND) <strong>et</strong> <strong>de</strong>nsité du bois initial (ED).<br />

b. Densité maximale (XD) <strong>et</strong> <strong>de</strong>nsité du bois final (LD).<br />

c. Largeur du bois initial (EW), largeur du bois final (LW) <strong>et</strong> indice synthétique<br />

<strong>de</strong> croissance (TGI) en relation avec le cumul <strong><strong>de</strong>s</strong> précipitations annuelles (P).<br />

Les statistiques relatives aux régressions linéaires (en pointillés) sont données<br />

dans le tableau 1.<br />

Fig. 2. Regional long term trends.<br />

a. Minimal <strong>de</strong>nsity (ND) and earlywood <strong>de</strong>nsity (ED).<br />

b. Maximal <strong>de</strong>nsity (XD) and latewood <strong>de</strong>nsity (LD).<br />

c. Earlywood width (EW), latewood width (LW) and tree growth<br />

in<strong>de</strong>x (TGI) in relation with total annual precipitation (P).<br />

Statistics of the regression lines (dotted) are presented in table 1.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 75-82


◆ C.B.K. RATHGEBER, A. NICAULT & J. GUIOT<br />

80<br />

tives significatives. Pour la <strong>de</strong>nsité maximale toutes les<br />

populations étudiées présentent <strong><strong>de</strong>s</strong> tendances négatives<br />

significatives. Pour la largeur du bois final, 5 populations<br />

présentent <strong><strong>de</strong>s</strong> tendances significatives négatives alors<br />

que 2 populations présentent <strong><strong>de</strong>s</strong> tendances significatives<br />

positives. En ce qui concerne le TGI, 3 populations<br />

présentent <strong><strong>de</strong>s</strong> tendances positives, alors que 8 populations<br />

présentent <strong><strong>de</strong>s</strong> tendances négatives. Les tendances<br />

positives sont globalement plus prononcées (pentes plus<br />

fortes) que les tendances négatives, elles sont pourtant<br />

moins significatives car elles sont souvent masquées par<br />

<strong><strong>de</strong>s</strong> variabilités interannuelles plus fortes.<br />

DISCUSSION<br />

Quatre facteurs principaux sont susceptibles d’être<br />

responsables <strong><strong>de</strong>s</strong> tendances observées : (1) l’eff<strong>et</strong> <strong>de</strong><br />

l’âge, (2) l’eff<strong>et</strong> <strong><strong>de</strong>s</strong> changements climatiques, (3) l’eff<strong>et</strong><br />

<strong>de</strong> l’augmentation du taux <strong>de</strong> CO 2 <strong>et</strong> (4) l’eff<strong>et</strong> <strong>de</strong><br />

l’augmentation <strong><strong>de</strong>s</strong> dépôts azotés. Malgré la standardisation,<br />

l’eff<strong>et</strong> <strong>de</strong> l’âge reste le premier facteur à prendre<br />

en compte pour expliquer les tendances à long terme<br />

observées sur les variables <strong>de</strong>ndrochronologiques (Briffa<br />

<strong>et</strong> al., 1996). La métho<strong>de</strong> <strong>de</strong> standardisation utilisée dans<br />

c<strong>et</strong>te étu<strong>de</strong> donne <strong>de</strong> très bons résultats pour les largeurs<br />

(fig. 2a <strong>et</strong> 2c dans Rathgeber <strong>et</strong> al., 2000). L’ajustement<br />

<strong>de</strong> la loi biologique sous-estime en revanche légèrement<br />

la <strong>de</strong>nsité moyenne du bois initial pour les arbres <strong>de</strong> plus<br />

<strong>de</strong> 40 ans en raison <strong>de</strong> la forme <strong>de</strong> la courbe polynomiale<br />

r<strong>et</strong>enue (fig. 2b dans Rathgeber <strong>et</strong> al., 2000). C<strong>et</strong>te sousestimation<br />

est susceptible d’induire une légère tendance<br />

positive dans les données standardisées. Cependant, en ne<br />

nous intéressant qu’à la pério<strong>de</strong> récente, nous avons limité<br />

ce problème qui ne <strong>de</strong>vrait donc pas être responsable<br />

<strong>de</strong> la tendance à l’augmentation détectée pour la <strong>de</strong>nsité<br />

du bois initial. La loi biologique relative à la <strong>de</strong>nsité du<br />

bois final présente également <strong><strong>de</strong>s</strong> difficultés d’ajustement<br />

<strong><strong>de</strong>s</strong> données (fig. 2d dans Rathgeber <strong>et</strong> al., 2000). Ces<br />

difficultés se manifestent pour les classes d’âge <strong>de</strong> 50 à<br />

80 ans qui apparaissent comme hors norme <strong>et</strong> infléchissent<br />

fortement la courbe polynomiale. La loi biologique<br />

surestime donc la <strong>de</strong>nsité pour les âges compris entre<br />

50 <strong>et</strong> 80 ans, pour revenir à un ajustement <strong>de</strong> meilleure<br />

qualité ensuite. Ceci <strong>de</strong>vrait donc induire une tendance<br />

positive dans les données standardisées <strong>et</strong> peut être rendu<br />

responsable du fait que l’on observe moins <strong>de</strong> tendances<br />

significatives négatives pour la <strong>de</strong>nsité du bois final que<br />

pour la <strong>de</strong>nsité maximale.<br />

Les changements climatiques ayant eu lieu au cours<br />

<strong><strong>de</strong>s</strong> 50 <strong>de</strong>rnières années dans la région étudiée consistent<br />

en : (1) une augmentation générale <strong><strong>de</strong>s</strong> températures pour<br />

toutes les saisons, c<strong>et</strong>te augmentation étant maximale en<br />

été ; <strong>et</strong> (2) une légère augmentation <strong><strong>de</strong>s</strong> précipitations<br />

hivernales alors que les précipitations <strong><strong>de</strong>s</strong> autres saisons<br />

sont restées stables (Rathgeber, 2002). Ces observations<br />

sont en accord avec une étu<strong>de</strong> récente menée à l’échelle <strong>de</strong><br />

la France (Lebourgeois <strong>et</strong> al., 2001). Une forte tendance<br />

à la baisse est cependant observable pour le cumul <strong><strong>de</strong>s</strong><br />

précipitations annuelles entre 1977 <strong>et</strong> 1990 qui paraît être<br />

la cause <strong>de</strong> la baisse du TGI <strong>et</strong> <strong>de</strong> la largeur <strong><strong>de</strong>s</strong> bois initial<br />

<strong>et</strong> final sur c<strong>et</strong>te même pério<strong>de</strong>. L’analyse <strong><strong>de</strong>s</strong> relations<br />

cernes-climat à l’ai<strong>de</strong> <strong><strong>de</strong>s</strong> fonctions <strong>de</strong> réponses montre<br />

que la <strong>de</strong>nsité du bois initial <strong>et</strong> la <strong>de</strong>nsité minimale sont<br />

toutes <strong>de</strong>ux influencées négativement par les précipitations<br />

<strong><strong>de</strong>s</strong> mois <strong>de</strong> mars <strong>et</strong> avril <strong>et</strong> les températures du mois<br />

<strong>de</strong> février (Nicault, 1999). Les précipitations relatives aux<br />

mois <strong>de</strong> mars <strong>et</strong> avril sont stables sur les cinquante <strong>de</strong>rnières<br />

années alors que la température du mois <strong>de</strong> février<br />

a augmenté. L’influence du climat <strong>de</strong>vrait donc induire<br />

une tendance négative pour ces variables. La tendance<br />

générale à la baisse observée pour la <strong>de</strong>nsité minimale<br />

peut donc être expliquée par l’évolution du climat alors<br />

que la tendance générale à la hausse observée sur la <strong>de</strong>nsité<br />

du bois initial ne peut pas l’être. La <strong>de</strong>nsité du bois<br />

final <strong>et</strong> la <strong>de</strong>nsité maximale sont toutes <strong>de</strong>ux influencées<br />

positivement par les précipitations <strong><strong>de</strong>s</strong> mois d’avril <strong>et</strong> mai.<br />

Les précipitations printanières étant quasiment stables,<br />

le climat ne peut être tenu pour responsable <strong><strong>de</strong>s</strong> fortes<br />

tendances négatives observées pour ces variables.<br />

Deux étu<strong><strong>de</strong>s</strong> récentes analysent la réponse <strong><strong>de</strong>s</strong> variables<br />

<strong>de</strong>ndrochronologiques à une augmentation du taux<br />

<strong>de</strong> CO 2 . La première étu<strong>de</strong> (Hättenschwiler & Körner,<br />

1996) concerne <strong>de</strong> jeunes plants d’épicéa (Picea abies)<br />

soumis à un enrichissement en CO 2 <strong>et</strong>/ou en azote. Ces<br />

plants poussent dans une chambre fermée qui reproduit<br />

(du point <strong>de</strong> vue du sol, du climat, <strong>et</strong> <strong>de</strong> la compétition)<br />

les conditions <strong>de</strong> la station forestière dans laquelle ils<br />

ont été prélevés (Alpes suisses, 1 500 m d’altitu<strong>de</strong>). La<br />

secon<strong>de</strong> étu<strong>de</strong> concerne <strong>de</strong> jeunes plants <strong>de</strong> pins (Pinus<br />

taeda) soumis uniquement à un enrichissement en CO 2 <strong>et</strong><br />

poussant dans <strong><strong>de</strong>s</strong> conditions nutritionnelles non limitantes<br />

(Telewski <strong>et</strong> al., 1999). En conditions nutritionnelles<br />

non limitantes on observe toujours un eff<strong>et</strong> positif <strong>de</strong><br />

l’enrichissement en CO 2 que ce soit sur la largeur ou bien<br />

sur la <strong>de</strong>nsité du cerne (ibi<strong>de</strong>m). Or ce n’est pas le cas en<br />

conditions nutritionnelles limitantes, où l’eff<strong>et</strong> du CO 2<br />

est le plus souvent moins important que celui <strong>de</strong> la fertilisation<br />

azotée (Hättenschwiler & Körner, 1996). Pour<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ÉVOLUTION DE LA CROISSANCE RADIALE DU PIN D’ALEP EN PROVENCE ◆<br />

une augmentation simultanée <strong>de</strong> l’enrichissement en CO 2<br />

<strong>et</strong> en azote, Hättenschwiler <strong>et</strong> Körner (1996) décrivent<br />

(1) une très faible augmentation du TGI due à l’ensemble<br />

<strong><strong>de</strong>s</strong> eff<strong>et</strong>s du CO 2 <strong>et</strong> <strong>de</strong> l’azote sur les différentes<br />

variables ; (2) une très faible augmentation <strong>de</strong> la largeur<br />

totale due à une augmentation <strong>de</strong> la largeur du bois final ;<br />

(3) une augmentation <strong>de</strong> la <strong>de</strong>nsité du bois initial due<br />

à l’eff<strong>et</strong> <strong>de</strong> l’augmentation du taux <strong>de</strong> CO 2 ; <strong>et</strong> (4) une<br />

diminution <strong>de</strong> la <strong>de</strong>nsité du bois final due à l’eff<strong>et</strong> négatif<br />

<strong>de</strong> l’enrichissement en azote sur la <strong>de</strong>nsité. Les résultats<br />

obtenus par Hättenschwiler <strong>et</strong> Körner (1996) sont donc<br />

très proches <strong><strong>de</strong>s</strong> résultats obtenus par la présente étu<strong>de</strong>,<br />

si l’on adm<strong>et</strong> que <strong>de</strong> vieux arbres en conditions naturelles<br />

sont susceptibles <strong>de</strong> présenter <strong><strong>de</strong>s</strong> réponses plus faibles<br />

que <strong>de</strong> jeunes arbres en conditions expérimentales.<br />

La majeure partie <strong><strong>de</strong>s</strong> étu<strong><strong>de</strong>s</strong> <strong>de</strong>ndrochronologiques<br />

sur la tendance à long terme présente <strong><strong>de</strong>s</strong> résultats m<strong>et</strong>tant<br />

en évi<strong>de</strong>nce <strong>de</strong> fortes tendances positives qu’elles<br />

associent généralement à l’augmentation du taux <strong>de</strong> CO 2<br />

<strong>et</strong> à l’amélioration <strong><strong>de</strong>s</strong> conditions climatiques (Spiecker<br />

<strong>et</strong> al., 1996). De telles tendances n’ont pas été mises en<br />

évi<strong>de</strong>nce au cours <strong>de</strong> ce travail, alors même qu’il a été<br />

conduit en région méditerranéenne, région qui <strong>de</strong>vrait<br />

être théoriquement particulièrement sensible à l’eff<strong>et</strong><br />

<strong>de</strong> l’augmentation du taux CO 2 . La baisse <strong>de</strong> la <strong>de</strong>nsité<br />

moyenne du bois final <strong>et</strong> <strong>de</strong> la <strong>de</strong>nsité maximale est cohérente<br />

avec les résultats <strong>de</strong> la littérature à l’échelle nationale<br />

(Bergès <strong>et</strong> al., 2000) comme à l’échelle mondiale (Briffa<br />

<strong>et</strong> al., 1998a ; Briffa <strong>et</strong> al., 1998b). L’étu<strong>de</strong> précé<strong>de</strong>nte<br />

(Briffa <strong>et</strong> al., 1998b) concerne cependant essentiellement<br />

<strong><strong>de</strong>s</strong> peuplements <strong>de</strong> hautes latitu<strong><strong>de</strong>s</strong> <strong>et</strong> altitu<strong><strong>de</strong>s</strong> sensibles<br />

aux températures estivales ; alors que notre étu<strong>de</strong><br />

concerne <strong><strong>de</strong>s</strong> peuplements méditerranéens, <strong>de</strong> basses<br />

altitu<strong><strong>de</strong>s</strong>, <strong>et</strong> qui ne sont pas sensibles aux températures<br />

estivales mais aux précipitations printanières. Les raisons<br />

<strong>de</strong> c<strong>et</strong>te baisse générale <strong>de</strong> la <strong>de</strong>nsité du bois final ne<br />

sont pas encore connues. Briffa <strong>et</strong> al. (1998b) proposent<br />

comme explication un changement dans la saisonnalité<br />

<strong><strong>de</strong>s</strong> variables climatiques. Vaganov <strong>et</strong> al. (1999) montrent<br />

que le r<strong>et</strong>ar<strong>de</strong>ment actuel <strong>de</strong> la fonte <strong><strong>de</strong>s</strong> neiges a une<br />

influence certaine en ce qui concerne les arbres <strong>de</strong> la forêt<br />

boréale. Notre étu<strong>de</strong> quant à elle suggère qu’il existe une<br />

cause commune capable d’affecter <strong><strong>de</strong>s</strong> écosystèmes aussi<br />

différents que la forêt boréale <strong>et</strong> la forêt méditerranéenne<br />

<strong>et</strong> qui pourrait être l’augmentation <strong><strong>de</strong>s</strong> dépôts azotés.<br />

REMERCIEMENTS<br />

Ce travail a été financé par l’Union européenne, à travers<br />

le proj<strong>et</strong> FORMAT (contrat ENV4-CT97-0641) <strong>et</strong> à<br />

travers une bourse individuelle post-doctorale Marie Curie<br />

(contrat EVK2-CT-2002-50021). Ce travail a également<br />

été soutenu par le ministère français <strong>de</strong> la Recherche à<br />

travers une bourse individuelle <strong>de</strong> thèse. Les données<br />

météorologiques ont été fournies par Météo France.<br />

Bibliographie<br />

BADEAU V., BECKER M., BERT D., DUPOUEY J.-L., LEBOURGEOIS F.<br />

& PICARD J.-F., 1996. Long-term growth trends of trees:<br />

ten years of <strong>de</strong>ndrochronological studies in France. In:<br />

Spiecker H., Mielikaïnen K., Köhl M. & Skovsgaard J.<br />

(eds.), Growth trends in European Forest. Springer, Berlin,<br />

p. 167-181.<br />

BECKER M., 1989. The role of climate on present and past vitality<br />

of silver fir forests in the Vosges mountains of northeastern<br />

France. Canadian Journal of Forest Research, 19: 1110-1117.<br />

BERGÈS L., DUPOUEY J.-L. & FRANC A., 2000. Quercus p<strong>et</strong>raea<br />

Liebl. in northern France since the middle of the nin<strong>et</strong>eenth<br />

century. Trees-Structure and Function, 14: 398-408.<br />

BRIFFA K.R., JONES P.D., SCHWEIGRUBER F.H., KARLEN W.<br />

& SHIYATOV S.G., 1996. Tree-ring variables as proxyclimate<br />

indicators: problems with low-frequency signals. In:<br />

Jones P.D., Bradley R. S. & Jouzel J. (eds.), Climatic variations<br />

and forcing mechanism of the last 2000 years. Springer-Verlag,<br />

Berlin, Hei<strong>de</strong>lberg, p. 9-41.<br />

BRIFFA K. R., SCHWEINGRUBER F. H., JONES P. D., OSBORN T. J.,<br />

HARRIS I. C., SHIYATOV S. G., VAGANOV E. A. & GRUDD H.,<br />

1998a. Trees tell of past climates: but are they speaking less<br />

clearly today? Philosophical Transactions of the Royal Soci<strong>et</strong>y of<br />

London Series B-Biological Sciences, 353: 65-73.<br />

BRIFFA K.R., SCHWEINGRUBER F.H., JONES P.D., OSBORN T.J.,<br />

SHIYATOV S.G. & VAGANOV E.A., 1998b. Reduced sensitivity<br />

of recent tree-growth to temperature at high northern latitu<strong><strong>de</strong>s</strong>.<br />

Nature, 391: 678-682.<br />

CHERUBINI P., G ARTNER B.L., TOGNETTI R., BRAKER O.U.,<br />

SCHOCH W. & INNES J.L., 2003. I<strong>de</strong>ntification, measurement<br />

and interpr<strong>et</strong>ation of tree rings in woody species from<br />

Mediterranean climates. Biological Reviews, 78: 119-148.<br />

81<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 75-82


◆ C.B.K. RATHGEBER, A. NICAULT & J. GUIOT<br />

82<br />

CURTIS P. S., 1998. A m<strong>et</strong>a-analysis of leaf gas exchange and<br />

nitrogen in trees grown un<strong>de</strong>r elevated carbon dioxi<strong>de</strong>. Plant<br />

Cell and Environment, 19: 127-137.<br />

DEVAUX J.-P. & LE BOURHIS M., 1978. La limite septentrionale<br />

du pin d’Alep en France. Étu<strong>de</strong> <strong>de</strong>ndroclimatologique <strong>de</strong><br />

l’impact <strong><strong>de</strong>s</strong> froids exceptionnels. Revue <strong>de</strong> biologie <strong>et</strong> d’écologie<br />

méditerranéenne, 5 : 133-158.<br />

FENG X., CUI H., TANG K. & CONKEY L.E., 1999. D as an<br />

indicator of Asian Monsoon intensity. Quaternary Research,<br />

51: 262-266.<br />

GRAUMLICH L.J., BRUBAKER L.B. & GRIER C.C., 1989. Longterm<br />

trends in forest n<strong>et</strong> primary productivity: Casca<strong>de</strong><br />

Mountains, Washington. Ecology, 70: 405-410.<br />

GRAYBILL D.A. & IDSO S.B., 1993. D<strong>et</strong>ecting the aerial fertilization<br />

effect of atmospheric CO 2 enrichment in tree-ring<br />

chronologies. Global Biogeochemical Cycles, 7: 81-95.<br />

GUIOT J., 1991. The bootstrapped response function. Tree-Ring<br />

Bull<strong>et</strong>in, 51: 39-41.<br />

HÄTTENSCHWILER S. & KÖRNER C., 1996. Effect of elevated<br />

CO 2 and increased nitrogen <strong>de</strong>position on photosynthesis<br />

and growth of un<strong>de</strong>rstorey plants in spruce mo<strong>de</strong>l ecosystems.<br />

Œcologia, 106: 172-180.<br />

HÄTTENSCHWILER S., MIGLIETTA F., RASCHI A. & KÖRNER C.,<br />

1997. Thirty years of in situ tree growth un<strong>de</strong>r elevated CO 2 :<br />

a mo<strong>de</strong>l for future forest responses? Global Change Biology,<br />

3: 463-471.<br />

INNES J.L., 1991. High-altitu<strong>de</strong> and high-latitu<strong>de</strong> tree growth<br />

in relation to past, present and future global climate change.<br />

Holocene, 1: 168-173.<br />

KEELING C.D. & WORF T.P. (EDS.), 2001. Atmospheric CO 2 records<br />

from sites in the SIO air sampling n<strong>et</strong>work. Trends: a compendium<br />

of data on global change. Carbon Dioxi<strong>de</strong> Information<br />

Analysis Center, Oak Ridge National Laboratory. Oak Ridge,<br />

Tennessee, USA.<br />

KNAPP P.A., SOULÉ P.T. & GRISSINO-MAYER H.D., 2001. D<strong>et</strong>ecting<br />

potential regional effects of increased atmospheric<br />

CO 2 on growth rates of western juniper. Global Change<br />

Biology, 7: 903-917.<br />

LEBOURGEOIS F., GRANIER A. & BREDA N., 2001. An analysis of<br />

regional climate change in France b<strong>et</strong>ween 1956 and 1997.<br />

Annals of Forest Science, 58: 733-754.<br />

MOUSSEAU M., 1998. Is dark respiration rate changed? In:<br />

Jarvis J. (ed.), European forest and global change. Cambridge<br />

University Press, Cambridge, p. 79-93.<br />

NICAULT A., 1999. Analyse <strong>de</strong> l’influence du climat sur les variations<br />

inter <strong>et</strong> intra-annuelles <strong>de</strong> la croissance radiale du pin<br />

d’Alep (Pinus halepensis Mill.) en Provence calcaire. Thèse<br />

<strong>de</strong> doctorat, université d’Aix-Marseille III, 254 p.<br />

NORBY R.J., WULLSCHLEGER S.D., GUNDERSON C.A., JOHNSON<br />

D.W. & CEULEMANS R., 1999. Tree response to rising CO 2<br />

in field experiments: implications for future forest. Plant Cell<br />

and Environment, 22: 683-714.<br />

RATHGEBER C., 2002. Impact <strong><strong>de</strong>s</strong> changements climatiques <strong>et</strong><br />

<strong>de</strong> l’augmentation du taux <strong>de</strong> CO 2 atmosphérique sur la productivité<br />

<strong><strong>de</strong>s</strong> écosystèmes forestiers : exemple du pin d’Alep<br />

(Pinus halepensis Mill.) en Provence calcaire (France). Thèse<br />

<strong>de</strong> doctorat, université d’Aix-Marseille III, 276 p.<br />

RATHGEBER C., GUIOT J., ROCHE P. & TESSIER L., 1999.<br />

Augmentation <strong>de</strong> productivité du chêne pubescent en région<br />

méditerranéenne française. Annales <strong><strong>de</strong>s</strong> sciences forestières, 56 :<br />

211-219.<br />

RATHGEBER C., NICAULT A., GUIOT J., KELLER T., GUIBAL F. &<br />

ROCHE P., 2000. Simulated response of Pinus halepensis forest<br />

productivity to climatic change and CO 2 increase using a statistical<br />

mo<strong>de</strong>l. Global and Plan<strong>et</strong>ary Change, 26: 405-421.<br />

SCARASCIA-MUGNOZZA G. & ANGELIS P.O.D., 1998. Is water<br />

use more efficiently? In: Jarvis P. G. (ed.), European Forest<br />

and Global Change. Cambridge University Press, Cambridge,<br />

p. 192-214.<br />

SCARASCIA-MUGNOZZA G., OSWALD H., PIUSSI P. & R ADO-<br />

GLOU K., 2000. Forests of the Mediterranean region:<br />

gaps in knowledge and research needs. Forest Ecology and<br />

Management, 132: 97-109.<br />

SCHWEINGRUBER F.H., 1990. Radio<strong>de</strong>nsitom<strong>et</strong>ry. In: Cook E.R.<br />

& Kairiukstis L.A. (eds.), M<strong>et</strong>hods of <strong>de</strong>ndrochronology, applications<br />

in environmental sciences. Kluwer aca<strong>de</strong>mic publisher,<br />

Dordrecht, p. 55-63.<br />

SPIECKER H., MIELIKA K., KÖHL M. & SKOVSGAARD J. (EDS.),<br />

1996. Growth trends in European forests. Studies from 12<br />

countries. European Forest Institute Research Report n° 5.<br />

Springer. Berlin.<br />

TELEWSKI F.W., SWANSON R.T., STRAIN B.R. & BURNS J.M.,<br />

1999. Wood properties and ring width responses to long-term<br />

atmospheric CO 2 enrichment in field-grown loblolly pine<br />

(Pinus taeda L.). Plant Cell and Environment, 22: 213-219.<br />

VAGANOV E.A., HUGHES M.K., KIRDYANOV A.V., SCHWEIGRUBER<br />

F.H. & SILKIN P.P., 1999. Influence of snowfall and melt<br />

timing on tree growth in subartic Eurasia. Nature, 400:<br />

149-151.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


Dynamique <strong>de</strong> la végétation <strong>de</strong> mares temporaires<br />

en Afrique du Nord (Numidie orientale, NE Algérie)<br />

Veg<strong>et</strong>ation dynamics in temporary ponds of North Africa<br />

(Oriental Numidia, NE Algeria)<br />

Gérard <strong>de</strong> Bélair<br />

Laboratoire <strong>de</strong> recherche sur les zones humi<strong><strong>de</strong>s</strong> (LRZH), Université Badji Mokhtar, BP533, 23000 Annaba, Algérie.<br />

Email : gerard_<strong>de</strong>_belair@yahoo.com<br />

Résumé<br />

La dynamique écologique <strong><strong>de</strong>s</strong> milieux endoréiques temporaires<br />

méditerranéens a été peu étudiée en Afrique du Nord, <strong>et</strong> jamais en<br />

Numidie (NE algérien). Dans c<strong>et</strong>te région, 26 mares temporaires<br />

ont fait l’obj<strong>et</strong> <strong>de</strong> suivis phytoécologiques <strong>et</strong> hydrologiques <strong>et</strong> la<br />

végétation a été systématiquement échantillonnée chaque mois<br />

durant l’hydropério<strong>de</strong>, au cours <strong>de</strong> trois cycles annuels (1998-<br />

2001). Les stations étudiées sont distribuées le long <strong>de</strong> <strong>de</strong>ux transects<br />

<strong>de</strong> 90 km environ. Une analyse inter-classes a été appliquée sur<br />

un tableau rassemblant 539 relevés <strong>et</strong> 136 espèces végétales.<br />

C<strong>et</strong>te analyse a pour but <strong>de</strong> séparer <strong>de</strong>ux eff<strong>et</strong>s, l’un temporel<br />

qui perm<strong>et</strong> <strong>de</strong> décrire la succession <strong><strong>de</strong>s</strong> espèces, l’autre spatial qui<br />

est relatif à la typologie stationnelle. Les résultats perm<strong>et</strong>tent <strong>de</strong><br />

distinguer n<strong>et</strong>tement <strong>de</strong>ux pério<strong><strong>de</strong>s</strong> dans l’année (été/automne <strong>et</strong><br />

hiver/printemps), définies notamment par la présence <strong>de</strong> Panicum<br />

repens d’une part <strong>et</strong> <strong>de</strong> Ranunculus baudotii d’autre part. La<br />

typologie aboutit à définir trois groupes parmi les mares, déterminés<br />

successivement par : groupe 1, Characeae <strong>et</strong> Juncus acutus ;<br />

groupe 2, Callitriche obtusangula <strong>et</strong> Iso<strong>et</strong>es velata subsp. typica ;<br />

groupe 3, C. obtusangula <strong>et</strong> Alisma plantago-aquatica.<br />

Une annexe comporte une <strong><strong>de</strong>s</strong>cription détaillée <strong><strong>de</strong>s</strong> 26 hydrosystèmes<br />

<strong>de</strong> mares temporaires <strong>et</strong> perm<strong>et</strong> d’en percevoir la richesse floristique,<br />

incluant la présence remarquable d’un élément original représentatif<br />

d’une « poche relictuelle afrotropicale ».<br />

Mots-clés<br />

Mares temporaires, analyse inter-classes, succession végétale,<br />

typologie, biogéographie, élément afrotropical.<br />

Abstract<br />

The temporary ponds have been less studied in Northern Africa<br />

than in Mediterranean Europe. Moreover, no study is <strong>de</strong>voted to<br />

the ecology of these ponds in Numidia (North-Eastern Algeria).<br />

Thus to fill this gap, we have surveyed 26 temporary ponds and<br />

we have examinated the fluctuations of plant assemblages and<br />

hydrology. These samples were performed monthly (nine months)<br />

during the hydroperiod and along three annual cycles (1998-<br />

2001). The studied ponds are distributed along two transects of<br />

90 km. We obtain a table of 539 relevés and 136 plant taxa.<br />

This table was submitted to an ACP and then to a Discrimin :<br />

B<strong>et</strong>ween analysis. This analysis allows to distinguish temporal and<br />

spatial effects : the first <strong><strong>de</strong>s</strong>cribes the succession of taxa, and the<br />

second the typology of ponds. Our results show that the temporal<br />

effect conveyied two periods (summer-autumn and winter-spring)<br />

with respectively Panicum repens and Ranunculus baudotii. The<br />

spatial effect permits to divi<strong>de</strong> the twenty-six temporary ponds into<br />

three groups: group 1, Characeae and Juncus acutus; group 2,<br />

Callitriche obtusangula and Iso<strong>et</strong>es velata subsp. typica; group 3,<br />

C. obtusangula and Alisma plantago-aquatica.<br />

An appendix inclu<strong><strong>de</strong>s</strong> a d<strong>et</strong>ailed <strong><strong>de</strong>s</strong>cription of these 26 temporary<br />

ponds, with some data related to plant richness and a focus about<br />

the most outstanding biogeographic elements present within the<br />

« afrotropical relict pock<strong>et</strong> ».<br />

Key-words<br />

Temporary ponds, discrimin: b<strong>et</strong>ween analysis, plant succession,<br />

typology, biogeography, afrotropical element.<br />

83<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

84<br />

INTRODUCTION<br />

La flore <strong>et</strong> la végétation <strong><strong>de</strong>s</strong> mares temporaires<br />

méditerranéennes ont fait l’obj<strong>et</strong> <strong>de</strong> nombreux travaux<br />

<strong>et</strong> synthèses récents (Quézel, 1998 ; Médail <strong>et</strong> al.,<br />

1998 ; Marti & Esteban, 2001 ; Rhazi <strong>et</strong> al., 2003 ;<br />

Grillas <strong>et</strong> al., 2004 ; Deil, 2005). Leur intérêt <strong>et</strong> leur<br />

originalité biogéographique <strong>et</strong> écologique ne sont plus<br />

à démontrer à l’échelle du bassin méditerranéen, mais<br />

les étu<strong><strong>de</strong>s</strong> phytodynamiques <strong>de</strong> ces milieux complexes<br />

<strong>de</strong>meurent peu nombreuses, particulièrement au sud <strong>de</strong><br />

la Méditerranée alors que ces mares subissent <strong><strong>de</strong>s</strong> impacts<br />

anthropiques majeurs (Rhazi <strong>et</strong> al., 2001).<br />

L’Algérie, <strong>et</strong> plus particulièrement la Numidie<br />

(au sens <strong><strong>de</strong>s</strong> divisions biogéographiques proposées<br />

par Quézel & Santa, 1962-1963), est riche en mares<br />

temporaires répondant aux critères Ramsar (Grillas<br />

<strong>et</strong> al., 2004). Plus d’une centaine d’entre elles ont été<br />

échantillonnées <strong>de</strong> 1995 à 2001 (Samraoui & <strong>de</strong> Bélair,<br />

1997, 1998). Un certain nombre d’étu<strong><strong>de</strong>s</strong> avait été<br />

effectué auparavant sur l’Algérie <strong>de</strong> manière sporadique,<br />

incluant <strong><strong>de</strong>s</strong> travaux non seulement sur les Spermaphytes<br />

ou les Ptéridophytes, mais également sur les algues d’eaux<br />

douces : Cyanophycées, Diatomées, Myxophycées<br />

<strong>et</strong> Chlorophycées <strong>et</strong>, notamment, les Charophycées<br />

(Lefranc, 1865 ; Gauthier-Lièvre, 1937 ; Feldmann, 1946 ;<br />

Morgan, 1982 ; Stevenson <strong>et</strong> al., 1989). Gauthier-Lièvre<br />

(1937) présente dans sa thèse un historique très détaillé<br />

<strong><strong>de</strong>s</strong> travaux réalisés en Algérie <strong>et</strong>, plus particulièrement<br />

en Numidie, sur les zones humi<strong><strong>de</strong>s</strong>. C<strong>et</strong> auteur soulignait<br />

« qu’en Algérie, les conditions optimales pour le développement<br />

d’une flore riche <strong>et</strong> variée sont réalisées sur toute l’étendue du<br />

secteur numidien, car c’est là que la pluviosité est la plus élevée<br />

<strong>et</strong> que se trouvent sur <strong>de</strong> gran<strong><strong>de</strong>s</strong> surfaces <strong><strong>de</strong>s</strong> affleurements <strong>de</strong><br />

terrains siliceux, en l’espèce <strong><strong>de</strong>s</strong> grès éocènes ».<br />

Tous ces motifs nous ont amené à choisir 26 mares<br />

temporaires <strong>de</strong> Numidie orientale, dispersées le long d’un<br />

axe <strong>de</strong> 90 km environ. Sur les cinq campagnes réalisées<br />

<strong>de</strong> 1996 à 2001, seules les trois <strong>de</strong>rnières campagnes<br />

ont été r<strong>et</strong>enues en raison <strong>de</strong> l’effort homogène<br />

d’échantillonnage exercé durant ces trois cycles (1998-<br />

2001) sur les 26 stations. L’objectif envisagé <strong>de</strong> c<strong>et</strong>te<br />

étu<strong>de</strong> était triple : (i) évaluer la biodiversité végétale <strong>de</strong><br />

ces mares, (ii) étudier la succession <strong><strong>de</strong>s</strong> espèces dans le<br />

temps (structure temporelle), <strong>et</strong> (iii) définir la typologie<br />

stationnelle (structure spatiale) <strong><strong>de</strong>s</strong> mares, dont seule une<br />

étu<strong>de</strong> partielle portant sur un seul cycle avait été déjà<br />

présentée (<strong>de</strong> Bélair, 2004). Ces <strong>de</strong>ux <strong>de</strong>rnières questions<br />

sont souvent soulevées par les écologues à partir <strong>de</strong><br />

recherches en hydrobiologie, sur la flore comme sur la<br />

faune (Degiorgi & Grandmott<strong>et</strong>, 1993 ; Born<strong>et</strong>te <strong>et</strong> al.,<br />

1994 ; Gaertner <strong>et</strong> al., 1998). C<strong>et</strong>te approche dynamique<br />

se base sur les analyses statistiques multivariées qui ont<br />

déjà fait leur preuve en milieu aquatique (Dolé<strong>de</strong>c &<br />

Chessel, 1987, 1989 ; Beffy & Dolé<strong>de</strong>c, 1991). Une<br />

double analyse, interclasses (mois <strong>et</strong> stations), <strong><strong>de</strong>s</strong><br />

données floristiques perm<strong>et</strong> <strong>de</strong> séparer l’eff<strong>et</strong> temporel<br />

<strong>de</strong> l’eff<strong>et</strong> spatial <strong>et</strong> perm<strong>et</strong> <strong>de</strong> discriminer les facteurs<br />

responsables <strong>de</strong> l’évolution <strong>de</strong> la végétation <strong>de</strong> ces mares<br />

temporaires <strong>de</strong> Numidie.<br />

MATÉRIELS ET MÉTHODES<br />

Zone d’étu<strong>de</strong><br />

La Numidie forme une unité biogéographique précise,<br />

développée en croissant autour du Djebel Edough<br />

(somm<strong>et</strong> : 1 008 m) à l’Ouest d’Annaba (fig. 1). Elle est<br />

délimitée au nord par la Méditerranée, au sud par un<br />

ensemble <strong>de</strong> collines d’altitu<strong>de</strong> moyenne (massifs <strong>de</strong> la<br />

Medjerda <strong>et</strong> <strong>de</strong> Guelma), n’excédant pas les 1 200 m<br />

(Djebel Rhorra, à la frontière tunisienne), à l’est par la<br />

frontière algéro-tunisiennne, correspondant au « rebroussement<br />

» <strong>de</strong> l’Atlas tellien vers la mer (Joleaud, 1936) <strong>et</strong><br />

à l’ouest par le massif <strong>de</strong> Filfila.<br />

À l’Est comme à l’Ouest <strong>de</strong> ce massif, se sont développés,<br />

au Quaternaire récent, <strong>de</strong>ux ensembles dunaires,<br />

pouvant atteindre 100 m <strong>et</strong> formant barrage pour les<br />

eaux d’amont. Aussi, les apports hydriques abondants<br />

<strong><strong>de</strong>s</strong> oueds, rejoignant les plaines sub-littorales numidiennes<br />

<strong>de</strong> faible altitu<strong>de</strong> (1 à 5 m), atteignent difficilement<br />

la mer <strong>et</strong> forment <strong>de</strong> nombreux méandres ; c’est le cas, à<br />

l’est, <strong><strong>de</strong>s</strong> oueds El Kébir Est <strong>et</strong> Bou Namoussa, drainant<br />

tous les oueds secondaires sur près <strong>de</strong> 50 km par un<br />

seul exutoire (oued Mafragh) <strong>et</strong> Seybouse, tandis qu’à<br />

l’ouest, un seul oued, El Kébir Ouest, draine toutes les<br />

eaux d’amont. Ces plaines, où l’écoulement est difficile,<br />

sont donc facilement inondables <strong>et</strong> favorisent la formation<br />

<strong>de</strong> nombreux marais (garâas) <strong>et</strong> mares <strong>de</strong> surface variable.<br />

De plus, un ensemble <strong>de</strong> phénomènes tectoniques<br />

explique la présence d’un grand marais, d’une lagune <strong>et</strong><br />

<strong>de</strong> <strong>de</strong>ux lacs ; <strong>de</strong> plus, toutes les plaines sublittorales sont<br />

soumises à un phénomène <strong>de</strong> subsi<strong>de</strong>nce (Marre, 1992).<br />

Les dunes elles-mêmes recèlent <strong>de</strong> très nombreux hydrosystèmes<br />

plus ou moins éphémères, liées aux ondulations<br />

du massif dunaire <strong>et</strong> alimentées par la remontée hivernale<br />

<strong>de</strong> la nappe hydrique.<br />

C<strong>et</strong>te géomorphologie contrastée détermine un vaste<br />

éventail d’hydrosystèmes endoréiques, dont l’alimentation<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

Figure 1. Carte <strong>de</strong> situation <strong>de</strong> 26 mares temporaires<br />

étudiées en Numidie orientale, i<strong>de</strong>ntifiées<br />

selon leur numéro en gras.<br />

85<br />

hydrique est assurée temporairement par les pluies,<br />

les inondations ou la nappe hydrique. Ces mares<br />

temporaires peuvent être groupées en quatre types, en<br />

fonction <strong>de</strong> leur environnement géomorphologique :<br />

dunes, plaines alluvionnaires, plaines colluvionnaires <strong>et</strong><br />

collines gréseuses (tableau 1 : paramètres mésologiques<br />

<strong>et</strong> annexes). Les mares étudiées sont réparties le long <strong>de</strong><br />

<strong>de</strong>ux axes routiers, d’Ouest en Est <strong>de</strong>puis Annaba : la<br />

RN 44 au Sud <strong>et</strong> le CW 109 au Nord. Le premier axe<br />

traverse les plaines sublittorales, le second longe le massif<br />

dunaire <strong>de</strong> Boutelja (fig. 1).<br />

Échantillonnages<br />

Durant chaque hydropério<strong>de</strong> (tableau 2), la végétation<br />

<strong>de</strong> 26 mares a été systématiquement échantillonnée chaque<br />

mois lors <strong>de</strong> trois cycles, répartis entre les années 1998-<br />

1999, 1999-2000 <strong>et</strong> 2000-2001. Ont été intégrés, dans<br />

la mesure du possible, <strong><strong>de</strong>s</strong> relevés précédant la pério<strong>de</strong><br />

d’inondation ou lui succédant. Il s’avère ainsi possible<br />

<strong>de</strong> décrire la végétation résistant à l’assèchement, sinon<br />

même une flore particulière précédant l’hydropério<strong>de</strong> ou<br />

lui succédant. Deux cas ont été distingués :<br />

— Toutes les hydrophytes, hygrophytes <strong>et</strong> amphiphytes<br />

sont affectées d’un indice d’abondance-recouvrement<br />

<strong>de</strong> 1 à 10. La somme <strong>de</strong> ces indices pour une mare<br />

à une date donnée peut excé<strong>de</strong>r 10 en raison <strong>de</strong> la<br />

présence <strong>de</strong> plusieurs strates :<br />

* hydriques : hydrophytes flottantes, enracinées, submergées,<br />

hygrophytes au milieu <strong><strong>de</strong>s</strong>quelles se développent<br />

<strong><strong>de</strong>s</strong> hydrophytes, <strong>et</strong>c., occupant donc <strong><strong>de</strong>s</strong> lames<br />

d’eau différentes ;<br />

* aériennes : en raison <strong>de</strong> l’importance <strong>de</strong> l’ombre dans<br />

les paramètres écologiques, il a été tenu compte <strong>de</strong> la<br />

frondaison <strong><strong>de</strong>s</strong> arbres ou arbustes dominant partiellement<br />

ou totalement certaines mares (cf. p. 17, Frênes,<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

86<br />

Tableau 1. Paramètres mésologiques <strong>de</strong> vingt-six mares (analyses effectuées par la Tour du Valat).<br />

Table 1. Mesological param<strong>et</strong>ers of twenty-six ponds (analyses carried out by Tour du Valat).<br />

N° Mares Altitu<strong>de</strong> Surface Profon<strong>de</strong>ur Argile Limon Sable Sable pH Unité<br />

Analyses (m) (ares) (cm) (%) fin grossier morphologique<br />

1 Fei1 3 0.5 120 24.9 15.9 22.6 15.5 4.70 plaine alluvionnaire<br />

2 Fei2 3 0.5 120 43.1 14.1 9.5 4.4 4.05 plaine alluvionnaire<br />

3 Fei3 3 0.5 80 44.7 13.8 7.2 4.1 3.90 plaine alluvionnaire<br />

4 Fei4 3 0.5 120 43.1 14.1 9.5 4.4 4.05 plaine alluvionnaire<br />

5 Fren 18 7.0 75 45.3 7.5 2.3 0.2 7.90 plaine alluvionnaire<br />

6 Mess 28 4.5 80 34.3 9.0 17.3 27.0 4.80 plaine colluvionnaire<br />

7 Gau1 35 10.0 40 21.0 18.3 24.7 18.1 5.60 plaine colluvionnaire<br />

8 Gau2 35 3.5 45 21.0 18.3 24.7 18.1 5.60 plaine colluvionnaire<br />

9 Gau3 35 2.0 65 37.8 8.2 7.1 16.4 4.80 plaine colluvionnaire<br />

10 Gau4 35 2.5 70 37.8 8.2 7.1 16.4 4.80 plaine colluvionnaire<br />

11 Fedj 110 6.5 100 19.9 10.8 29.9 26.8 5.00 colline gréseuse<br />

12 Gera 15 3.5 50 22.1 4.5 5.6 56.7 6.25 dune<br />

13 Isoe 20 3.0 25 14.4 3.3 6.2 66.9 5.70 dune<br />

14 Ecol 15 3.5 42 23.5 6.6 8.3 44.7 5.35 dune<br />

15 Sud 8 5.5 70 6.0 1.2 5.2 85.8 6.05 dune<br />

16 Hrib 10 6.0 130 5.8 0.5 3.6 88.1 4.20 dune<br />

17 Tama 28 3.5 120 11.3 2.0 19.5 63.6 6.70 dune<br />

18 Carr 18 3.5 100 4.3 0.7 4.8 88.7 5.95 dune<br />

19 Mafr 2 6.5 86 6.1 0.7 5.3 87.4 8.35 dune<br />

20 Sang 3 7.0 86 6.3 0.5 7.0 84.7 8.25 dune<br />

21 Bouk 1 20.0 90 20.0 14.6 25.1 24.1 7.75 plaine alluvionnaire<br />

22 Sali 3 100.0 45 56.0 5.9 3.7 0.4 8.15 plaine alluvionnaire<br />

23 Rupp 2 15.0 70 4.3 0.5 2.2 92.5 7.45 dune<br />

24 Frin 30 2.0 25 5.1 0.5 7.3 85.9 5.60 rives lac: dune<br />

25 Bleu 8 0.5 90 5.1 1.3 5.5 86.8 5.45 dune<br />

26 Buto 9 15.0 70 61.3 1.7 1.1 2.3 5.80 plaine alluvionnaire<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

Tableau 2. Hydropério<strong><strong>de</strong>s</strong> <strong>de</strong> 26 mares temporaires durant 3 cycles.<br />

Table 2. Hydroperiods of twenty-six ponds for three cycles.<br />

1998-99<br />

Sept. Oct. Nov. Décembre Janvier Février Mars Avril Mai Juin Juill<strong>et</strong><br />

1,7,9,16, 7,14,21, 3,12,22, 15,17,19, 12,23, 5,12, 10,17, 1,7, 5.VII<br />

r: relevé.<br />

23.XI.98 26,27.XII. 25,28.I.99 23.II. 31.III. 19.IV. 22.V. 12.VI.<br />

Pluviosité (Salines) 63 61 237 64 157 103 48 44 38 9 13<br />

Pluviosité (El Kala) 54.1 90 241.2 95.2<br />

N° Mares<br />

1 Fe1 r r r r r r r sec<br />

2 Fe2 r r r r r r r sec<br />

3 Fe3 r r r r r r r sec<br />

4 Fe4 r r r r r r r sec<br />

5 Frê r r r r r r sec<br />

6 Mes r r r r r r r r<br />

7 Ga1 r r r r r r r r sec<br />

8 Ga2 r r r r r r r r sec<br />

9 Ga3 r r r r r r r r sec<br />

10 Ga4 r r r r r r r r sec<br />

11 Fedj r r r r r r r r r (faiblt en eau)<br />

12 Gér r r r r r r r r<br />

13 Iso r r r r r r r<br />

14 BeEc r r r r r r r r<br />

15 BeS r r r r r r r<br />

16 HrN r r r r r r r<br />

17 Tam r r r r r r r r<br />

18 Carr r r r r r r r r<br />

19 Maf r r r r r r r<br />

20 San r r r r r r<br />

21 Bouk r r r r r r r faiblt en eau<br />

22 Sal r r r r r r sec<br />

23 Rup r r r r r r r r r<br />

24 ElFr r r r<br />

25 MLB r r r r r r r r r<br />

26 But r r r r r r r r<br />

87<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

88<br />

Tableau 2. Hydropério<strong><strong>de</strong>s</strong> <strong>de</strong> 26 mares temporaires durant 3 cycles (suite).<br />

Table 2. Hydroperiods of twenty-six ponds for three cycles.<br />

1999-2000<br />

3,13, 10,24, 4,14,21,II. 13,20.III. 10,24.IV. 8,15,29.V. 519,VI<br />

20.XII.1999 I.2000<br />

N° Mares<br />

1 Fe1 à sec: r r r r r r<br />

2 Fe2 à sec: r r r r r r<br />

3 Fe3 à sec: r r r r r r<br />

4 Fe4 à sec: r r r r r r<br />

5 Frê r r r r r à sec<br />

6 Mes r r r r r quasi-sec:r r<br />

7 Ga1 r r r r r quasi-sec:r r<br />

8 Ga2 r r r r r quasi-sec:r r<br />

9 Ga3 r r r r r quasi-sec:r r<br />

10 Ga4 r r r r r quasi-sec:r r<br />

11 Fedj r r r r r r r<br />

12 Gér r r r r r sec:r<br />

13 Iso r r r r r sec:r<br />

14 BeEc r r r r r r<br />

15 BeS r r r r r lab: r<br />

16 HrN r r r r r réd: r<br />

17 Tam r r r r r r r<br />

18 Carr r r r r r r 3 bassins<br />

19 Maf r r r r r r r<br />

20 San r r r r r r r<br />

21 Bouk r r r r r r r<br />

22 Sal r r r r r 3°bas: r<br />

23 Rup r r r r r r r<br />

24 ElFr r r à sec:r<br />

25 MLB r r r r r r<br />

26 But r r r r r r sec<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

Tableau 2. Hydropério<strong><strong>de</strong>s</strong> <strong>de</strong> 26 mares temporaires durant 3 cycles (suite).<br />

Table 2. Hydroperiods of twenty-six ponds for three cycles.<br />

2000-2001<br />

19 105 37 108 112 75 19 40 28 0.4 0.4<br />

Pluviosité<br />

(Salines)<br />

33.8 118.5 49.9 85.2 159.2 79.5 21.9 57.8 60.9 Nt Nt<br />

Pluviosité<br />

(El Kala)<br />

26,27.X. 2000 12,24,27.XI. 22,30.XII. 22,26.I.2001 19,25.II-2.II. 23.III-6.IV. 27,29.IV. 25.V. 22,25.VI<br />

N° Mares<br />

1 Fe1 sec sec r r r r r sec:r<br />

2 Fe2 sec sec r r r r r sec:r<br />

3 Fe3 sec sec r r r r r sec:r<br />

12 Gér lab r r r<br />

13 Iso r (sec <strong>de</strong> nouveau) r r r r r à sec:r<br />

14 BeEc r r r r r r r sec/lab:r<br />

15 BeS r r r r r r<br />

16 HrN r r r r réd:r quasi-sec:r<br />

17 Tam r r r r r r r r r<br />

18 Carr r r r r r r r r<br />

19 Maf r r r r r r r r r<br />

20 San r r r r r r r r r<br />

21 Bouk r r r r r<br />

22 Sal r r r r r r r<br />

23 Rup r r r r r r r r r<br />

24 ElFr r r r<br />

25 MLB r r r r r r r r r<br />

26 But r r r r r r r<br />

89<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

90<br />

Tableau 3. Liste <strong>de</strong> 136 espèces végétales, inventoriées dans 26 mares <strong>de</strong> Numidie.<br />

Table 3. Checklist of 136 plant species, sampled in twenty-six ponds of Numidia (Northeastern Algeria).<br />

Co<strong>de</strong> Taxa analysés Taxa<br />

N°<br />

analyse<br />

Co<strong>de</strong> Taxa analysés Taxa<br />

N°<br />

analyse<br />

(Quezel & Santa, 1962-1963) (selon Valdès <strong>et</strong> al., 2002) (Quezel & Santa, 1962-1963) (selon Valdès <strong>et</strong> al., 2002)<br />

1 Agsv Agrostis semi-verticillata Polypogon viridis 69 Lyeu Lycopus europeus<br />

2 Albu Alopecurus bulbosus subsp. macrostachys 70 Lyhy Lythrum hyssopifolia<br />

3 Alpa Alisma plantago-aquatica 71 Lyju Lythrum junceum<br />

4 Altr Allium triqu<strong>et</strong>rum 72 Lynu Lythrum numulariaefolia<br />

5 Apcr Apium crassipes 73 Lysa Lythrum salicaria<br />

6 Apno Apium nodiflorum 74 Mepu Mentha pulegium<br />

7 Atlit Atriplex littoralis 75 Mero Mentha rotundifolia<br />

8 Atpa Atriplex patula A. littoralis ? 76 Myal Myriophyllum alterniflorum<br />

9 Atpo Atriplex portulacoi<strong><strong>de</strong>s</strong> Halimione portulacoi<strong><strong>de</strong>s</strong> 77 Naof Nasturtium officinale<br />

10 Bere Bellis repens 78 Oefi Oenanthe fistulosa<br />

11 Bevu B<strong>et</strong>a vulgaris subsp. maritima B<strong>et</strong>a maritima 79 Oegl Oenanthe globulosa<br />

12 Buum Butomus umbellatus 80 Oleu Olea europea<br />

13 Cadi Carex divisa 81 Orpr Ormenis praecox<br />

14 Calpe Callitriche pedunculata C. brutia 82 Padi Paspalum distichum<br />

15 Caob Callitriche obtusangula 83 Pare Panicum repens<br />

16 Capu Carex punctata 84 Phau Phragmites australis<br />

17 Catr Callitriche truncata 85 Plco Plantago coronopus<br />

18 Ce<strong>de</strong> Ceratophyllum <strong>de</strong>mersum 86 Plcr Plantago crassifolia<br />

19 Char Characeae 87 Poal Populus alba<br />

20 Chlo Chlorophyceae 88 Poan Poa annua<br />

21 Chmy Chrysanthemum myconis 89 Poatr Poa trivialis<br />

22 Cicfi Cicendia filiformis 90 Pola Polygonum lapathifolium<br />

23 Coco Cotula coronopifolia 91 Poma Polypogon maritimum subsp. subspathaceum<br />

24 Coli Corrigiola littoralis 92 Pomo Polypogon monspeliensis<br />

25 Craox Crataegus oxyacantha subsp. monogyna 93 Ponod Potamog<strong>et</strong>on nodosus<br />

26 Cyda Cynodon dactylon 94 Pope Potamog<strong>et</strong>on pectinatus<br />

27 Cyfl Cyperus flavescens Pycreus flavescens 95 Pore Potentilla reptans<br />

28 Cylo Cyperus longus subsp. eu-longus 96 Posa Polygonum salicifolium<br />

29 Cyro Cyperus rotundus subsp. eu-rotundus 97 Potatr Potamog<strong>et</strong>on trichoi<strong><strong>de</strong>s</strong><br />

30 Daal Damasonium alisma subsp. bourgei 98 Raba Ranunculus baudotii<br />

31 Disa Digitaria sanguinalis 99 Rafi Ranunculus ficaria<br />

32 Ecra Echinodorus ranunculoi<strong><strong>de</strong>s</strong> Bal<strong>de</strong>llia ranunculoi<strong><strong>de</strong>s</strong> 100 Rahe Ranunculus he<strong>de</strong>raceus<br />

33 Elal Elatine alsinastrum 101 Rama Ranunculus macrophyllus<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

34 Elbr Elatine brochonii 102 Ramu Ranunculus muricatus<br />

35 Elemu Eleocharis multicaulis 103 Raop Ranunculus ophioglossifolius<br />

36 Elhyd Elatine hydropiper 104 Rasa Ranunculus sardous<br />

37 Elpa Eleocharis palustris 105 Rasc Ranunculus sceleratus<br />

38 Eupu Euphorbia pubescens 106 Ratr Ranunculus trichophyllus<br />

39 Fran Fraxinus angustifolia 107 Ruco Rumex conglomeratus<br />

40 Frlae Frankenia laevis 108 Ruma Ruppia maritima<br />

41 Fupu Fuirena pubescens 109 Rupu Rumex pulcher<br />

42 Gapa Galium palustre 110 Ruul Rubus ulmifolius<br />

43 Glfl Glyceria fluitans 111 Saat Salix atrocinerea<br />

44 Gllot Glinus lotoi<strong><strong>de</strong>s</strong> 112 Saleu Salicornia arabica (S. fruticosa) Sarcocornia fruticosa<br />

45 Hola Holcus lanatus 113 Saso Salsola soda<br />

46 Ilve Illecebrum verticillatum 114 Sava Samolus valerandi<br />

47 Irps Iris pseudo-acorus 115 Scce Scirpus cernuus Isolepis cernua<br />

48 Ishi Iso<strong>et</strong>es histrix 116 Scho Scirpus holoschoenus Scirpoi<strong><strong>de</strong>s</strong> holoschoenus<br />

49 Isve Iso<strong>et</strong>es velata subsp. typica 117 Scin Scirpus inclinatus<br />

50 Juac Juncus acutus 118 Scla Scirpus lacustris Schoenoplectus lacustris<br />

51 Juan Juncus anceps 119 Scma Scirpus maritimus Bolboschoenus maritimus<br />

52 Juart Juncus articulatus 120 Scni Schoenus nigricans<br />

53 Jubu Juncus bufonius 121 Seja Senecio jacobaea<br />

54 Juca Juncus capitatus 122 Sicr Silene coeli-rosa<br />

55 Jucon Juncus conglomeratus 123 Soni Solanum nigrum<br />

56 Juef Juncus effusus 124 Sper Sparganium erectum subsp. polyedrum<br />

57 Juhe Juncus h<strong>et</strong>erophyllus 125 Spfl Spergula flaccida Spergula fallax<br />

58 Juin Juncus inflexus 126 Spsa Spergularia salina Spergularia marina<br />

59 Juma Juncus maritimus J. rigidus 127 Taga Tamarix gallica<br />

60 Jupy Juncus pygmaeus 128 Trfi Trifolium filiforme<br />

61 Jusu Juncus subulatus 129 Trrep Trifolium resupinatum<br />

62 Jute Juncus tenageia 130 Trres Trifolium repens<br />

63 Labi Laurentia bicolor 131 Tyan Typha angustifolia subsp. australis<br />

64 Lehex Leersia hexandra Oryza hexandra ? 132 Utex Utricularia exol<strong>et</strong>a<br />

65 Lemi Lemna minor 133 Utvu Utricularia vulgaris subsp. major<br />

66 Lino Lippia nodiflora Phyla nodiflora 134 Veaa Veronica anagallis-aquatica<br />

67 Loco Lotus corniculatus subsp. <strong>de</strong>cumbens 135 Woar Wolffia arrhiza<br />

68 Lupa Ludwigia palustris 136 Zapa Zanichellia palustris subsp. pedunculata<br />

91<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

92<br />

entièrement couvert par c<strong>et</strong>te espèce, El Feïd 1, partiellement<br />

couvert par l’olivier ou, p. 18, Fedjouj, par<br />

le peuplier <strong>et</strong> le saule, <strong>et</strong>c.).<br />

— Toutes les mésophytes ou espèces ripicoles présentes<br />

sont notées 1, en raison <strong>de</strong> leur présence constante <strong>et</strong><br />

<strong>de</strong> l’information qu’elles apportent sur la formation<br />

végétale à laquelle appartiennent les mares.<br />

Analyse inter-classes<br />

Les données sont par la suite cumulées dans un<br />

tableau unique, comprenant la somme <strong><strong>de</strong>s</strong> relevés <strong><strong>de</strong>s</strong><br />

trois campagnes (1998-2001), soient 539 relevés <strong>et</strong> 136<br />

espèces végétales. Un tel tableau a été soumis à l’analyse<br />

inter-classes qui conduit à une <strong><strong>de</strong>s</strong>cription <strong>de</strong> la structure<br />

globale sur trois cycles. La liste <strong><strong>de</strong>s</strong> espèces <strong>et</strong> leurs co<strong><strong>de</strong>s</strong><br />

sont rassemblés dans le tableau 3.<br />

Une première analyse par Analyse en composantes<br />

principales (ACP) est nécessaire pour accé<strong>de</strong>r à la<br />

suivante. Sur la base <strong>de</strong> c<strong>et</strong>te ACP, il est alors possible<br />

d’effectuer l’analyse inter-classes, dont le déroulement est<br />

décrit dans le logiciel ADE-4 (Thioulouse <strong>et</strong> al., 1996).<br />

RÉSULTATS<br />

Conséquences écologiques<br />

globales <strong><strong>de</strong>s</strong> hydropério<strong><strong>de</strong>s</strong><br />

Les résultats hydrologiques montrent clairement que<br />

les trois cycles <strong>de</strong> mise en eau/assèchement sont très<br />

différents (tableau 2) : 8 mois pour le premier cycle, à<br />

peine 7 mois pour le <strong>de</strong>uxième, <strong>et</strong> 9 mois pour le <strong>de</strong>rnier.<br />

Ceci reflète parfaitement la variabilité inter-annuelle <strong><strong>de</strong>s</strong><br />

conditions climatiques en Afrique du Nord. Lorsque<br />

l’hydropério<strong>de</strong> est courte, certaines espèces végétales<br />

ne s’expriment pas, particulièrement en fin <strong>de</strong> cycle<br />

qui est brutalement interrompu par la pério<strong>de</strong> estivale ;<br />

c’est le cas par exemple <strong><strong>de</strong>s</strong> p<strong>et</strong>ites Gentianaceae comme<br />

Exaculum pusillum ou Cicendia filiformis. Par contre,<br />

les cycles <strong><strong>de</strong>s</strong> espèces principales (cf. analyses : ACP <strong>et</strong><br />

Analyse inter-classes) comme Callitriche obtusangula,<br />

C. truncata <strong>et</strong> Ranunculus baudotii ont tendance à se<br />

chevaucher.<br />

Si la majorité <strong><strong>de</strong>s</strong> mares se rem<strong>et</strong> en eau simultanément,<br />

un certain nombre d’entre elles accusent un r<strong>et</strong>ard<br />

plus ou moins important (cas <strong><strong>de</strong>s</strong> mares El Feïd) ou<br />

elles achèvent brusquement leur cycle en raison <strong>de</strong><br />

perturbations externes tels que les labours <strong>et</strong> la mise en<br />

culture. Enfin, certaines mares peuvent se maintenir en<br />

eau au-<strong>de</strong>là <strong>de</strong> la pério<strong>de</strong> d’échantillonnage <strong>et</strong> présenter<br />

ainsi une hydropério<strong>de</strong> qui franchit la pério<strong>de</strong> estivale si<br />

la pluviosité a été bien répartie tout au long <strong>de</strong> l’année<br />

(ex. Fedjouj, Tamaris, Mafragh ou Sangliers). Aussi les<br />

statuts <strong><strong>de</strong>s</strong> mares, à l’intérieur d’une même campagne,<br />

sont-ils variables : aux <strong>de</strong>ux extrêmes, existent <strong><strong>de</strong>s</strong><br />

mares temporaires très éphémères (hydropério<strong>de</strong> <strong>de</strong> 2 à<br />

3 mois), comme El Frin, <strong>et</strong> <strong><strong>de</strong>s</strong> mares temporaires semipermanentes<br />

où l’hydropério<strong>de</strong> peut, une année sur <strong>de</strong>ux<br />

ou trois, franchir la pério<strong>de</strong> estivale. Seules les mares les<br />

plus profon<strong><strong>de</strong>s</strong> appartiennent à ce <strong>de</strong>rnier ensemble.<br />

Analyse inter-classes<br />

L’inventaire <strong><strong>de</strong>s</strong> 26 mares étudiées <strong>et</strong> la réalisation <strong>de</strong><br />

539 relevés ont permis d’i<strong>de</strong>ntifier 136 espèces végétales<br />

en Numidie, relevés qui ont été soumis à une ACP puis<br />

à une analyse inter-classes. Les quatre premiers facteurs<br />

<strong>de</strong> l’ACP (0.13, 0.09, 0.07 <strong>et</strong> 0.06) ne m<strong>et</strong>tent pas en<br />

évi<strong>de</strong>nce une structure très forte <strong><strong>de</strong>s</strong> données. L’analyse<br />

inter-classes, concernant la succession <strong><strong>de</strong>s</strong> espèces dans<br />

le temps <strong>et</strong> la typologie <strong><strong>de</strong>s</strong> mares, a été précédée <strong>de</strong> <strong>de</strong>ux<br />

tests <strong>de</strong> permutation, afin <strong>de</strong> déterminer la pertinence<br />

d’une telle analyse. Les tests sont dans les <strong>de</strong>ux cas très<br />

significatifs.<br />

Structure temporelle (fig. 2)<br />

L’analyse interclasses affiche <strong>de</strong>ux axes rassemblant<br />

la majorité <strong>de</strong> l’information (respectivement, 0.42 <strong>et</strong><br />

0.40).<br />

L’axe 1 m<strong>et</strong> en évi<strong>de</strong>nce dans la structure principale,<br />

<strong>de</strong>ux groupes (2 semestres ?) :<br />

— groupe 1 (automne-hiver surtout), marqué par la<br />

présence <strong>de</strong> Panicum repens (83), Digitaria sanguinalis<br />

(31), Iso<strong>et</strong>es histrix (48) <strong>et</strong> Lippia nodiflora (= Phyla<br />

nodiflora) (66) : mois d’octobre à décembre <strong>et</strong> mois<br />

<strong>de</strong> juin (1 à 3 <strong>et</strong> 9 dans la fig. 2) ;<br />

— groupe 2 (printemps-été), dominé par Ranunculus<br />

baudotii (98), Alisma plantago-aquatica (3), Apium<br />

crassipes (5), Myriophyllum alterniflorum (76), Poa<br />

annua (88), Ranunculus ophioglossifolius (103),<br />

R. sardous (104), Scirpus cernuus (115) <strong>et</strong> Scirpus<br />

maritimus (119) : mois <strong>de</strong> janvier à mai (4 à 7 dans<br />

la fig. 2).<br />

L’axe 2 distinguerait, dans la structure secondaire,<br />

<strong>de</strong>ux nouveaux groupes, chevauchant chacun <strong><strong>de</strong>s</strong><br />

groupes précé<strong>de</strong>nts ; il perm<strong>et</strong> la séparation :<br />

— <strong><strong>de</strong>s</strong> mois dominés par Ranunculus baudotii <strong>et</strong><br />

Callitriche obtusangula (15 : en italiques dans la fig. 2) :<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

Figure 2. Structure temporelle<br />

<strong>de</strong> la végétation <strong><strong>de</strong>s</strong> 26 mares<br />

temporaires. Carte factorielle<br />

1-2 <strong>de</strong> l’analyse interclasses<br />

: 9 mois x 136 espèces<br />

végétales x 3 cycles. A droite,<br />

graphe <strong><strong>de</strong>s</strong> valeurs propres.<br />

Chaque mois, d’octobre à<br />

juin (chiffres romains : X à<br />

XII <strong>et</strong> I à VI), est figuré au<br />

centre (chiffres arabes : 1 à 9,<br />

entourés d’un cercle). Chaque<br />

mois est au barycentre <strong><strong>de</strong>s</strong><br />

relevés (figurés à l’extrémité<br />

<strong><strong>de</strong>s</strong> flèches par un carré noir),<br />

effectués sur 26 mares durant<br />

3 cycles. La succession <strong><strong>de</strong>s</strong><br />

espèces est présentée sous<br />

forme <strong>de</strong> quadrats, à échelle<br />

réduite <strong>de</strong> la carte factorielle<br />

initiale. La distribution <strong>de</strong><br />

chaque espèce est figurée par<br />

<strong><strong>de</strong>s</strong> carrés blancs, lorsqu’elle<br />

est absente, par <strong><strong>de</strong>s</strong> cercles,<br />

lorsqu’elle est présente ; le<br />

diamètre <strong>de</strong> ces cercles est<br />

proportionnel à l’indice<br />

d’abondance. En caractères<br />

normaux, les espèces<br />

dominantes, en italiques, les<br />

espèces secondaires.<br />

93<br />

mois 2 <strong>et</strong> 3 (novembre-décembre) dans le groupe 1,<br />

mois 4 <strong>et</strong> 5 (janvier-février) dans le groupe 2 ;<br />

— <strong><strong>de</strong>s</strong> mois où se développent Apium crassipes,<br />

<strong><strong>de</strong>s</strong> Characeae (19) <strong>et</strong> Lythrum hyssopifolia (70),<br />

accompagnés <strong>de</strong> Cyperus longus (28), Bal<strong>de</strong>llia<br />

ranunculoi<strong><strong>de</strong>s</strong> (32), Galium palustre (42) <strong>et</strong> Paspalum<br />

distichum (82) : mois 1 <strong>et</strong> 9 (octobre <strong>et</strong> juin) d’une<br />

part, mois 6 à 8 (mars à mai) d’autre part.<br />

Pouvons-nous en inférer que quatre saisons avec<br />

<strong><strong>de</strong>s</strong> nuances sont mises en évi<strong>de</strong>nce dans ce <strong>de</strong>rnier<br />

découpage ? De plus, c<strong>et</strong>te discrimination apporte-t-elle<br />

un élément nouveau à la réflexion ?<br />

Structure spatiale (fig. 3)<br />

L’analyse inter-classes repose sur <strong>de</strong>ux axes qui<br />

récoltent une information n<strong>et</strong>tement plus faible que dans<br />

l’analyse précé<strong>de</strong>nte (0.22 <strong>et</strong> 0.16) ; les autres axes seront<br />

abordés, mais ils n’apportent qu’une information limitée<br />

(axes 3 <strong>et</strong> 4 : 0.10 <strong>et</strong> 0.09).<br />

L’axe 1 fait apparaître une structure principale,<br />

répartissant les mares en <strong>de</strong>ux groupes :<br />

— groupe 1 à Characeae (19) <strong>et</strong> Juncus acutus (50)<br />

qu’accompagnent Juncus maritimus (J. rigidus Valdès<br />

<strong>et</strong> al., 2002) (59), Typha angustifolia (131) <strong>et</strong> Tamarix<br />

gallica (127) : mares 3 à 6, 11 <strong>et</strong> 18 à 26.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

94<br />

— groupe 2 à Callitriche obtusangula (15), Iso<strong>et</strong>es velata<br />

(49) <strong>et</strong> Myriophyllum alterniflorum (76) principalement<br />

<strong>et</strong>, secondairement, Bal<strong>de</strong>llia ranunculoi<strong><strong>de</strong>s</strong> (32),<br />

Eleocharis palustris (37) <strong>et</strong> Glyceria fluitans (43) :<br />

mares 1, 2, 7 à 10 <strong>et</strong> 12 à 17.<br />

L’axe 2 fait ressortir une structure secondaire distinguant<br />

dans chacun <strong><strong>de</strong>s</strong> groupes un nouveau groupement, défini<br />

par Scirpus maritimus (= Schoenoplectus maritimus) (119 :<br />

en italiques dans la fig. 3) <strong>et</strong> Alisma plantago-aquatica (3 :<br />

en italiques), qu’accompagne souvent Scirpus lacustris (=<br />

Schoenoplectus lacustris) (118).<br />

C<strong>et</strong>te analyse perm<strong>et</strong> une partition <strong><strong>de</strong>s</strong> 26 mares <strong>de</strong><br />

la manière suivante :<br />

— du groupe 1, se dégage un groupe à Scirpus maritimus,<br />

S. lacustris <strong>et</strong> Typha angustifolia : mares 1, 2, 4,<br />

15, 16 <strong>et</strong> 17,<br />

— du groupe 2 se détache, <strong>de</strong> la même manière, un<br />

groupe à Scirpus maritimus : mares 3, 4, 5, 6, 21, 22,<br />

24, 25 <strong>et</strong> 26.<br />

En résumé, il existe trois groupes n<strong>et</strong>tement éloignés<br />

<strong><strong>de</strong>s</strong> axes 1 <strong>et</strong> 2, <strong>et</strong> donc clairement i<strong>de</strong>ntifiables par la<br />

dominance <strong><strong>de</strong>s</strong> espèces qu’ils contiennent :<br />

* groupe 1 à Characeae, J. maritimus <strong>et</strong> J. acutus : 11,<br />

18 à 20 <strong>et</strong> 23 ;<br />

* groupe 2 à Callitriche obtusangula, Iso<strong>et</strong>es velata <strong>et</strong><br />

Myriophyllum alterniflorum : 7 à 10 (8 masqué par 9)<br />

<strong>et</strong> 12 à 14 ;<br />

* groupe 3 à Callitriche obtusangula, Scirpus maritimus<br />

<strong>et</strong> Alisma plantago-aquatica : 1, 2 (masqué par 4), 15,<br />

d’une part, 3 à 6 avec 21 <strong>et</strong> 26 d’autre part.<br />

En outre, un groupe mal défini par ces axes <strong>et</strong><br />

rassemblé vers l’origine, comporte les mares 16, 17<br />

Figure 3. Structure spatiale<br />

<strong>de</strong> la végétation <strong><strong>de</strong>s</strong> 26 mares<br />

temporaires. Carte factorielle 1-<br />

2 <strong>de</strong> l’analyse inter-classes : 26<br />

mares x 136 espèces végétales x 3<br />

cycles. En haut, à droite, graphe<br />

<strong><strong>de</strong>s</strong> valeurs propres. Chaque<br />

station (affectée d’un chiffre <strong>de</strong><br />

1 à 26) est au barycentre <strong>de</strong><br />

l’ensemble <strong><strong>de</strong>s</strong> relevés (liés à la<br />

durée <strong>de</strong> l’hydropério<strong>de</strong>) effectués<br />

durant 3 cycles. La distribution<br />

<strong>de</strong> chaque taxon est représenté<br />

dans un quadrat à échelle<br />

réduite <strong>de</strong> la carte factorielle<br />

principale. La distribution <strong>de</strong><br />

chaque espèce est figurée par<br />

<strong><strong>de</strong>s</strong> carrés blancs, lorsqu’elle est<br />

absente, par <strong><strong>de</strong>s</strong> cercles, lorsqu’elle<br />

est présente ; le diamètre <strong>de</strong> ces<br />

cercles est proportionnel à l’indice<br />

d’abondance. La typologie <strong><strong>de</strong>s</strong><br />

mares est définie par 3 groupes<br />

végétaux, clairement i<strong>de</strong>ntifiés.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

(masqué par 25), 22, 24 <strong>et</strong> 25. Chacune <strong>de</strong> ces mares<br />

est originale :<br />

(i) soit par sa composition floristique (ainsi, les mares<br />

16 <strong>et</strong> 17 relèvent à la fois <strong><strong>de</strong>s</strong> groupes 2 <strong>et</strong> 3 ; la mare 22,<br />

marquée par une forte salinité, comporte une association<br />

végétale particulière à Salicornia arabica <strong>et</strong> Salsola soda ;<br />

la station 25 est dominée par plusieurs espèces, absentes<br />

<strong><strong>de</strong>s</strong> autres, comme Wolffia arrhiza, Ludwigia palustris <strong>et</strong><br />

Oryza hexandra) ;<br />

(ii) soit par la brièv<strong>et</strong>é <strong>de</strong> son hydropério<strong>de</strong> ; tel est le<br />

cas <strong>de</strong> la station 24.<br />

Les axes 3 <strong>et</strong> 4 ne prennent en charge que <strong><strong>de</strong>s</strong><br />

situations particulières en raison <strong>de</strong> la dominance d’une<br />

espèce. Ainsi, Wolffia arrhiza (135) est permanente <strong>et</strong><br />

abondante dans la mare du lac Bleu <strong>et</strong> Ruppia maritima<br />

(108) dans la mare Ruppia.<br />

DISCUSSION<br />

Structure temporelle :<br />

succession <strong><strong>de</strong>s</strong> espèces végétales<br />

A propos du climat en Algérie, Seltzer (1946) souligne :<br />

« Le climat est partout méditerranéen, i.e. caractérisé par une<br />

saison pluvieuse allant en moyenne <strong>de</strong> septembre à mai, <strong>et</strong><br />

par un été sec <strong>et</strong> ensoleillé ». La végétation exprimée lors<br />

<strong><strong>de</strong>s</strong> mois d’été est dans notre étu<strong>de</strong>, par définition, sousreprésentée<br />

dans notre échantillonnage. La structure<br />

bi-partite recouvre donc surtout la « saison pluvieuse » ;<br />

elle est déterminée par l’axe 1 <strong>et</strong> sépare <strong>de</strong>ux ensembles<br />

végétaux, l’un englobant les mois d’octobre à décembre <strong>et</strong><br />

<strong>de</strong> juin, définis par Panicum repens <strong>et</strong> ses associés, l’autre,<br />

les mois <strong>de</strong> janvier à mai, marqués par la présence <strong>de</strong><br />

Ranunculus baudotii <strong>et</strong> ses associés. Le premier ensemble<br />

se développe en eff<strong>et</strong> particulièrement au début <strong>de</strong><br />

l’été (juill<strong>et</strong> <strong>et</strong> août n’ont pas été échantillonnés) <strong>et</strong> se<br />

poursuit durant l’automne, où les Graminées, comme<br />

Panicum repens <strong>et</strong> Paspalum distichum à développement<br />

concomitant, entrent dans le sta<strong>de</strong> végétatif. Lors <strong>de</strong> la<br />

remise en eau <strong><strong>de</strong>s</strong> mares, un délai <strong>de</strong> germination <strong>et</strong> <strong>de</strong><br />

floraison est évi<strong>de</strong>mment nécessaire pour que R. baudotii<br />

puisse, à son tour, coloniser les mares.<br />

L’axe 2 introduit <strong><strong>de</strong>s</strong> nuances, <strong>et</strong> à R. baudotii<br />

s’adjoint la présence <strong>de</strong> Callitriche obtusangula. C<strong>et</strong>te<br />

<strong>de</strong>rnière espèce précè<strong>de</strong> la mise en place <strong>de</strong> R. baudotii<br />

<strong>et</strong> peut persister longtemps en association avec elle ; elle<br />

disparaît lorsque R. baudotii occupe progressivement les<br />

mares <strong>et</strong> entre en compétition avec C. obtusangula pour<br />

la lumière. Elle est capable <strong>de</strong> germer, se développer <strong>et</strong><br />

occuper la niche écologique, libérée <strong>de</strong> toute autre espèce,<br />

dès le début <strong>de</strong> l’hydropério<strong>de</strong> <strong><strong>de</strong>s</strong> mares. À la lecture<br />

<strong>de</strong> la fig. 3, c’est la succession habituelle <strong><strong>de</strong>s</strong> groupes<br />

écologiques, sinon <strong><strong>de</strong>s</strong> espèces, « imbriquées en écailles »<br />

(Godron, 1967) que laissent apparaître les distributions<br />

<strong>de</strong> C. obtusangula (sta<strong><strong>de</strong>s</strong> 3, 4, 5 <strong>et</strong> 6), R. baudotii (sta<strong><strong>de</strong>s</strong><br />

5, 6 <strong>et</strong> 7), Alisma plantago-aquatica (sta<strong><strong>de</strong>s</strong> 5, 6 7 <strong>et</strong> 8),<br />

Apium crassipes (sta<strong><strong>de</strong>s</strong> 6, 7, 8 <strong>et</strong> 9) <strong>et</strong> les Characeae<br />

(sta<strong><strong>de</strong>s</strong> 8, 9, 1 <strong>et</strong> 2).<br />

Il est important <strong>de</strong> noter que les sta<strong><strong>de</strong>s</strong> 1 à 4 sont<br />

con<strong>de</strong>nsés, tandis que les suivants sont plus dispersés.<br />

Les premiers sta<strong><strong>de</strong>s</strong> ne m<strong>et</strong>tent que peu en évi<strong>de</strong>nce<br />

les différences entre stations, où dominent partout les<br />

Graminées à floraison estivalo-automnale, Panicum repens<br />

<strong>et</strong> Paspalum distichum. Durant les sta<strong><strong>de</strong>s</strong> suivants, la flore<br />

se diversifie (cf. typologie) <strong>et</strong> son analyse discrimine plus<br />

clairement les étapes <strong>de</strong> la succession <strong><strong>de</strong>s</strong> espèces.<br />

Structure spatiale : typologie <strong><strong>de</strong>s</strong> stations<br />

Les trois groupes (1, 2, 3) signalés ci-<strong><strong>de</strong>s</strong>sus ont été<br />

décrits par les phytosociologues comme appartenant à<br />

trois ordres différents (Braun-Blanqu<strong>et</strong> <strong>et</strong> al., 1951).<br />

Le groupe 1 à Juncus acutus, J. maritimus <strong>et</strong> Typha<br />

angustifolia, avec les nuances qui s’imposent pour le<br />

Sud méditerranéen <strong>et</strong> particulièrement la Numidie,<br />

formerait une association appartenant aux Junc<strong>et</strong>alia<br />

maritimi Br.-Bl. 1931 (Gehu, 1993) ; les groupements<br />

<strong>de</strong> c<strong>et</strong> ordre appartiendraient aux « prés salés »,<br />

selon ces auteurs, <strong>et</strong> seraient surtout constitués <strong>de</strong><br />

Glumiflores. Ce groupement à Juncus acutus <strong>et</strong><br />

J. maritimus a fait l’obj<strong>et</strong> <strong>de</strong> nombreux travaux, mais<br />

les Characeae ne sont pas incluses dans la définition<br />

<strong>de</strong> ce syntaxon. Pourtant, Feldmann (1946) a<br />

décrit un grand nombre <strong>de</strong> Characeae en Numidie :<br />

Tolypella mucronata, huit espèces <strong>de</strong> Nitella <strong>et</strong> cinq<br />

Chara, sur 35 espèces en Afrique du Nord, dont 28<br />

pour l’Algérie. Les Characeae rencontrées dans les<br />

mares étudiées appartiennent à divers milieux, dont<br />

certains plus ou moins saumâtres. Une actualisation<br />

<strong>de</strong> ces travaux semble donc indispensable <strong>et</strong> <strong>de</strong>vrait<br />

ouvrir à une i<strong>de</strong>ntification <strong><strong>de</strong>s</strong> Characeae récoltées.<br />

L’association entre plantes pérennes (hélophytes ou<br />

succulentes), <strong><strong>de</strong>s</strong> genres Arthrocnemum, Juncus <strong>et</strong><br />

Scirpus est connue <strong>et</strong> a fait l’obj<strong>et</strong> <strong>de</strong> travaux, comme<br />

ceux <strong>de</strong> l’équipe d’Espinar <strong>et</strong> al. (2002) sur la zonation<br />

<strong><strong>de</strong>s</strong> macrophytes submergées dans les marais salants<br />

méditerranéens.<br />

95<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

96<br />

Le groupe 2, souvent dénommé “prairies à Iso<strong>et</strong>es”, a<br />

particulièrement été étudié par Chevassut & Quézel<br />

(1956), Poirion & Barbero (1965), Aubert & Loisel<br />

(1971), Barbero (1965, 1967), Rhazi <strong>et</strong> al. (2004).<br />

La présence importante <strong>de</strong> formations tourbeuses<br />

dans la région est favorable à la formation <strong>de</strong> ces<br />

prairies humi<strong><strong>de</strong>s</strong> à très humi<strong><strong>de</strong>s</strong>. Souvent situées en<br />

interface entre les dunes <strong>et</strong> les plaines sublittorales,<br />

donc à biodiversité souvent très élevée, ce type <strong>de</strong><br />

formation appartiendrait à l’ordre Iso<strong>et</strong>alia. Br.-Bl.<br />

1931 (Gehu, 1993). De manière générale, les mares<br />

<strong>de</strong> Numidie comportant Iso<strong>et</strong>es velata (probablement,<br />

subsp. typica) sont situées dans <strong><strong>de</strong>s</strong> prairies mésophiles<br />

à Iso<strong>et</strong>es histrix ; la texture est sableuse avec <strong><strong>de</strong>s</strong> sables<br />

grossiers <strong>de</strong> dunes, <strong>et</strong> <strong><strong>de</strong>s</strong> sables fins ayant pour origine<br />

les grès <strong>et</strong> argiles dits <strong>de</strong> Numidie (Joleaud, 1936).<br />

Le groupement à Iso<strong>et</strong>es <strong>et</strong> Myriophyllum alterniflorum<br />

est, sans conteste, celui qui attire le plus notre attention sur<br />

le plan <strong>de</strong> la richesse spécifique, composition floristique<br />

<strong>et</strong> valeur patrimoniale en raison <strong><strong>de</strong>s</strong> espèces présentes,<br />

souvent rares ou appartenant à l’élément afrotropical.<br />

Médail <strong>et</strong> al. (1998) pour la France méditerranéenne,<br />

Quézel (1998) <strong>et</strong> Grillas <strong>et</strong> al. (2004) pour les pays<br />

méditerranéens m<strong>et</strong>tent en exergue ce groupement <strong>et</strong> les<br />

espèces qui le composent, y compris certaines Characeae,<br />

qui lui sont associées. Ainsi, Callitriche truncata,<br />

Ceratophyllum <strong>de</strong>mersum, Elatine alsinastrum, E. brochoni,<br />

Illecebrum verticillatum, Cicendia filiformis, Exaculum<br />

pusillum (non noté dans la liste <strong><strong>de</strong>s</strong> espèces, mais présent<br />

dans les stations Gauthier) sont considérées comme rares<br />

en Algérie, <strong>et</strong> spéciales à la Numidie. Trois espèces sont<br />

d’origine afrotropicale : Scirpus inclinatus, Utricularia<br />

exol<strong>et</strong>a <strong>et</strong> Wolffia arrhiza qui peut être envahissante. Une<br />

endémique algéro-tunisienne, Bellis repens, est largement<br />

présente dans ce groupement. D’autres espèces, connues<br />

sur tout le pourtour <strong>de</strong> la Méditerranée, appartiennent<br />

également à ce groupement, comme Apium crassipes<br />

ou Ranunculus sceleratus, considérées comme rares<br />

en Algérie. R. ophioglossifolius, Bal<strong>de</strong>llia ranunculoi<strong><strong>de</strong>s</strong><br />

ou Glyceria fluitans sont, elles, communes. Les mares<br />

temporaires, occupées par ce groupement, présentent la<br />

plus gran<strong>de</strong> richesse spécifique <strong>et</strong> elles <strong>de</strong>vraient avoir<br />

un statut prioritaire <strong>de</strong> protection. Or, la plupart d’entre<br />

elles sont convoitées en raison d’une autre richesse, celle<br />

<strong>de</strong> leur sol, dont la texture recèle un taux élevé <strong>de</strong> matière<br />

organique, favorable à certaines cultures (arachi<strong>de</strong>,<br />

notamment). Ce groupement avait fait l’obj<strong>et</strong> en Algérie<br />

<strong>de</strong> plusieurs étu<strong><strong>de</strong>s</strong>, citées plus haut, mais il n’avait pas<br />

été décrit pour la Numidie.<br />

Le groupe 3 à Scirpus maritimus dépendrait <strong>de</strong> l’ordre<br />

Phragmit<strong>et</strong>alia, <strong>et</strong> plus particulièrement <strong>de</strong> l’association<br />

Scirp<strong>et</strong>um maritimi compacti Dahl <strong>et</strong> Hadac 1941<br />

(Gehu, 1993). La notation <strong><strong>de</strong>s</strong> auteurs est éclairante :<br />

« l’association colonise les vases fines au bord <strong><strong>de</strong>s</strong> étangs <strong>et</strong><br />

<strong><strong>de</strong>s</strong> fleuves <strong>de</strong> la région côtière ; elle est faiblement halophile<br />

<strong>et</strong> supporte un <strong><strong>de</strong>s</strong>sèchement temporaire ».<br />

Ce groupement à Scirpus maritimus a été largement<br />

étudié, <strong>et</strong> l’espèce principale, qui occupe <strong>de</strong> gran<strong><strong>de</strong>s</strong> surfaces<br />

autour <strong>de</strong> la Méditerranée, a fait l’obj<strong>et</strong> <strong>de</strong> plusieurs<br />

investigations récentes. Ainsi, Charpentier <strong>et</strong> al. (2000)<br />

<strong>et</strong> Charpentier (2002) ont étudié les conséquences <strong>de</strong> la<br />

croissance clonale sur la dynamique <strong>et</strong> la structure spatiale<br />

<strong><strong>de</strong>s</strong> populations <strong>de</strong> ce scirpe. Il est connu comme<br />

étant un bioindicateur <strong>de</strong> l’alcalinité du sol, mais dans la<br />

région d’étu<strong>de</strong>, l’écologie <strong>de</strong> c<strong>et</strong>te unité nuancerait c<strong>et</strong>te<br />

affirmation (cf. annexes). Ce groupement comporte<br />

souvent <strong><strong>de</strong>s</strong> Characeae, qu’il possè<strong>de</strong> en commun avec le<br />

groupe précé<strong>de</strong>nt. Trois espèces liées à ce groupe – Oryza<br />

hexandra, Fuirena pubescens <strong>et</strong> Glinus lotoi<strong><strong>de</strong>s</strong> –appartiennent<br />

à l’élément tropical. La <strong>de</strong>rnière tapisse le fond <strong><strong>de</strong>s</strong><br />

mares <strong>et</strong> <strong><strong>de</strong>s</strong> marais, sinon <strong><strong>de</strong>s</strong> lacs durant toute la pério<strong>de</strong><br />

estivale.<br />

C<strong>et</strong>te première typologie mérite toutefois quelques<br />

compléments. En eff<strong>et</strong>, si les espèces les plus caractéristiques<br />

<strong>de</strong> ces mares sont souvent i<strong>de</strong>ntiques à celles<br />

<strong>de</strong> l’Europe méditerranéenne, d’autres sont particulières<br />

à l’Afrique du Nord, notamment à la Numidie. Elles<br />

forment ainsi <strong><strong>de</strong>s</strong> associations locales, étudiées par Gehu<br />

(1993) qui fait également un état <strong><strong>de</strong>s</strong> végétaux rares, sinon<br />

rarissimes <strong>de</strong> la région. L’élément le plus original est sans<br />

conteste la présence significative d’espèces d’origine biogéographique<br />

afrotropicale (8,8 % <strong><strong>de</strong>s</strong> végétaux recensés).<br />

Ce caractère n’avait pas échappé à Lefranc (1865) <strong>et</strong> il<br />

a aussi été signalé dans l’étu<strong>de</strong> générale concernant les<br />

zones humi<strong><strong>de</strong>s</strong> <strong>de</strong> la région d’El Kala par Stevenson <strong>et</strong> al.<br />

(1989). La présence <strong>de</strong> c<strong>et</strong> élément est plus importante<br />

dans les <strong>de</strong>ux groupes à Iso<strong>et</strong>es <strong>et</strong> Scirpus maritimus, avec<br />

Fuirena pubescens, Glinus lotoi<strong><strong>de</strong>s</strong>, Leersia (= Oryza) hexandra,<br />

Scirpus inclinatus, Utricularia exol<strong>et</strong>a <strong>et</strong> Wolffia arrhiza,<br />

toutes réputées rares au niveau national. Ainsi la Numidie,<br />

où ces taxons sont souvent signalés comme exclusifs <strong>de</strong><br />

c<strong>et</strong>te région, représente le siège <strong>de</strong> c<strong>et</strong>te « poche afrotropicale<br />

». Il faudrait y ajouter <strong>de</strong>ux espèces, très envahissantes<br />

<strong>et</strong> <strong>de</strong> même origine : Panicum repens <strong>et</strong> Paspalum distichum.<br />

C<strong>et</strong>te situation biogéographique suppose <strong><strong>de</strong>s</strong> conditions<br />

écologiques particulières à la Numidie, qui sont favorables<br />

au maintien <strong>et</strong> au développement <strong>de</strong> tels végétaux<br />

exigeants en température <strong>et</strong> humidité.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

L’originalité <strong>de</strong> <strong>de</strong>ux mares (déterminée par les axes 3<br />

<strong>et</strong> 4) mérite d’être soulignée. Vincent (2004) invite à<br />

prendre en compte c<strong>et</strong>te originalité, quand il indique<br />

que l’« on n’a plus ici une opposition entre le typique (ici une<br />

typologie à trois groupements) <strong>et</strong> le singulier (les <strong>de</strong>ux mares,<br />

l’une à Ruppia maritima, l’autre à Wolffia arrhiza), mais ce<br />

<strong>de</strong>rnier est présent comme l’obstacle qui perm<strong>et</strong> <strong>et</strong> exige que<br />

l’on dépasse la première généralisation ». Ces <strong>de</strong>ux mares<br />

posent <strong><strong>de</strong>s</strong> questionnements écologiques en raison <strong>de</strong><br />

leur composition floristique bien à part. En Numidie,<br />

aucune <strong>de</strong> nos investigations ne nous a permis <strong>de</strong> trouver<br />

une autre mare dominée ainsi par Ruppia maritima qui<br />

entre en concurrence avec les autres espèces végétales<br />

particulièrement pour la lumière. Simultanément, en<br />

oxygénant le milieu, elle favorise une multitu<strong>de</strong> <strong>de</strong> niches<br />

écologiques, occupées par <strong><strong>de</strong>s</strong> Amphibiens comme la<br />

Grenouille verte, par le phytoplancton <strong>et</strong> le zooplancton.<br />

Le groupement où intervient Wolffia arrhiza est plus<br />

fréquent ; il occupe non seulement la mare du lac Bleu,<br />

mais les rives <strong>de</strong> certains lacs ou étangs en Numidie,<br />

chaque fois que le milieu s’eutrophise (Samraoui & <strong>de</strong><br />

Bélair, 1997).<br />

CONCLUSION<br />

L’échantillonnage <strong>de</strong> 26 mares temporaires réalisé<br />

durant trois cycles (1998-2001) a permis d’inventorier<br />

136 espèces végétales en Numidie. L’ACP puis l’analyse<br />

inter-classes ont permis <strong>de</strong> séparer <strong>de</strong>ux eff<strong>et</strong>s : temporel<br />

<strong>et</strong> spatial. La succession <strong><strong>de</strong>s</strong> espèces (eff<strong>et</strong> temporel) m<strong>et</strong><br />

en évi<strong>de</strong>nce la séparation <strong>de</strong> l’année en <strong>de</strong>ux groupes, l’un<br />

dominé par Panicum repens en automne-été, l’autre par<br />

Ranunculus baudotii en hiver-printemps ; une partition<br />

dans ce <strong>de</strong>rnier groupe paraît plus aléatoire en raison<br />

<strong>de</strong> la structure habituelle « en écailles » <strong><strong>de</strong>s</strong> espèces. La<br />

typologie m<strong>et</strong> très n<strong>et</strong>tement en évi<strong>de</strong>nce trois groupes,<br />

caractérisés successivement par (i) Juncus maritimus,<br />

J. acutus <strong>et</strong> <strong><strong>de</strong>s</strong> Characeae, (ii) par Scirpus maritimus <strong>et</strong><br />

ses associés <strong>et</strong> enfin (iii) par Iso<strong>et</strong>es velata <strong>et</strong> Myriophyllum<br />

alterniflorum.<br />

Comme l’on dispose d’autres paramètres environnementaux<br />

caractéristiques du milieu, une analyse supplémentaire<br />

pourra être effectuée en croisant les tableaux<br />

floristique <strong>et</strong> mésologique afin d’établir le bien-fondé <strong>de</strong><br />

c<strong>et</strong>te typologie. L’analyse <strong>de</strong> co-inertie représente probablement<br />

l’instrument répondant le mieux à ce type <strong>de</strong><br />

manipulation (Thioulouse <strong>et</strong> al., 1996).<br />

L’ensemble <strong>de</strong> ces hydrosystèmes temporaires correspond<br />

à une large amplitu<strong>de</strong> du pH allant d’une alcalinité<br />

élevée à une acidité forte. Ces mares rassemblent une<br />

flore diversifiée, dont beaucoup d’espèces sont rares à<br />

très rares en Algérie ; elles sont partiellement d’origine<br />

tropicale (8 espèces), <strong>et</strong> majoritairement inféodées à la<br />

seule Numidie. C<strong>et</strong>te originalité confère donc aux mares<br />

temporaires <strong>de</strong> Numidie un intérêt patrimonial indéniable.<br />

Face à la vulnérabilité <strong>de</strong> ces mares, ces résultats<br />

<strong>de</strong>vraient inciter à la mise en place <strong>de</strong> rapi<strong><strong>de</strong>s</strong> mesures<br />

conservatoires afin <strong>de</strong> sauver ces fragiles écosystèmes<br />

d’une disparition sans doute inéluctable liée à l’anthropisation<br />

croissante du littoral algérien.<br />

REMERCIEMENTS<br />

L’auteur tient à remercier le Laboratoire <strong>de</strong> recherche<br />

sur les zones humi<strong><strong>de</strong>s</strong> d’Annaba <strong>et</strong> la Station biologique <strong>de</strong><br />

la tour du Valat pour les ai<strong><strong>de</strong>s</strong> appréciables apportées dans<br />

le cadre <strong>de</strong> c<strong>et</strong>te étu<strong>de</strong>. Merci également au Dr Frédéric<br />

Médail (IMEP-CNRS, Univ. Aix-Marseille III) pour ses<br />

remarques <strong>et</strong> suggestions.<br />

Bibliographie<br />

AUBERT G. & LOISEL R., 1971. Contribution à l’étu<strong>de</strong> <strong><strong>de</strong>s</strong> groupements<br />

<strong><strong>de</strong>s</strong> Iso<strong>et</strong>o-Nanojunc<strong>et</strong>ea <strong>et</strong> <strong><strong>de</strong>s</strong> Helianthem<strong>et</strong>ea annua<br />

dans le sud-est méditerranéen français. Ann. Univ. Provence,<br />

Marseille, 45 : 203-241.<br />

BARBERO M., 1965. Groupements hygrophiles <strong>de</strong> l’Iso<strong>et</strong>ion dans<br />

les Maures. Bull. Soc. Bot. Fr., 112 : 276-290.<br />

BARBERO M., 1967. L’Iso<strong>et</strong>ion <strong><strong>de</strong>s</strong> Maures. Groupements<br />

mésophiles – Étu<strong>de</strong> du milieu. Ann. Fac. Sci. Marseille, 39 :<br />

25-37.<br />

BRAUN-BLANQUET J., ROUSSINE N. & NÈGRE R., 1951. Les<br />

Groupements végétaux <strong>de</strong> la France méditerranéenne. CNRS,<br />

Paris, 297 p.<br />

BEFFY J.-L. & DOLÉDEC S., 1991. Mise en évi<strong>de</strong>nce d’une typologie<br />

spatiale dans le cas d’un fort eff<strong>et</strong> temporel : un exemple<br />

en hydrobiologie. Bull. Écol., 22 : 3-11.<br />

BORNETTE G., AMOROS C., CASTELLA C. & BEFFY J.-L., 1994.<br />

Succession and fluctuation in the aquatic veg<strong>et</strong>ation of two<br />

formers Rhône River channels. Veg<strong>et</strong>atio, 110 : 171-184.<br />

CHARPENTIER A., GRILLAS P. & T HOMPSON J.-D., 2000. The<br />

effect of population size limitation on fecundity in mosaic<br />

populations of the clonal macrophyte Scirpus maritimus<br />

(Cyperaceae). Am. J. Bot., 87 : 502-507.<br />

CHARPENTIER A., 2002. Consequences of clonal growth for plant<br />

mating. Evol. Ecol., 15: 521-530.<br />

CHEVASSUT G. & QUÉZEL P., 1956. Contribution à l’étu<strong>de</strong> <strong><strong>de</strong>s</strong><br />

groupements végétaux <strong>de</strong> mares temporaires à Iso<strong>et</strong>es velata<br />

97<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

98<br />

<strong>et</strong> <strong>de</strong> dépressions humi<strong><strong>de</strong>s</strong> à Iso<strong>et</strong>es hystrix en Afrique du<br />

Nord. Bull. Soc. Hist. Nat. Afrique du Nord, 47 : 59-73.<br />

DE BÉLAIR G. & BENCHEIKH-LEHOCINE M., 1987. Composition <strong>et</strong><br />

déterminisme <strong>de</strong> la végétation d’une plaine côtière marécageuse :<br />

la Mafragh (Annaba, Algérie). Bull. Écol., 18 : 393-407.<br />

DE BÉLAIR G., 2004. Statut spatio-temporel <strong>de</strong> 25 mares temporaires,<br />

cycle 2000-2001 (Numidie orientale, Algérie).<br />

Conférence internationale : Les mares temporaires méditerranéennes<br />

: <strong>de</strong> la connaissance à la gestion. Roquebrune-sur-<br />

Argens, communication : 6 p.<br />

DEGIORGI F. & GRANDMOTTET J.-P., 1993. Relations entre la<br />

topographie aquatique <strong>et</strong> l’organisation spatiale <strong>de</strong> l’ichtyofaune<br />

lacustre : définition <strong><strong>de</strong>s</strong> modalités spatiales d’une<br />

stratégie <strong>de</strong> prélèvements reproductibles. Bull. Fr. Pêche<br />

Pisciculture, 329 : 199-220.<br />

DEIL U., 2005. A review on habitats, plant traits and veg<strong>et</strong>ation<br />

of ephemeral w<strong>et</strong>lands – a global perspective. Phytocoenologia,<br />

35 : 533-705.<br />

DOLEDEC S. & CHESSEL D., 1987. Rythmes saisonniers <strong>et</strong> composantes<br />

stationnelles en milieu aquatique. I. Description<br />

d’un plan d’observation compl<strong>et</strong> par projection <strong>de</strong> variables.<br />

Acta Œcol., Œcol. Gen., 8 : 403-426.<br />

DOLEDEC S. & CHESSEL D., 1989. Rythmes saisonniers <strong>et</strong><br />

composantes stationnelles en milieu aquatique. II. Prise en<br />

compte <strong>et</strong> élimination d’eff<strong>et</strong>s dans un tableau faunistique.<br />

Acta Œcol., Œcol. Gen., 10 : 207-232.<br />

ESPINAR J.-L., GARCIA L.V., GARCIA MURILLO P. & TOJA J.,<br />

2002. Submerged macrophyte zonation in a Mediterranean<br />

salt marsh : a facilitation effect from established helophytes<br />

inquest. J. Veg. Sci., 13 : 831-840.<br />

FELDMANN G., 1946. Les Charophycées d’Afrique du Nord.<br />

Bull. Soc. Hist. Nat. Afrique du Nord, 37 : 64-118.<br />

GAERTNER J.-C., CHESSEL D. & BERTRAND J., 1998. Stability<br />

of spatial structures of <strong>de</strong>mersal assemblages : a multitable<br />

approach. Aquat. Living Resour., 11 : 75-85.<br />

GAUTHIER-LIÈVRE L., 1937. Recherches sur la flore <strong><strong>de</strong>s</strong> eaux<br />

continentales <strong>de</strong> l’Afrique du Nord. Bull. Soc. Hist. Nat.<br />

Afrique du Nord. Mém. hors série, Alger. 300 p.<br />

GEHU J.-M., KAABECHE M. & GHARZOULI R., 1993. Phytosociologie<br />

<strong>et</strong> typologie <strong><strong>de</strong>s</strong> habitats <strong><strong>de</strong>s</strong> rives <strong><strong>de</strong>s</strong> lacs <strong>de</strong><br />

la région d’El Kala (Algérie). Coll. Phytosociol. XXII.<br />

Syntaxonomie typologique <strong><strong>de</strong>s</strong> habitats. Bailleul, p. 297-331.<br />

GODRON M., 1967. Les groupes écologiques imbriqués en<br />

écailles. Œcol. Plant., 2 : 217-226.<br />

GRILLAS P., GAUTHIER P., YAVERCOSKI N. & PERENNOU C., 2004.<br />

Les mares temporaires méditerranéennes. Tour du Valat. Volume I<br />

– Enjeux <strong>de</strong> conservation, fonctionnement <strong>et</strong> gestion : 119 p. ;<br />

volume II – Fiches espèces : 128 p.<br />

JOLEAUD L., 1936. Étu<strong>de</strong> géologique <strong>de</strong> la région <strong>de</strong> Bône <strong>et</strong> <strong>de</strong><br />

La Calle. Bull. Serv. Carte géolog. Algérie. Imp. Typo-litho <strong>et</strong><br />

C ie , Alger, 2° série, n° 12, 185 p., 4 pl., 25 fig. <strong>et</strong> tab.<br />

LEFRANC E., 1865. La Calle. Topographie, botanique <strong>et</strong> climatologie.<br />

Bull. Soc. Bot. Fr., 12 : 415-431.<br />

MARRE A., 1992. Le Tell oriental algérien. De Collo à la frontière tunisienne.<br />

Étu<strong>de</strong> géomorphologique. OPU, Alger, 2 vol. : 624 p.<br />

MARTI C. & ESTEBAN A., 2001. Across The Waters-Newsl<strong>et</strong>ter.<br />

Posidonia. WWF Mediterranean Programme. 3 p.<br />

MÉDAIL F., MICHAUD H., MOLINA J., PARADIS G. & LOISEL R.,<br />

1998. Conservation <strong>de</strong> la flore <strong>et</strong> <strong>de</strong> la végétation <strong><strong>de</strong>s</strong> mares<br />

temporaires dulçaquicoles <strong>et</strong> oligotrophes <strong>de</strong> France méditerranéenne.<br />

Ecol. Medit., 24 : 119-134.<br />

MORGAN N.C., 1983. An ecological survey of standing waters<br />

in North West Africa : II. Site <strong><strong>de</strong>s</strong>criptions for Tunisia and<br />

Algeria. Biol. Conserv., 24 : 83-113.<br />

POIRION L. & BARBÉRO M., 1965. Groupements à Iso<strong>et</strong>es velata<br />

A. Braun (Iso<strong>et</strong>es variabilis Le Grand). Bull. Soc. Bot. Fr.,<br />

112 : 436-442.<br />

QUÉZEL P. & SANTA S., 1962-1963. Nouvelle Flore <strong>de</strong> l’Algérie <strong>et</strong><br />

<strong><strong>de</strong>s</strong> régions désertiques méridionales. CNRS. Paris. 1170 p.<br />

QUÉZEL P., 1978. Analysis of the flora of Mediterranean and<br />

Saharan Africa. Ann. Missouri Bot. Gard, 65 : 479-534.<br />

QUÉZEL P., 1998. La végétation <strong><strong>de</strong>s</strong> mares transitoires à Iso<strong>et</strong>es en<br />

région méditerranéenne, intérêt patrimonial <strong>et</strong> conservation.<br />

Ecol. Medit., 24 : 111-117.<br />

RHAZI L., GRILLAS P., M OUNIROU TOURÉ A. & TAN HAM L.,<br />

2001. Impact of land use and activities on water, sediment<br />

and veg<strong>et</strong>ation of temporary pools in Morocco. C.R. Acad.<br />

Sci. Paris. Série III, Sci. Vie, 324 : 165-177.<br />

RHAZI M., GRILLAS P., CHARPENTIER A. & MÉDAIL F., 2004.<br />

Experimental management of Mediterranean temporary<br />

pools for conservation of the rare quillwort Iso<strong>et</strong>es s<strong>et</strong>acea.<br />

Biol. Conserv., 118 : 675-684.<br />

SAMRAOUI B. & G. DE BÉLAIR, 1997. The Guerbes-Senhadja<br />

w<strong>et</strong>lands (N.E. Algeria). Part I : an overview. Écologie, 28,<br />

3 : 233-250.<br />

SAMRAOUI B. & G. DE BÉLAIR, 1998. Les Zones humi<strong><strong>de</strong>s</strong> <strong>de</strong> la<br />

Numidie orientale. Bilan <strong><strong>de</strong>s</strong> connaissances <strong>et</strong> perspectives <strong>de</strong><br />

gestion. Synthèse. Univ. Annaba, Algérie. 90 p.<br />

SELTZER P., 1946. Le Climat <strong>de</strong> l’Algérie. Univ. Alger., Alger,<br />

219 p.<br />

STEVENSON A.C., SKINNER J., HOLLIS G.E. & SMART M., 1988.<br />

The El Kala Park and environs, Algeria : An ecological evalutation.<br />

Env. Conserv, 15 : 335-348.<br />

THIOULOUSE J., D. CHESSEL, S. DOLEDEC & J.-M. OLIVIER,<br />

1996. ADE-4 : a multivariate analysis and graphical display<br />

software. Statistics and Computing, 7 : 75-83.<br />

VALDÈS B., REDJALI M., ACHHAL EL KADMIRI A., JURY J.-L. &<br />

MONTSERRAT J.-M., 2002. Catalogue <strong><strong>de</strong>s</strong> Plantes vasculaires<br />

du Nord du Maroc, incluant <strong><strong>de</strong>s</strong> clés d’i<strong>de</strong>ntification. CSIC,<br />

Madrid. Vol. I & II, 1 007 p.<br />

VINCENT H., 2004. Parler <strong><strong>de</strong>s</strong> animaux : une rhétorique furtive.<br />

Le Courrier <strong>de</strong> l’Environnement INRA, 51 : 55-60.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


DYNAMIQUE DE LA VÉGÉTATION DE MARES TEMPORAIRES EN AFRIQUE DU NORD (NUMIDIE ORIENTALE) ◆<br />

ANNEXES<br />

Paramètres floristiques <strong>et</strong> mésologiques<br />

<strong><strong>de</strong>s</strong> 26 mares temporaires étudiées<br />

D’ouest en est, les 26 mares temporaires décrites sont situées<br />

dans <strong><strong>de</strong>s</strong> environnements différents déterminés par <strong><strong>de</strong>s</strong> paramètres<br />

mésologiques <strong>et</strong> <strong><strong>de</strong>s</strong> formations végétales diverses. Ces mares ont<br />

été classées selon quatre unités géomorphologiques, <strong>et</strong> une brève<br />

<strong><strong>de</strong>s</strong>cription mésologique <strong>et</strong> floristique est fournie.<br />

1. Plaines sublittorales alluvionnaires<br />

* Boukamira (21) est une mare littorale sablo-argileuse, à<br />

proximité <strong>de</strong> la ville d’Annaba ; son pH est alcalin : 7.75. Elle sert<br />

<strong>de</strong> dépotoir <strong>et</strong> d’exutoire pour les eaux usées, mais ce n’est pas, du<br />

moins actuellement, un obstacle à l’expression d’une biodiversité<br />

floristique élevée. Elle fait partie d’un complexe <strong>de</strong> mares du même<br />

type, naturelles ou artificielles. Elle est entourée d’une prairie à<br />

Trifolium campestre, Melilotus infestus <strong>et</strong> M. siculus, Lolium rigidum,<br />

Hor<strong>de</strong>um marinum, Crypsis alopecuroi<strong><strong>de</strong>s</strong>, Medicago intertexta,<br />

Ricinus communis <strong>et</strong> <strong>de</strong> quelques espèces rares, comme Heliotropium<br />

curassavicum, Scirpus littoralis (origine biogéographique : paléosubtropicale)<br />

ou Rumex algeriensis (endémique).<br />

* Salines (22) fait partie d’un ensemble, aujourd’hui<br />

abandonné, <strong>de</strong> bassins <strong>de</strong> décantation pour la production <strong>de</strong> sel ; elle<br />

est également en position littorale, sans contact direct avec la mer.<br />

La dominante est argileuse (56 %). Elle comporte une formation à<br />

Hor<strong>de</strong>um marinum <strong>et</strong> Lolium rigidum, accompagnés <strong>de</strong> Puccinellia<br />

distans, Melilotus infestus, Medicago intertexta <strong>et</strong> Rumex algeriensis ;<br />

c<strong>et</strong>te mare se caractérisée par un milieu alcalin (pH = 8.15) <strong>et</strong> un<br />

grand nombre d’espèces messicoles en raison <strong>de</strong> la présence tout<br />

autour <strong>de</strong> terres cultivées.<br />

* Mares d’El-Feïd (1 à 4). Elles sont situées sur les rives<br />

sud-ouest du marais <strong>de</strong> la M’krada ou plaine <strong>de</strong> la Mafragh<br />

(<strong>de</strong> Bélair & Bencheikh-Lehocine, 1987) ; elles ont été creusées<br />

pour l’abreuvement du bétail dans une prairie d’une gran<strong>de</strong><br />

richesse spécifique (ainsi, un transect effectué sur 150 m avait<br />

mis en évi<strong>de</strong>nce près <strong>de</strong> 150 taxons). Citons Glinus lotoi<strong><strong>de</strong>s</strong> qui<br />

se développe dans les mares asséchées en été, Dactylis glomerata,<br />

Gaudinia fragilis, Myosotis sicula, Hor<strong>de</strong>um bulbosum, Sonchus asper,<br />

Stachys arvensis, Medicago intertexta, Aspho<strong>de</strong>lus aestivus, Hypochoeris<br />

radicata, Festuca elatior <strong>et</strong> Phalaris arundinacea, ces <strong>de</strong>ux <strong>de</strong>rnières<br />

souvent dominantes au printemps. La dominante texturale est<br />

argilo-limoneuse, sauf pour Feïd 1 à texture équilibrée. Malgré la<br />

proximité d’un marais relativement alcalin, les pH sont aci<strong><strong>de</strong>s</strong> (<strong>de</strong> 4<br />

à 5). Deux Orchidées sont disséminées dans c<strong>et</strong>te prairie : Serapias<br />

strictiflora <strong>et</strong> S. parviflora.<br />

* Frênes (5) est localisé dans la ripisylve à Ulmus campestris <strong>et</strong><br />

Populus alba <strong>de</strong> l’oued El Kébir-Est. La zone où s’est développée<br />

c<strong>et</strong>te mare a été plantée <strong>de</strong> Fraxinus angustifolia. Sa texture<br />

est principalement argileuse (45.3 %) ; son environnement est<br />

constitué par une formation à Aspho<strong>de</strong>lus aestivus, Urginea maritima,<br />

Hypochoeris radicata, Ranunculus bulbosus, Plantago lanceolata,<br />

Medicago littoralis <strong>et</strong> Ormenis mixta.<br />

2. Plaines sublittorales colluvionnaires<br />

* Messida (6) présente une texture sablo-argileuse (sable : 40 %<br />

<strong>et</strong> argile : 34 %) ; située en aval <strong>de</strong> collines gréseuses <strong>et</strong> à proximité<br />

<strong>de</strong> l’oued Messida, son pH est très aci<strong>de</strong> (4.80). Proche <strong>de</strong> terres<br />

cultivées, Medicago sp., Melilotus sp. <strong>et</strong> Trifolium sp. abon<strong>de</strong>nt avec<br />

quelques graminées.<br />

* Les mares Gauthier (7 à 10). Leur dominante texturale<br />

est plutôt sableuse pour les mares 7 <strong>et</strong> 8 (21 % d’argile, 18 % <strong>de</strong><br />

limon <strong>et</strong> 36 % <strong>de</strong> sable), n<strong>et</strong>tement plus argileuse (38 %) pour les<br />

mares 9 <strong>et</strong> 10. Leur pH est également aci<strong>de</strong> (<strong>de</strong> 4.80 à 5.60). Des<br />

bosqu<strong>et</strong>s <strong>de</strong> Quercus suber, Pistacia lentiscus <strong>et</strong> Myrtus communis<br />

sont dispersés dans une prairie humi<strong>de</strong>, jalonnée <strong>de</strong> mares aux<br />

dimensions variables (<strong>de</strong> quelques ares à plusieurs hectares). La<br />

formation est dominée, en <strong>de</strong>hors <strong><strong>de</strong>s</strong> vestiges d’une subéraie, par<br />

Aspho<strong>de</strong>lus aestivus, Hypochoeris radicata, Eryngium barrelieri <strong>et</strong>,<br />

au gré <strong><strong>de</strong>s</strong> saisons, par Bellis annua, Triglochin laxiflora, Leucojum<br />

autumnale, Romulea bulbocodium, Briza maxima <strong>et</strong> Radiola linoi<strong><strong>de</strong>s</strong>.<br />

* Butomes (26). Elle occupe une dépression étalée en longueur,<br />

rapi<strong>de</strong>ment inondée lors <strong><strong>de</strong>s</strong> crues <strong>de</strong> l’oued El Kébir-Est. Située<br />

au nord-est du marais du Mkrada, elle présente une végétation<br />

similaire. Sa texture est dominée par les argiles (61.3 %). Son<br />

caractère remarquable rési<strong>de</strong> dans une population d’extension<br />

variable <strong>de</strong> Butomus umbellatus ; c<strong>et</strong>te espèce, considérée en Algérie<br />

comme très rare (Quézel & Santa, 1962), a été signalée aux environs<br />

d’Alger (Maison-Carrée = El Harrach ?) <strong>et</strong> surtout en Numidie (5<br />

stations ont été repérées entre Skikda <strong>et</strong> El Kala). Scirpus littoralis est<br />

également présente avec Dipsacus sylvestris <strong>et</strong> Verbena officinalis.<br />

3. Massif dunaire<br />

* El Frin (24) appartient à un ensemble, souvent très fugace, <strong>de</strong><br />

mares mises en eau sur les rives du lac Oubeïra, favorisées par une<br />

série <strong>de</strong> micro-reliefs <strong>et</strong> <strong>de</strong> micro-dépressions. La totalité <strong>de</strong> c<strong>et</strong>te<br />

prairie humi<strong>de</strong>, plus ou moins tourbeuse à l’origine, est désormais<br />

cultivée <strong>de</strong>puis les années 1990 (arachi<strong>de</strong>, principalement) ; la<br />

végétation s’est rapi<strong>de</strong>ment banalisée, la tourbe s’étant minéralisée.<br />

Peu d’espèces ont le temps <strong>de</strong> se développer du fait <strong>de</strong> la brève<br />

hydropério<strong>de</strong> (3 mois en moyenne) <strong>et</strong> elles sont rapi<strong>de</strong>ment<br />

remplacées par un tapis d’Ormenis mixta. Signalons que les fossés<br />

proches sont favorables à certaines Orchidées, comme Serapias<br />

stenop<strong>et</strong>ala ou Ophrys bombyliflora.<br />

* La mare Ruppia (23) est adossée en pleine dune aux rochers<br />

maritimes dans une dépression. Sa texture est évi<strong>de</strong>mment dominée<br />

par les sables (95 %) avec un pH alcalin (7.45). Ceci explique la<br />

présence massive <strong>de</strong> Ruppia maritima, seule mare repérée avec ce<br />

taxon. Tamarix gallica (T. africana ?) l’entoure presque totalement en<br />

ceinture, suivie d’une ceinture externe <strong>de</strong> Phillyrea latifolia, Myrtus<br />

communis <strong>et</strong> Quercus coccifera. Le sol est légèrement tourbeux, mais<br />

fortement dégradé par le piétinement <strong>et</strong> le pâturage du bétail.<br />

99<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 83-100


◆ G. DE BÉLAIR<br />

100<br />

* Mare Lac Bleu (25). Temporairement alimentée par une<br />

source se déversant sur le lac, elle est située à mi-pente <strong>et</strong> sert à<br />

abreuver le bétail <strong>et</strong>, éventuellement à irriguer les terres, toutes<br />

cultivées, sur le pourtour. La texture est composée à près <strong>de</strong> 93 %<br />

<strong>de</strong> sable, mais l’accumulation <strong>de</strong> matière organique (une p<strong>et</strong>ite<br />

aulnaie s’est développée en aval) crée un milieu plus ou moins<br />

tourbeux riche en azote (C/N = 5.08). Ces conditions mésologiques<br />

sont à l’origine du développement <strong><strong>de</strong>s</strong> Utricularia. L’anthropisation<br />

(tendance à l’eutrophie) se traduit par le fort développement <strong>de</strong><br />

Wolffia arrhiza <strong>et</strong> <strong>de</strong> Nasturtium officinale.<br />

* Gérard (12) se situe en aval du cordon littoral septentrional,<br />

s’étalant d’est en ouest entre Annaba <strong>et</strong> le Djebel Koursi. Le sable<br />

domine (62 %), l’argile ne représentant que 22 % <strong>de</strong> la fraction<br />

texturale. Adossée à ce cordon, l’accumulation <strong>de</strong> la végétation<br />

<strong>et</strong> donc <strong>de</strong> la matière organique favorise la formation <strong>de</strong> tourbe.<br />

En situation d’interface entre dunes <strong>et</strong> plaines sublittorales, elle<br />

présente une très gran<strong>de</strong> biodiversité, où domine la magnocariçaie<br />

(Carex elata, C. acutiformis, Cladium mariscus, <strong>et</strong>c.), ainsi que Salix<br />

atrocinerea, Erica scoparia, Alliaria officinalis, Oxalis corniculata,<br />

Brassica <strong>de</strong>cumbens <strong>et</strong> les rares Anagallis crassifolia <strong>et</strong> Radiola<br />

linoi<strong><strong>de</strong>s</strong>.<br />

* Iso<strong>et</strong>es (13) <strong>et</strong> Berrihane école (14) sont en situation <strong>de</strong><br />

prairie humi<strong>de</strong> tourbeuse, à texture sableuse (76 % <strong>de</strong> sable) sur<br />

dune <strong>et</strong> à pH aci<strong>de</strong> (5.6). Le plus souvent mises en culture (arachi<strong>de</strong><br />

principalement), ces mares sont très vulnérables <strong>et</strong> d’une très gran<strong>de</strong><br />

richesse spécifique, y compris en espèces patrimoniales avec la<br />

présence <strong>de</strong> plusieurs taxons en voie <strong>de</strong> disparition. Prédominent<br />

les Iso<strong>et</strong>es, Isolepis s<strong>et</strong>acea, Imperata cylindrica <strong>et</strong> Serapias strictiflora.<br />

Les quelques haies basses qui jalonnent ces prairies rassemblent<br />

les reliques <strong>de</strong> forêts humi<strong><strong>de</strong>s</strong> sur tourbes (aulnaies), avec Erica<br />

scoparia, Pteridium aquilinum, Myrtus communis, Salix atrocinerea,<br />

Carex sp., <strong>et</strong>c.<br />

* Berrihane Sud (15) se trouve à la sortie ouest du village <strong>de</strong><br />

même nom. C’est une station à dominante sableuse (91 % <strong>de</strong> sable)<br />

<strong>et</strong> à pH aci<strong>de</strong> (6.05). Dépression largement entourée d’Eucalyptus<br />

sp., ayant servi <strong>de</strong> déversoir à un élevage <strong>de</strong> poul<strong>et</strong>s, la réserve <strong>de</strong><br />

graines <strong>et</strong> fruits <strong>de</strong>meure suffisante pour exprimer une certaine<br />

richesse spécifique certaines années. La présence <strong>de</strong> tourbe, malgré<br />

sa mise en culture saisonnière, est favorable à c<strong>et</strong>te expression. Elle<br />

subit périodiquement les inondations <strong>de</strong> l’oued El Kébir-Est, ce qui<br />

explique son caractère mixte : formations à Iso<strong>et</strong>es velata (dunes) <strong>et</strong><br />

à Scirpus maritimus (plaines sublittorales).<br />

* Hrib Nord (16) est une ancienne carrière <strong>de</strong> sable, <strong>et</strong> c<strong>et</strong>te<br />

mare est périodiquement connectée à la précé<strong>de</strong>nte, située en aval.<br />

Sa texture sableuse est du même ordre que la précé<strong>de</strong>nte (92 %)<br />

avec un pH très aci<strong>de</strong> (4.20). Souvent asséchée <strong>et</strong> cultivée, c<strong>et</strong>te<br />

mare exprime certaines années une très gran<strong>de</strong> biodiversité, y<br />

compris certaines Orchidées. Aux espèces, citées dans l’analyse,<br />

s’ajoutent quelques espèces banales, comme Euphorbia helioscopia,<br />

Linaria pinnifolia ou Senecio leucanthemifolius.<br />

* Tamaris (17) appartenait à un ensemble assez proche <strong>de</strong><br />

celui du groupement à Iso<strong>et</strong>es, témoin le nombre d’individus<br />

d’Iso<strong>et</strong>es velata présents à proximité ; c<strong>et</strong> ensemble, très marqué par<br />

la mise en culture, était naguère occupé par <strong><strong>de</strong>s</strong> bosqu<strong>et</strong>s <strong>de</strong> Quercus<br />

suber. La fraction sableuse est élevée (84 %). Comme la plupart<br />

<strong>de</strong> ces hydrosytèmes dunaires, elle est riche en matière organique,<br />

donc avec une dominante <strong>de</strong> l’azote (C/N = 5.89). La frondaison<br />

d’un individu <strong>de</strong> Quercus suber centenaire recouvre partiellement<br />

ce site. Imperata cylindrica, Arundo donax, Hypericum humifusum,<br />

Aster squamatus, Inula graveolens, Bellis annua, Alliaria officinalis <strong>et</strong><br />

Chenopodium album sont fréquents autour <strong>de</strong> c<strong>et</strong>te mare.<br />

* Carrière (18) a été utilisée pour l’extraction du sable, <strong>et</strong><br />

elle perm<strong>et</strong> l’abreuvement <strong><strong>de</strong>s</strong> troupeaux <strong>et</strong> l’irrigation <strong><strong>de</strong>s</strong> terres<br />

cultivées environnantes. Elle est parfois alimentée par une source,<br />

issue <strong>de</strong> la nappe dunaire. Sableuse à 93 %, son pH est aci<strong>de</strong> (5.95).<br />

Elle est la seule où ont été trouvés Damasonium alisma <strong>et</strong>, avec les<br />

Salines, Zanichellia palustris subsp. pedunculata (sous-espèce à<br />

confirmer, étant donné les conditions écologiques très différentes<br />

<strong><strong>de</strong>s</strong> Salines).<br />

* Mafragh (19) fait partie d’un complexe <strong>de</strong> mares, favorisé<br />

par l’altitu<strong>de</strong> faible (à peine 2 m au-<strong><strong>de</strong>s</strong>sus du niveau <strong>de</strong> la mer).<br />

Au nord-ouest du marais du Mkrada <strong>et</strong> à proximité <strong>de</strong> l’exutoire<br />

<strong>de</strong> 3 oueds (oued Mafragh), un certain nombre <strong>de</strong> diaspores sont<br />

véhiculées par les inondations hivernales avec <strong><strong>de</strong>s</strong> pénétrations<br />

maritimes possibles ce qui favorise une relative richesse spécifique.<br />

Sa texture est dominée par l’argile à 93 % avec un pH alcalin <strong>de</strong> 8.35.<br />

Entièrement entourée naguère par la cocciféraie, ce sont désormais<br />

les Joncs qui dominent dans c<strong>et</strong>te plaine basse aux nombreuses<br />

p<strong>et</strong>ites dépressions inondables. Le développement <strong><strong>de</strong>s</strong> Characeae<br />

s’avère remarquable <strong>et</strong> ces taxons peuvent occuper la totalité <strong>de</strong> la<br />

strate végétale immergée.<br />

* Sangliers (20) est une dépression située en interface entre les<br />

dunes <strong>et</strong> la plaine sublittorale. Sa texture <strong>et</strong> son pH sont presque<br />

i<strong>de</strong>ntiques à ceux <strong>de</strong> la Mafragh. Cependant, à la différence <strong>de</strong> la<br />

précé<strong>de</strong>nte, elle est largement entourée <strong>de</strong> végétation, y compris<br />

arbustive, puisqu’une cocciféraie la domine sur trois côtés. Elle<br />

a subi plusieurs incendies, probablement pour perm<strong>et</strong>tre la<br />

repousse <strong>de</strong> graminées palatables. Les Characeae s’y développent<br />

régulièrement, tapissant le fond du site.<br />

Ces <strong>de</strong>ux stations ont un statut particulier par rapport aux autres<br />

mares dunaires. Elles appartiennent à la partie basse <strong>de</strong> la plaine<br />

<strong>de</strong> la Mafragh, proche <strong>de</strong> la mer, à une altitu<strong>de</strong> très faible (entre 2<br />

<strong>et</strong> 3 m au-<strong><strong>de</strong>s</strong>sus du niveau <strong>de</strong> la mer) <strong>et</strong> elles présentent donc un<br />

pH alcalin.<br />

4. Collines gréseuses<br />

* Fedjouj (11) est une mare artificielle, utilisée dans les années<br />

1990 comme carrière <strong>de</strong> tout-venant. Localisée au creux <strong>de</strong> collines<br />

gréseuses (aval du djebel Koursi), sa texture est sablo-argileuse<br />

(57 % <strong>de</strong> sable <strong>et</strong> 20 % d’argile). Le cortège floristique environnant<br />

est celui <strong><strong>de</strong>s</strong> subéraies, accompagné d’Inula viscosa <strong>et</strong> I. graveolens.<br />

En l’espace <strong>de</strong> 10 années, c<strong>et</strong>te mare, très pauvre en espèces, s’est<br />

considérablement enrichie, y compris en espèces rares, comme<br />

Eleocharis multicaulis ou Fuirena pubescens <strong>et</strong> même en Characeae.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


Faits <strong>de</strong> conservation en Méditerranée<br />

Mediterranean Conservation News<br />

Assessing favourable and unfavourable areas<br />

for Bonelli’s Eagle in Spain<br />

and its conservation implications<br />

To know and un<strong>de</strong>rstand where and why species occur is crucial<br />

to manage biodiversity, and a necessary precursor for schemes<br />

to mitigate population <strong>de</strong>cline. The <strong>de</strong>velopment of relatively<br />

simple species distribution mo<strong>de</strong>ls is particularly interesting in the<br />

case of endangered species. Bonelli’s Eagle, Hieraa<strong>et</strong>us fasciatus<br />

(Vieillot, 1822), is a wi<strong><strong>de</strong>s</strong>pread raptor whose Western Palaearctic<br />

populations are distributed mainly in the Mediterranean area.<br />

In recent <strong>de</strong>ca<strong><strong>de</strong>s</strong> this species has suffered a severe population<br />

<strong>de</strong>cline, and has been listed as an endangered European species.<br />

In Spain, which with 650-713 breeding pairs supports about 70 %<br />

of the European population, local extinction rates ranging from<br />

32.1 % to 48.6 % have been reported, and the species has recently<br />

changed its status from Vulnerable to Endangered (IUCN categories).<br />

The main reported causes of the <strong>de</strong>cline are direct persecution,<br />

and electrocution by and collision with electric power<br />

lines. At present, European (Council Directive 79/409/EEC)<br />

and Spanish (Real Decr<strong>et</strong>o 439/1990) legislation inclu<strong><strong>de</strong>s</strong> it as a<br />

priority targ<strong>et</strong> species for special conservation measures.<br />

Investigation on the factors that affect Bonelli’s eagle has been<br />

mostly based on local-scale ecological studies. However, Bonelli’s<br />

eagle populations are not only affected by local habitat characteristics,<br />

but also by environmental, and human-related processes<br />

that act on larger geographical scales. Consequently, broad-scale<br />

distribution mo<strong>de</strong>ls may help conservation programs to attain<br />

more satisfactory results, as the factors that affect the populations<br />

on a larger scale are taken into account.<br />

We predicted the potential distribution of Bonelli’s Eagle in<br />

Spain, performing a stepwise logistic regression, using 29 in<strong>de</strong>pen<strong>de</strong>nt<br />

variables related to spatial situation, topography, climate,<br />

lithology, and human activity, and the presence/absence data on<br />

the UTM 10x10-km squares as geographic units. We also classified<br />

each UTM 10x10-km square into three categories (favourable,<br />

unfavourable and of intermediate favourability) <strong>de</strong>pending<br />

on the favourability values yiel<strong>de</strong>d by the mo<strong>de</strong>l.<br />

Mean slope, temperature of July and precipitation were found<br />

to correctly predict more than 76 % of Bonelli’s Eagle presences<br />

and absences in Spain. Although the species presence is more<br />

likely as the distance to highways and to big cities increases, the<br />

human activity plays a secondary role in Bonelli’s Eagle distribution<br />

at the consi<strong>de</strong>red scale. The fragmented spatial structure of<br />

the favourable areas in our distribution mo<strong>de</strong>l suggests the exis-<br />

tence of a m<strong>et</strong>apopulation dynamics, superimposed to the sourcesink<br />

dynamics implicated in the distribution of the species.<br />

From January 1997 to June 2006 Bonelli’s Eagle has benefited<br />

from LIFE projects an amount of nearly 8 millions (http:<br />

//europa.eu.int/comm/environment/life/home.htm), co-financed<br />

by the European Union (68.7 % of the budg<strong>et</strong>) and the Spanish<br />

Government. These projects are generally focused on those areas<br />

where a huge <strong>de</strong>cline has been recor<strong>de</strong>d, in the limit of its range,<br />

whereas southern and south-eastern populations remain apparently<br />

stable. We propose to pay attention also to southern favourable<br />

areas, where the auspicious status of the species could be<br />

<strong>de</strong>ceptive, since an increase in the percentage of pairs with at least<br />

one non-adult has been d<strong>et</strong>ected. The conditions of southern and<br />

more favourable areas could also explain the <strong>de</strong>cline of northern<br />

populations if they fail in exporting enough emigrants. So, those<br />

actions <strong>de</strong>veloped in unfavourable areas, favoured through LIFE<br />

projects, should be complemented with actions in favourable<br />

areas, which might favour population persistence in unfavourable<br />

areas through dispersal processes.<br />

A. ROMÁN MUÑOZ<br />

DEPARTAMENTO DE BIOLOGÍA ANIMAL, FACULTAD DE CIENCIAS,<br />

UNIVERSIDAD DE MÁLAGA, E-29071 MÁLAGA, SPAIN.<br />

E-MAIL: roman@uma.es<br />

For more information, read:<br />

Muñoz, A. R.; Real, R.; Barbosa, A. M. & Vargas, J. M., 2005. Mo<strong>de</strong>lling<br />

the distribution of Bonelli’s Eagle in Spain: Implications for conservation<br />

planning. Diversity and Distribution, vol. 11: 477-486.<br />

What is required for pond turtles to survive?<br />

More than just a pond<br />

The European pond turtle, Emys orbicularis, is a species having<br />

strong conservation concern. It has <strong>de</strong>clined in all the European<br />

countries were it lives: actually, in many areas it is very rare. The<br />

European Union founds actions for the protection of this species<br />

and for the management of habitats. It is clear that prior to start a<br />

management plan, the causes of the <strong>de</strong>cline of a species should be<br />

addressed, to optimise the available founding and to increase the<br />

possibility of success. To date, most of actions for the protection<br />

of the “pond” turtle Emys orbicularis have focused on the conservation<br />

of w<strong>et</strong>lands. However, in the last years several studies,<br />

mainly in North America, outlined the importance of terrestrial<br />

101<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 101-105


◆ FAITS DE CONSERVATION EN MÉDITERRANÉE / MEDITERRANEAN CONSERVATION NEWS<br />

102<br />

habitat for freshwater turtles, and suggested that a more broad<br />

scale approach should be more appropriate for their protection.<br />

Therefore, we evaluated the importance of terrestrial habitat for<br />

the European pond turtle, by measuring turtle presence and<br />

abundance in a large number of w<strong>et</strong>lands in the Po River Delta,<br />

a large protected w<strong>et</strong>land system in Northern Italy.<br />

Despite some of the w<strong>et</strong>land features were important for<br />

this turtle (for example, E. orbicularis prefers permanent, large<br />

w<strong>et</strong>lands), we did not find a relationship b<strong>et</strong>ween water features<br />

and turtle distribution: we frequently observed E. orbicularis also<br />

in w<strong>et</strong>lands having very eutrophic water. Surprisingly, we found<br />

that the composition of landscape surrounding a w<strong>et</strong>land was<br />

apparently more important than the w<strong>et</strong>land features: turtles were<br />

more frequent and more abundant in w<strong>et</strong>lands surroun<strong>de</strong>d by<br />

woodlands. This result suggests that the management of habitats<br />

surrounding the w<strong>et</strong>lands is very important for this species; however,<br />

too often the management of semi aquatic species focused<br />

only in the aquatic component of their habitat.<br />

It should not be forgotten that vital activities for these animals,<br />

such as nesting, can occur far from the w<strong>et</strong>lands: for example,<br />

females has been observed laying their eggs thousand of m<strong>et</strong>ers<br />

far from their pond. Emys orbicularis is a long-lived animal. It<br />

can survive for <strong>de</strong>ca<strong><strong>de</strong>s</strong> in areas having the minimal requirements<br />

for the survival of adults. Som<strong>et</strong>imes, in the human dominated<br />

lowlands of Mediterranean Europe, it is possible to observe<br />

E. orbicularis adults in ponds compl<strong>et</strong>ely surroun<strong>de</strong>d by crops<br />

and human s<strong>et</strong>tlements. However, if the surrounding habitat is<br />

not suitable for reproduction and it does not allow among-pond<br />

movements, the fate of these isolated individuals is doomed. A<br />

large scale, landscape ecology approach is required for the protection<br />

of this endangered turtle. Unfortunately, the landscape of<br />

Mediterranean Europe, where E. orbicularis was once abundant, is<br />

now dominated by human activities: the protection of this species<br />

is therefore a challenge for conservationists and land managers.<br />

GENTILE FRANCESCO FICETOLA<br />

DIPARTIMENTO DI BIOLOGIA, UNIVERSITÀ DEGLI STUDI DI MILANO. V.<br />

CELORIA 26, 20133 MILANO ITALY.<br />

E-MAIL: francesco.fic<strong>et</strong>ola@unimi.it<br />

For more information, read:<br />

Fic<strong>et</strong>ola, G.F., Padoa-Schioppa, E., Monti, A., Massa, R., De Bernardi, F.<br />

& L. Bottoni 2004. The importance of aquatic and terrestrial habitat for<br />

the European pond turtle (Emys orbicularis): implications for conservation<br />

planning and management. Can. J. Zool. 82, 1704-1712.<br />

Butterflies and plants highlight traditional<br />

hay meadows as one of the most valuable and endangered<br />

habitats on the Spanish Mediterranean coast<br />

Situated in north-east of Catalonia, the Aiguamolls <strong>de</strong> l’Empordà<br />

Natural Park is one of the most outstanding w<strong>et</strong>land areas<br />

in the Iberian Peninsula and, in<strong>de</strong>ed, in the whole Mediterranean<br />

basin. Traditionally highly regar<strong>de</strong>d for its birdwatching potential,<br />

it was <strong>de</strong>clared a Natural Park in 1983 and then as a Ramsar Site<br />

as a W<strong>et</strong>land of International Importance. The initial impression<br />

gained of this protected area is one of a vast marshland; however,<br />

a closer examination reveals a mosaic of different habitats all<br />

Fig. 1. 3 males of the butterfly<br />

Plebejus argus, one of the most<br />

typical species inhabiting the<br />

« closes » and <strong>de</strong>clining (photo<br />

Marta Miralles).<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


FAITS DE CONSERVATION EN MÉDITERRANÉE / MEDITERRANEAN CONSERVATION NEWS ◆<br />

Fig. 2. A typical « closa » in<br />

the study area (photo Marta<br />

Miralles).<br />

103<br />

associated with a myriad of differing environmental conditions.<br />

Recently, botanists have un<strong>de</strong>rtaken systematic surveys aimed at<br />

i<strong>de</strong>ntifying which habitats are the most interesting in terms of<br />

their conservation value. Their results have revealed the exceptional<br />

importance of the so-called closes, the meadows enclosed<br />

by tree-lined drainage canals that flood in winter and are cut for<br />

hay once or twice during the year. These traditional hay meadows<br />

harbour the most diverse veg<strong>et</strong>ation and also the region’s rarest<br />

taxa. However, the closes are at risk because they are no longer<br />

profitable and are being converted into arable fields or being<br />

abandoned and inva<strong>de</strong>d by shrubs and scrub. The frequent lack<br />

of agreement in cross-taxonomic patterns of species richness and<br />

rarity at the fine geographical scale consi<strong>de</strong>red here encouraged us<br />

to assess the value of the closes through an in<strong>de</strong>pen<strong>de</strong>nt data s<strong>et</strong>.<br />

In particular, we used data from butterflies, an excellent indicator<br />

taxa whose populations have been monitored over the last 15<br />

years as part of the Catalan Butterfly Monitoring Scheme. Our<br />

analyses showed a strong link b<strong>et</strong>ween the various habitat types<br />

and the composition of butterfly assemblages and, once again,<br />

pointed to the closes as the most interesting habitat in the Natural<br />

Park: they hold more butterflies and a ten<strong>de</strong>ncy to boast rarer<br />

species. The coinci<strong>de</strong>nce in species richness and rarity patterns<br />

across two groups of taxa encompassing two different trophic<br />

levels, tog<strong>et</strong>her with the incredibe speed at which the closes are<br />

vanishing, highlight the necessity of placing these traditional<br />

hay meadows firmly at the top of the agenda of Spanish and<br />

European conservation bodies. It has been estimated that 80 % of<br />

the closes have been lost over the last 50 years and – even more<br />

incredibly – that at least 60 % have disappeared since the area<br />

became legally protected in 1983. In fact, they are paradigmatic<br />

of a common problem faced by most Mediterranean protected<br />

areas: a lack of effective financial support that is leading eventually<br />

to the loss of unprofitable traditionally man-managed habitats. We<br />

believe that the future of the closes and other grassland habitats<br />

supporting an exceptionally rich wildlife in the Mediterranean<br />

basin will ultimately <strong>de</strong>pend on the existence of agri-environmental<br />

schemes sponsored by the governments of individual<br />

countries and/or by projects <strong>de</strong>veloped at a broa<strong>de</strong>r level within<br />

the European Union.<br />

For more information, read:<br />

CONSTANTÍ STEFANESCU<br />

BUTTERFLY MONITORING SCHEME<br />

MUSEU DE GRANOLLERS CIÈNCIES NATURALS<br />

FRANCESC MACIÀ, 51, 08400 GRANOLLERS, SPAIN<br />

E-MAIL: canliro@teleline.es<br />

Stefanescu, C., Peñuelas, J. & Filella, I. 2005. Butterflies highlight the conservation<br />

value of hay meadows highly threatened by land-use changes in a<br />

protected Mediterranean area. Biol. Conserv., 126: 234-246.<br />

Prey d<strong>et</strong>ectability, more than prey <strong>de</strong>nsity,<br />

affects di<strong>et</strong> composition of Bonelli´s eagle<br />

Hieraa<strong>et</strong>us fasciatus: conservation implications<br />

Food availability in one of the most important factors influencing<br />

the quality of raptor habitats, which is d<strong>et</strong>ermined not only<br />

by prey <strong>de</strong>nsity, but also by the accessibility to prey by predators.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 101-105


◆ FAITS DE CONSERVATION EN MÉDITERRANÉE / MEDITERRANEAN CONSERVATION NEWS<br />

104<br />

In the di<strong>et</strong> of raptors the presence of prey species is influenced<br />

by several factors, such as their abundance and the ground-level<br />

veg<strong>et</strong>ation in territories.<br />

We analysed this situation for the Bonelli´s eagle (Hieraa<strong>et</strong>us<br />

fasciatus) in south-eastern Spain, a largely mountainous region with<br />

typical Mediterranean veg<strong>et</strong>ation and a healthy population of the<br />

Bonelli´s eagle. First, we performed a di<strong>et</strong>ary analysis of the whole<br />

population, which indicated that Oryctolagus cuniculus (29.1 %) and<br />

Alectoris rufa (28.8 %) were the main prey of the eagle, followed by<br />

Columba palumbus (13.3 %) and Columba livia (8.0 %). Second,<br />

we tested for the minimum number of prey items for the reliability<br />

of results, finding b<strong>et</strong>ween 15 and 30 prey items, <strong>de</strong>pending on the<br />

pair. Third, we checked for differences in prey frequency and productivity<br />

among pairs, discovering strong differences in both traits,<br />

but we failed to find any relationship b<strong>et</strong>ween the frequency of the<br />

main preys in the di<strong>et</strong> and productivity (mean productivity of the<br />

pairs, 1.4 nestling/year). Fourth, we found that only the percentage<br />

of European wild rabbit in di<strong>et</strong> was correlated with its abundance in<br />

territories (r = 0.81; P = 0.01) although, the percentage of rabbits<br />

in the di<strong>et</strong> was b<strong>et</strong>ter correlated with the amount of open land in<br />

the territories (r = 0.87; P = 0.005). Thus, the percentage of open<br />

land within the territories was the single variable, selected by a<br />

multiple-regression analysis, that explained the frequency of rabbits<br />

in the raptor’s di<strong>et</strong> (F 2,5 = 14.64, R 2 = 0.85; P < 0.008); the same<br />

was true for the stepwise forward (F 2,5 = 14.64, R 2 = 0.85; P <<br />

0.008) and backward multiple-regression analysis (F 1,6 = 16.67, R 2<br />

= 0.74; P < 0.006). These results suggest that accessibility of this<br />

prey type would be more important than absolute abundance for<br />

the Bonelli’s eagle. This would be important for the management<br />

of some Bonelli´s eagle populations, since prey accessibility (<strong>de</strong>pending<br />

on ground-level veg<strong>et</strong>ation) is d<strong>et</strong>erminant for the capture of<br />

rabbits, its main prey species in Spain. As expected for a raptor that<br />

relies on few and prominent prey species, the presence of rabbits in<br />

the di<strong>et</strong> influenced other prey frequencies. We found negative and<br />

significant relationships b<strong>et</strong>ween the presence of rabbits versus red<br />

legged partridge (r = -0.81; P = 0.01) and versus wood pigeons<br />

(r = -0.89; P = 0.003) in di<strong>et</strong>. Birds as prey appear to complement<br />

the di<strong>et</strong> when open-land scarcity in the territories implies low rabbit<br />

d<strong>et</strong>ectability and consumption.<br />

The results for southern and healthy populations (uncommon<br />

circumstance in this species), indicate the importance of alternative<br />

preys (partridges and pigeons) in some territories with low open-land<br />

surface area; for northern and more threatened populations, these<br />

results suggest the importance of a<strong>de</strong>quate habitat management.<br />

Conservation measures proposed concerning the increase of prey<br />

availability in areas with <strong>de</strong>clining populations should consi<strong>de</strong>r both<br />

the absolute prey <strong>de</strong>nsity and prey d<strong>et</strong>ectability, favouring a veg<strong>et</strong>ation<br />

structure a<strong>de</strong>quate for prey d<strong>et</strong>ection and hunting success of the<br />

eagle and avoiding extensive reforestation in those territories.<br />

Scientifically-based management solves conflict<br />

b<strong>et</strong>ween European storm p<strong>et</strong>rels and their facultative<br />

predator at minimum cost<br />

Large gulls are commnonly perceived as pest species by environmental<br />

managers owing to their facultative predatory habits<br />

on smaller bird species (e.g. Finney <strong>et</strong> al., 2003). Once predation<br />

is d<strong>et</strong>ected, conservation actions typically involve indicriminated<br />

gull culling in the absence of any proof of negative influence of<br />

predation on the growth rate of prey populations. Here we report<br />

on a successful management plan based on the results of an ad hoc<br />

research program carried out in a small western Mediterranean<br />

island (i.e. the island of Benidorm) holding both a storm p<strong>et</strong>rel<br />

and a yellow-legged gull colony of about 500 breeding pairs<br />

each.<br />

First, based on the long-term monitoring of the storm p<strong>et</strong>rel<br />

colony, the effects of predation on the population dynamics of the<br />

tubenose birds were explored through capture-recapture analysis<br />

(Oro <strong>et</strong> al., 2005). Before management actions, 122 and 124 birds<br />

were killed by gulls in 2002 and 2003 respectively. Results showed<br />

that as much as 10 % of the birds killed by gulls were breeding<br />

adults and that predation was in<strong>de</strong>ed an additive cause of mortality<br />

of adult birds. This was the case starting since the year of<br />

operation of a powerful public lighting installed along the nearby<br />

touristic coastline that ma<strong>de</strong> it easier for gulls to predate on p<strong>et</strong>rels<br />

at night. Hence, management actions had to be applied urgently,<br />

consi<strong>de</strong>ring that reductions in adult survival of long-lived birds<br />

have the largest influence on their population growth rates (e.g.<br />

Sa<strong>et</strong>her <strong>et</strong> al., 1996).<br />

DIEGO ONTIVEROS, JUAN M. PLEGUEZUELOS AND JESÚS CARO<br />

ADDRESS: DEPARTAMENTO DE BIOLOGÍA ANIMAL<br />

Y ECOLOGÍA, FACULTAD DE CIENCIAS,<br />

UNIVERSIDAD DE GRANADA, GRANADA E-18071.<br />

E-MAIL: dontive@ugr.es<br />

Fig. 1. A breeding storm p<strong>et</strong>rel.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


FAITS DE CONSERVATION EN MÉDITERRANÉE / MEDITERRANEAN CONSERVATION NEWS ◆<br />

Secondly, gulls were monitored as to individuals containing<br />

storm p<strong>et</strong>rels in their di<strong>et</strong> among the whole local population.<br />

Results showed unequivocally that only a small number of gulls<br />

were responsible of most predation, more especifically those whose<br />

nests were located close to the entrance of the two caves where<br />

most storm p<strong>et</strong>rels breed (Mínguez <strong>et</strong> al., 2005). Management<br />

actions were therefore addressed to removing only those predator<br />

pairs, leaving the bulk of gulls untouched. By means of<br />

nest traps 11 gulls were removed in 2004 and 18 in 2005. The<br />

removal of these individuals led to a surprising reduction in the<br />

number of gull pell<strong>et</strong>s found insi<strong>de</strong> storm p<strong>et</strong>rel colonies and<br />

along a transect b<strong>et</strong>ween them in 2004 and 2005 (51 and 75 %<br />

respectively), compared to the situation before gull removal (Sanz<br />

<strong>et</strong> al., in prep.). A number of years iares still necessary to quantify<br />

more precisely the <strong>de</strong>crease in predation on adult survival using<br />

capture-recapture mo<strong>de</strong>lling, but results show unquestionably the<br />

success of the control.<br />

Management actions should probably be implemented on<br />

an annual basis since the niche of gulls facultatively predating<br />

on storm-p<strong>et</strong>rels seems to be readily occupied by other gulls,<br />

provi<strong>de</strong>d that due changes in public lighting are not performed<br />

in the future. Although the implementation of these tasks is both<br />

time and resource consuming, its costs are neglegible compared<br />

to the traditional solution of performing massive gull cullings<br />

when faced with similar conflicts, not to mention social costs.<br />

This small-scale case study clearly illustrates the tremendous<br />

potential of scientifically-based wildlife management in terms<br />

of resource optimization and successful achievement of <strong><strong>de</strong>s</strong>ired<br />

conservation goals.<br />

Literature cited:<br />

Finney S.K., Harris M.P., Keller L.F., Elston D.A., Monaghan P. &<br />

Wanless S., 2003. Reducing the <strong>de</strong>nsity of breeding gulls influences the<br />

pattern of recruitment of immature Atlantic puffins Fratercula arctica<br />

to a breeding colony. Journal of Applied Ecology, 40: 545-552<br />

Mínguez, E., Sanz, A., <strong>de</strong> León, A. & Junza, M., 2005. No todas las gaviotas<br />

comen paíños. Quercus 228: 81.<br />

Oro, D., De León, A., Minguez, E., & Furness, R.W., 2005. Estimating<br />

predation on breeding European Storm-p<strong>et</strong>rels by yellow-legged gulls.<br />

Journal of Zoology 265: 421-429.<br />

Sa<strong>et</strong>her B.E., Ringsby T.H. & Roskaft E., 1996. Life history variation,<br />

population processes and priorities in species conservation: Towards<br />

a reunion of research paradigms. Oikos 77: 217-226<br />

ALEX DANI, ANA SANZ 1 , EDUARDO MÍNGUEZ 1 , LLANOS DE LEÓN 2 ,<br />

ALEJANDRO MARTÍNEZ-ABRAÍN 3 , BLANCA SARZO 4 ,<br />

ELENA VILLUENDAS 4 , JOSÉ SANTAMARÍA 4 AND DANIEL ORO 3<br />

1. UNIVERSIDAD MIGUEL HERNÁNDEZ<br />

2. UNIVERSITY OF GLASGOW<br />

3. IMEDEA (CSIC-UIB)<br />

4. CONSELLERIA DE TERRITORI I HABITAGE<br />

CORRESPONDING AUTHOR :<br />

DR. ALEJANDRO MARTÍNEZ ABRAÍN, POPULATION ECOLOGY GROUP<br />

IMEDEA (CSIC-UIB), AVDA. DE LOS PINARES 106,<br />

46012 EL SALER, VALENCIA (SPAIN)<br />

E-MAIL: a.abrain@uib.es<br />

http://www.ime<strong>de</strong>a.uib.es/natural/goi/seabirds<br />

105<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 101-105


Analyses d’ouvrages<br />

Atlas of climatic diagrams<br />

for the isoclimatic <strong>mediterranea</strong>n zones<br />

H.N. Le Houérou<br />

220 p., (2004) ISBN : 2-9523965-0-7<br />

Prix 35,5 euros + frais d’envoi. Disponible chez l’auteur,<br />

327 rue A.-L. <strong>de</strong> Jussieu, F-34090, Montpellier.<br />

hn.le-houerou@club-intern<strong>et</strong>.fr<br />

C<strong>et</strong> atlas comprend 1 560 diagrammes <strong>de</strong> 1 320 stations climatiques<br />

<strong>de</strong> 60 pays ayant totalement ou partiellement <strong><strong>de</strong>s</strong> climats<br />

méditerranéens, c’est-à-dire à pluies d’hiver <strong>et</strong> sècheresse estivale,<br />

tel le bassin méditerranéen. Ces types <strong>de</strong> climats sont répartis sur<br />

tous les continents, sauf l’Antarctique, entre les latitu<strong><strong>de</strong>s</strong> <strong>de</strong> 25 <strong>et</strong><br />

46°N <strong>et</strong> S. Ils représentent une superficie <strong>de</strong> quelque 15 millions<br />

<strong>de</strong> km 2 , c’est-à-dire un peu plus <strong>de</strong> 11 % <strong><strong>de</strong>s</strong> masses continentales<br />

<strong>de</strong> la planète. L’atlas comprend 220 pages, dont 170 sont <strong><strong>de</strong>s</strong><br />

planches <strong>de</strong> graphiques ombrothermiques <strong>et</strong> ombrodiapnéiques<br />

(ETP). Les graphiques sont groupés par ordre alphabétique <strong>de</strong><br />

pays <strong>et</strong> <strong>de</strong> station, ce qui facilite la consultation. L’atlas comprend<br />

aussi une classification bioclimatique fondée sur <strong>de</strong>ux critères<br />

principaux : un indice d’aridité (P/ETo) : le quotient <strong>de</strong> la pluviosité<br />

moyenne annuelle par l’évapotranspiration potentielle <strong>de</strong><br />

référence. Le second critère (m) est la moyenne <strong><strong>de</strong>s</strong> températures<br />

minimales journalières du mois le plus froid. C<strong>et</strong>te classification<br />

est donnée à la fois dans un graphique orthogonal <strong>et</strong> un tableau ;<br />

elle comprend 155 stations en provenance <strong>de</strong> 50 pays. Des explications<br />

sur la construction <strong><strong>de</strong>s</strong> diagrammes, leur interprétation, la<br />

liste <strong>et</strong> les superficies <strong><strong>de</strong>s</strong> zones à climat méditerranéen occupent<br />

19 pages, la bibliographie comprend 136 titres, <strong>et</strong> un in<strong>de</strong>x <strong>de</strong> 28<br />

pages complète le volume.<br />

Les diagrammes ombrothermiques montrent la marche mensuelle<br />

<strong><strong>de</strong>s</strong> précipitations, <strong>de</strong> la température <strong>et</strong> <strong>de</strong> l’évapotranspiration<br />

potentielle ; ils perm<strong>et</strong>tent ainsi d’évaluer la longueur <strong>et</strong><br />

l’intensité <strong><strong>de</strong>s</strong> saisons sèche <strong>et</strong> pluvieuse, la durée <strong>et</strong> la sévérité <strong><strong>de</strong>s</strong><br />

pério<strong><strong>de</strong>s</strong> <strong>de</strong> repos hivernal <strong><strong>de</strong>s</strong> plantes du aux basses températures.<br />

Il existe plusieurs types <strong>de</strong> diagrammes. Le modèle le plus simple<br />

est celui proposé par Bagnouls <strong>et</strong> Gaussen en 1953, popularisé<br />

par le Klimadiagramm Weltatlas <strong>de</strong> Walter <strong>et</strong> Li<strong>et</strong>h, publié en 1960,<br />

mais épuisé <strong>de</strong>puis <strong><strong>de</strong>s</strong> décennies. Ce modèle a été utilisé par <strong><strong>de</strong>s</strong><br />

milliers <strong>de</strong> chercheurs <strong>et</strong> techniciens <strong>de</strong> diverses disciplines dans<br />

diverses parties du mon<strong>de</strong> <strong>de</strong>puis 50 ans, pour la classification<br />

<strong><strong>de</strong>s</strong> climats. D’autres modèles utilisent en outre l’évapotranspiration<br />

potentielle <strong>de</strong> référence, ce qui perm<strong>et</strong> d’établir <strong><strong>de</strong>s</strong> bilans<br />

hydriques climatiques. Ces <strong>de</strong>rniers types <strong>de</strong> diagrammes sont au<br />

nombre <strong>de</strong> 350 ; ils sont originaux ou résultent <strong><strong>de</strong>s</strong> publications<br />

antérieures <strong>de</strong> l’auteur. Beaucoup ont été construits à partir <strong>de</strong><br />

la base <strong>de</strong> données CLINO, publiée par l’OMM en 1996. Des<br />

comparaisons zonales <strong>et</strong> continentales sont proposées pour <strong><strong>de</strong>s</strong><br />

zones ayant <strong><strong>de</strong>s</strong> diagrammes particulièrement semblables tels que<br />

ceux <strong>de</strong> la Californie <strong>et</strong> du Chili, <strong>de</strong> la Californie <strong>et</strong> du bassin<br />

méditerranéen ou du Great Basin, <strong>de</strong> la région irano-touranienne,<br />

<strong>de</strong> l’Asie moyenne <strong>et</strong> <strong>de</strong> la Patagonie argentine. Des comparaisons<br />

sont aussi offertes avec d’autres types <strong>de</strong> classifications, telles celles<br />

basées sur l’altitu<strong>de</strong>, en honneur dans certains pays du bassin<br />

méditerranéen. Des zones marginalement méditerranéennes,<br />

telles le sud <strong>de</strong> la Crimée <strong>et</strong> certaines zones <strong><strong>de</strong>s</strong> Balkans, sont<br />

incluses dans l’atlas. De même, certaines vallées à climat méditerranéen<br />

<strong>de</strong> l’Hindoukouch <strong>et</strong> du SW <strong>de</strong> l’Himalaya ainsi que la<br />

limite entre les climats méditerranéens <strong>et</strong> tropicaux dans le souscontinent<br />

indien. Une <strong><strong>de</strong>s</strong> originalités <strong>de</strong> c<strong>et</strong> atlas est la place faite<br />

à la région irano-touranienne qui s’étend <strong>de</strong> la rive orientale <strong>de</strong> la<br />

Méditerranée jusqu’à la frontière occi<strong>de</strong>ntale <strong>de</strong> la Chine sur le<br />

méridien 76°E, où le régime à précipitations hivernales <strong>de</strong> l’Asie<br />

moyenne cè<strong>de</strong> brusquement la place à un régime à pluies d’été<br />

(régime <strong>de</strong> mousson) qui caractérise le Xinjiang <strong>et</strong> la Mongolie.<br />

C<strong>et</strong> atlas peut être considéré comme un outil <strong>de</strong> référence<br />

utile pour les géographes, les biogéographes, les écologues, les<br />

forestiers, les pastoralistes <strong>et</strong> les agronomes, c’est-à-dire tous ceux<br />

pour qui la caractérisation bioclimatique est une nécessité.<br />

The isoclimatic <strong>mediterranea</strong>n biomes:<br />

Bioclimatology, diversity<br />

and phytogeography<br />

H.N. Le Houérou<br />

765 p., (2005) ISBN : 2-9523965-1-5<br />

Prix 65 euro + frais d’envoi. Disponible chez l’auteur,<br />

327 rue A.-L. <strong>de</strong> Jussieu, F-34090, Montpellier.<br />

hn.le-houerou@club-intern<strong>et</strong>.fr<br />

Il s’agit d’un ouvrage <strong>de</strong> 765 pages en <strong>de</strong>ux volumes. Le<br />

premier volume (365 p.) contient le texte, une liste <strong>de</strong> références<br />

<strong>de</strong> 1 600 titres <strong>et</strong> les remerciements. Le second volume (400 p.)<br />

contient les annexes, dont 103 tableaux hors-texte, 118 figures,<br />

un glossaire <strong>de</strong> 1 900 termes <strong>et</strong> un in<strong>de</strong>x <strong>de</strong> 650 entrées.<br />

C<strong>et</strong> ouvrage fait partie d’une trilogie dont les <strong>de</strong>ux autres<br />

termes sont publiés par ailleurs :<br />

— Atlas <strong><strong>de</strong>s</strong> diagrammes climatiques <strong><strong>de</strong>s</strong> stations <strong>de</strong> la zone isoclimatique<br />

méditerranéenne, 220 p., 1 560 graphiques <strong>de</strong> 60 pays.<br />

107<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 107-110


◆ ANALYSES D’OUVRAGES<br />

108<br />

— Atlas <strong>de</strong> la répartition <strong>de</strong> 250 espèces clés dans le bassin méditerranéen.<br />

150 p., 300 cartes <strong>et</strong> schémas. Disponible fin 2005 au<br />

CIHEAM-IAMZ. Saragosse.<br />

Les biomes se définissent comme les gran<strong><strong>de</strong>s</strong> zones continentales<br />

<strong>de</strong> milieux naturels : la Toundra, la Taïga, la Forêt tempérée,<br />

la Prairie, la Steppe, la Forêt tropicale, la Savane, la Forêt pluviale<br />

équatoriale <strong>et</strong> les Déserts. Ces biomes se caractérisent par un<br />

climat défini, une flore, une végétation, une faune, <strong><strong>de</strong>s</strong> sols, une<br />

géomorphologie, <strong><strong>de</strong>s</strong> cultures, un mo<strong>de</strong> d’habitat <strong>et</strong> d’exploitation<br />

<strong><strong>de</strong>s</strong> terres, <strong>et</strong>c. La zone isoclimatique méditerranéenne se<br />

définit comme l’ensemble <strong><strong>de</strong>s</strong> régions recevant <strong><strong>de</strong>s</strong> précipitations<br />

hivernales <strong>et</strong> subissant une sécheresse plus ou moins prononcée<br />

l’été. Elles possè<strong>de</strong>nt une végétation sclérophylle dans les zones<br />

semi-ari<strong><strong>de</strong>s</strong> à hyper-humi<strong><strong>de</strong>s</strong>, steppique dans les zones ari<strong><strong>de</strong>s</strong>, <strong>et</strong><br />

contractée dans les zones hyper-ari<strong><strong>de</strong>s</strong> ou désertiques. Les difficultés<br />

surgissent lorsqu’il faut déci<strong>de</strong>r <strong>de</strong> l’abondance relative <strong><strong>de</strong>s</strong><br />

précipitations hivernales <strong>et</strong> <strong>de</strong> l’absence partielle (ou totale) <strong><strong>de</strong>s</strong><br />

précipitations estivales pour qu’une zone déterminée puisse être<br />

qualifiée <strong>de</strong> méditerranéenne. Pour ce faire, l’auteur définit <strong>de</strong>ux<br />

indices objectifs <strong>de</strong> « méditerranéité » IM 1 <strong>et</strong> IM 2 . IM 1 est le<br />

rapport entre les précipitations du trimestre hivernal <strong>et</strong> celles du<br />

trimestre estival (IM 1 = PTH / PTE). IM 2 <strong>et</strong> le quotient <strong><strong>de</strong>s</strong><br />

précipitations du semestre hivernal (à jours courts) à celles du<br />

semestre estival (à jours longs) (IM 2 = PSH / PSE). On peut<br />

aussi invoquer, ce qui revient au même, le % <strong><strong>de</strong>s</strong> précipitations du<br />

trimestre hivernal dans le total annuel : par définition, les pluies<br />

du trimestre hivernal sont supérieures à 25 % du total annuel<br />

<strong>et</strong> les pluies semestrielles d’hiver à plus <strong>de</strong> 50 % <strong><strong>de</strong>s</strong> chutes<br />

annuelles. Par approximations successives <strong>et</strong> en se fondant sur la<br />

nature <strong>et</strong> la répartition <strong>de</strong> la flore, <strong>de</strong> la végétation, <strong>de</strong> la faune,<br />

<strong><strong>de</strong>s</strong> systèmes d’élevage <strong>et</strong> <strong><strong>de</strong>s</strong> cultures, l’auteur est arrivé à la<br />

conclusion suivante : pour qu’une zone puisse être qualifiée <strong>de</strong><br />

méditerranéenne il faut que IM 1 > 2,0 ; il peut atteindre l’infini<br />

lorsque le total <strong><strong>de</strong>s</strong> pluies du trimestre estival est nul, comme c’est<br />

souvent le cas <strong>de</strong> basses terres <strong>de</strong> la Méditerrannée orientale <strong>et</strong><br />

du Proche-Orient, ainsi qualifiées d’« hyper-méditerranéennes ».<br />

L’IM 2 doit dépasser 1,5. Le critère <strong>de</strong> température hivernale,<br />

utilisé par certains auteurs, n’entre pas en ligne <strong>de</strong> compte à ce<br />

niveau, mais plus en avant dans les critères <strong>de</strong> classification. Les<br />

cas litigieux sont résolus par l’examen détaillé <strong>de</strong> la végétation<br />

naturelle <strong>et</strong> <strong><strong>de</strong>s</strong> cultures, mais il reste, bien entendu, <strong><strong>de</strong>s</strong> zones<br />

<strong>de</strong> transition appelées sub-méditerranéennes (exemples : les<br />

Causses, les Alpes maritimes, les Apennins, la partie orientale <strong>de</strong><br />

la chaîne <strong><strong>de</strong>s</strong> Pyrénées). Les spécialistes peuvent ainsi constater<br />

que l’auteur s’est largement inspiré à la fois <strong><strong>de</strong>s</strong> concepts <strong>de</strong> ses<br />

maîtres Emberger <strong>et</strong> Gaussen, en les adaptant aux connaissances<br />

mo<strong>de</strong>rnes, sur l’ETP, par exemple. Ainsi définies, les régions<br />

méditerranéennes couvrent près <strong>de</strong> 15 millions <strong>de</strong> km 2 (30 fois la<br />

France) <strong>et</strong> représentent près <strong>de</strong> 12 % <strong><strong>de</strong>s</strong> terres émergées dans 60<br />

pays ou États partiellement ou totalement méditerranéens (16 %<br />

<strong>de</strong> la superficie nationale en France).<br />

Exemples : les 20 pays adjacents à la Méditerranée <strong>et</strong> le Portugal<br />

(avec les îles Insulo-Atlantiques orientales ou macaronésiennes),<br />

l’Asie moyenne (1/3 sud du Kazakhstan, Kirghizistan,<br />

Ouzbekistan, Tadjikistan, Turkménistan), le Proche-Orient<br />

(Turquie, Syrie, Israël, Palestine, Jordanie), Moyen-Orient (Irak,<br />

Iran, Afghanistan, Pakistan à l’ouest <strong>de</strong> l’Indus), les 2/3 NE <strong>de</strong> la<br />

Péninsule arabique, toute l’Afrique du Nord, la partie sud-ouest <strong>de</strong><br />

l’Afrique du Sud, le long <strong>de</strong> l’Atlantique, les îles Canaries, Madère<br />

<strong>et</strong> les Açores, la Californie, une gran<strong>de</strong> partie <strong>de</strong> l’Orégon, <strong>de</strong> l’état<br />

<strong>de</strong> Washington, <strong>de</strong> l’Idaho, du Nevada, la moitié ouest <strong>de</strong> l’Utah<br />

(tout l’ouest du Great Basin), l’extrémité sud-ouest <strong>de</strong> l’Arizona,<br />

la basse Californie du Nord (France), le coin SO <strong>de</strong> la Colombie<br />

Britannique (Vancouver), le Chili central entre les 25° <strong>et</strong> 35° <strong>de</strong><br />

latitu<strong>de</strong> sud, une gran<strong>de</strong> partie <strong>de</strong> la Patagonie argentine <strong>et</strong> les<br />

piedmonts orientaux <strong><strong>de</strong>s</strong> An<strong><strong>de</strong>s</strong> entre les 30° <strong>et</strong> 45° parallèles sud.<br />

Presque toute l’Australie du Sud, 1/4 sud-ouest <strong><strong>de</strong>s</strong> Nouvelles Galles<br />

du Sud <strong>et</strong> la moitié occi<strong>de</strong>ntale <strong>de</strong> Victoria <strong>et</strong> 1/3 SO <strong>de</strong> l’Australie<br />

<strong>de</strong> l’Ouest. On a ainsi montré la gran<strong>de</strong> similitu<strong>de</strong> bioclimatique<br />

entre la partie ouest du Great Basin, la région Aralo-Caspienne <strong>et</strong><br />

la Patagonie, confirmée, si besoin était, par <strong><strong>de</strong>s</strong> introductions <strong>de</strong><br />

plantes réussies <strong>et</strong> réciproques <strong>et</strong> par l’invasion d’espèces iranotouraniennes<br />

dans le Great Basin. Divers aspects <strong><strong>de</strong>s</strong> climats<br />

méditerranéens sont étudiés en détail montant <strong>et</strong> saisonnalité <strong><strong>de</strong>s</strong><br />

précipitations annuelles, évolution à long terme <strong><strong>de</strong>s</strong> précipitations<br />

annuelles, variabilité annuelle (inversement proportionnelle à la<br />

hauteur, mais variable dans une large proportion d’une région<br />

à l’autre). Les climats méditerranéens présentent <strong>de</strong>ux critères<br />

essentiels pour la vie <strong>et</strong> la répartition <strong><strong>de</strong>s</strong> plantes <strong>et</strong> <strong><strong>de</strong>s</strong> animaux :<br />

le bilan entre l’offre <strong>et</strong> la <strong>de</strong>man<strong>de</strong> d’eau (indice d’aridité) <strong>et</strong> le<br />

stress thermique représenté par le froid hivernal (ou son absence).<br />

Le premier se mesure par le rapport entre les précipitations <strong>et</strong><br />

l’évapotranspiration potentielle (évaluée par lysimètre ou calculée<br />

au moyen <strong>de</strong> l’équation <strong>de</strong> Penman, (P/ETPp) <strong>et</strong> le second par la<br />

moyenne <strong><strong>de</strong>s</strong> températures minimales journalières du mois le plus<br />

froid (janvier dans l’hémisphère Nord, juill<strong>et</strong> dans l’hémisphère<br />

Sud). Les précipitations n’offrent aucune tendance évolutive à long<br />

terme au cours <strong><strong>de</strong>s</strong> 170 ans pour lesquels <strong><strong>de</strong>s</strong> mesures existent.<br />

Mais il existe <strong><strong>de</strong>s</strong> tendances positives <strong>et</strong> négatives à moyen terme<br />

(25-50 ans). La température planétaire à long terme a augmenté<br />

d’environ 0,5 °C en 100 ans ; elle est probablement <strong>de</strong> moins <strong>de</strong> la<br />

moitié <strong>de</strong> ce chiffre pour les latitu<strong><strong>de</strong>s</strong> méditerranéennes (25°-45° N<br />

<strong>et</strong> S), ce qui correspond à l’augmentation <strong>de</strong> température attribuée<br />

à l’urbanisation, mais elle est beaucoup plus élevée au-<strong>de</strong>là <strong><strong>de</strong>s</strong><br />

latitu<strong><strong>de</strong>s</strong> <strong>de</strong> 45° (<strong>de</strong> 1 à 1,5 °C entre 50° <strong>et</strong> 60° <strong>de</strong> latitu<strong>de</strong> N <strong>et</strong> S).<br />

De fait, aucune évolution à long terme <strong>de</strong> la température n’a encore<br />

pu être mise en évi<strong>de</strong>nce sous les latitu<strong><strong>de</strong>s</strong> méditerranéennes quel<br />

que soit le continent considéré, ce qui n’implique pas qu’elle ne le<br />

soient dans un avenir prévisible.<br />

L’indice d’aridité (P/ETPp) perm<strong>et</strong> <strong>de</strong> distinguer 7 zones<br />

méditerranéennes principales en fonction <strong>de</strong> l’aridité, selon la<br />

terminologie d’Emberger, reprise dans la carte mondiale <strong><strong>de</strong>s</strong><br />

zones ari<strong><strong>de</strong>s</strong> <strong>de</strong> l’Unesco :<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


ANALYSES D’OUVRAGES ◆<br />

— hyperhumi<strong>de</strong> (P > ETPp),<br />

— humi<strong>de</strong> (ETPp > P > 0,70 ETPp) ,<br />

— sub-humi<strong>de</strong> (0,70 ETPp > P > 0,45 ETPp),<br />

— semi-ari<strong>de</strong> (0,45 ETPp > P > 0,28 ETPp),<br />

— ari<strong>de</strong> (0,28 ETPp > P > 0,07 ETPp),<br />

— hyper-ari<strong>de</strong> (0, 07 ETPp > P > 0,03 ETPp)<br />

—<strong>et</strong> érémitique (0,03 ETPp > P),<br />

Les limites entre ces zones sont déterminées empiriquement<br />

par la répartition <strong>de</strong> la végétation naturelle, <strong><strong>de</strong>s</strong> cultures <strong>et</strong> <strong><strong>de</strong>s</strong><br />

systèmes <strong>de</strong> production agricole <strong>et</strong> d’élevage <strong>et</strong> la géomorphologie,<br />

comme le préconisait Emberger. Les déserts méditerranéens<br />

se caractérisent par le fait que les rares pluies qui y tombent surviennent<br />

toujours en hiver, contrairement aux déserts tropicaux<br />

(à pluies d’été) <strong>et</strong> tempérés (à régime pluviométrique saisonnier<br />

équilibré).<br />

L’indice <strong>de</strong> stress thermique hivernal est la moyenne <strong><strong>de</strong>s</strong><br />

températures minimales journalières du mois le plus froid (janvier<br />

dans l’hémisphère Nord, juill<strong>et</strong> dans l’hémisphère Sud). Ce<br />

paramètre est étroitement corrélé avec le nombre annuel <strong>de</strong> jours<br />

<strong>de</strong> gel, donnée plus difficile à rencontrer <strong>et</strong> souvent indisponible.<br />

Il perm<strong>et</strong> <strong>de</strong> distinguer 8 tranches <strong>de</strong> 2 °C <strong>de</strong>puis l’extrêmement<br />

chaud (m > +9 °C) jusqu’à l’extrêmement froid (m < -5 °C). Les<br />

raisons du choix <strong>de</strong> ces critères sont données en détail ; on ne peut<br />

s’y étendre ici. Disons cependant que m = -5 °C correspond à la<br />

limite supérieure <strong><strong>de</strong>s</strong> arbres dans les hautes montagnes méditerranéennes<br />

<strong>et</strong> que m > +9 °C correspond à l’absence <strong>de</strong> gel sous abri<br />

<strong>et</strong> à la dominance concomitante d’espèces végétales <strong>et</strong> <strong>de</strong> cultures<br />

d’affinité tropicale lorsque l’eau est disponible. Dans le premier<br />

cas, la température moyenne mensuelle du mois le plus froid est<br />

d’environ 0 °C, <strong>et</strong> 15° C dans le second, mais c<strong>et</strong>te relation est peu<br />

fiable. Ces tranches thermiques sont empiriquement justifiées par<br />

la présence ou l’absence <strong>de</strong> certaines espèces spontanées, <strong>de</strong> cultures<br />

<strong>et</strong> d’animaux. Nous avons ainsi une matrice orthogonale <strong>de</strong><br />

(7 x 8 ) 56 bioclimats méditerranéens principaux. Des variantes <strong>et</strong><br />

nuances peuvent être ajoutées en faisant intervenir la saisonnalité<br />

<strong><strong>de</strong>s</strong> précipitations, leur variabilité, les précipitations occultes, la<br />

moyenne <strong><strong>de</strong>s</strong> températures maximales journalières du mois le plus<br />

froid, le nombre <strong>de</strong> jours <strong>de</strong> gel, les dates moyennes du premier <strong>et</strong><br />

<strong>de</strong>rnier gel annuel, <strong>et</strong>c. Il s’agit donc d’un système <strong>de</strong> classification<br />

« ouvert » qui peut s’adapter aux nécessités locales, car on ne<br />

peut tout prévoir ! Ces différentes catégories peuvent s’i<strong>de</strong>ntifier<br />

visuellement <strong>et</strong> <strong>de</strong> manière quasi instantanée par l’examen <strong><strong>de</strong>s</strong><br />

graphiques ombro-thermiques ou ombro-diapnéiques montrant<br />

la marche mensuelle <strong><strong>de</strong>s</strong> précipitations <strong>et</strong> <strong><strong>de</strong>s</strong> températures <strong>et</strong> <strong><strong>de</strong>s</strong><br />

évapo-transpirations potentielles (c<strong>et</strong>te relation, inventée il y a 170<br />

ans par l’agronome A. <strong>de</strong> Gasparin est utilisée partout <strong>de</strong>puis<br />

les années 1950, suite à la « ré-invention » du concept par les<br />

botanistes <strong>et</strong> phytogéographes toulousains Gaussen <strong>et</strong> Bagnouls).<br />

Dans ces graphiques les précipitations moyennes mensuelles <strong>et</strong><br />

l’ETPp sont représentées sur une échelle double <strong><strong>de</strong>s</strong> températures<br />

moyennes (P = 2 t), ou encore (P = 0,35 ETPp). Ce <strong>de</strong>rnier<br />

critère a été établi par Le Houérou <strong>et</strong> Popov dans une étu<strong>de</strong> sur<br />

la bioclimatologie <strong>de</strong> l’Afrique, publiée par la FAO en 1981. Les<br />

<strong>de</strong>ux critères coïnci<strong>de</strong>nt dans 98 % <strong><strong>de</strong>s</strong> cas en zone isoclimatique<br />

méditerranéenne. À partir <strong>de</strong> ces critères on déduit que statistiquement<br />

ETPp (mm) ~ 0,19 °C à l’échelle journalière pour<br />

les zones où le vent est faible (< 5 m/s en moyenne) soit ETPp<br />

~ 70 T à l’échelle annuelle. Une température moyenne annuelle<br />

<strong>de</strong> 20 °C correspond donc, pour ces zones peu ventées, à une<br />

ETPp annuelle <strong>de</strong> 1 400 mm/ an.<br />

Dans les zones très ventées, comme le Sahara ou la Patagonie,<br />

ce rapport peut être beaucoup plus élevé (20 à 60 % supérieur,<br />

en raison <strong>de</strong> l’importance locale du terme aérodynamique <strong>de</strong><br />

l’équation <strong>de</strong> Penman dans l’évapotranspiration globale <strong>de</strong> référence<br />

(ETo). Ainsi définies, les zones méditerranéennes possè<strong>de</strong>nt<br />

une flore d’environ 75 000 espèces vasculaires (plantes à fleurs<br />

<strong>et</strong> fougères) dont 54 % sont endémiques, c’est-à-dire limitées<br />

aux territoires méditerranéens. Ce nombre d’espèces représente<br />

25 % <strong>de</strong> la flore terrestre sur 12 % du territoire <strong>de</strong> la planète.<br />

Pour fixer les idées, disons que la France possè<strong>de</strong> environ 4 500<br />

espèces, dont 3 500 sont présentes dans la zone méditerranéenne<br />

(2 800 en Corse), l’Espagne l’Italie <strong>et</strong> la Grèce possè<strong>de</strong>nt quelque<br />

5 500 espèces chacune, l’Afrique du Nord 7 200, la Turquie<br />

11 000, Flora palaestina 3 000, <strong>et</strong>c. Par ailleurs, on estime que les<br />

5 % plus érudits botanistes peuvent instantanément reconnaître<br />

<strong>et</strong> nommer <strong>de</strong> mémoire environ 5 000 espèces.<br />

Certaines régions méditerranéennes offrent une richesse<br />

considérable : la région du Cap s.l. 12 000 espèces, l’Australie <strong>de</strong><br />

l’Ouest 10 000. Ces <strong>de</strong>ux territoire présentent un taux d’endémicité<br />

<strong>de</strong> 80 %. Le bassin méditerranéen au sens large comprend<br />

25 000 dont 60 % d’endémiques <strong>et</strong> la région irano-touranienne<br />

17 000 espèces, dont 30 % d’endémiques. En richesse aréale<br />

spécifique le Cap arrive très largement en tête avec 600 espèces<br />

par 10 000 km 2 <strong>et</strong> le Fynbos (équivalent <strong><strong>de</strong>s</strong> garrigues en<br />

Afrique du Sud) avec 1 000 espèces par 10 000 km 2 (France 90).<br />

Il faut noter que les très riches flores du Cap <strong>et</strong> <strong>de</strong> l’Australie <strong>de</strong><br />

l’Ouest correspon<strong>de</strong>nt à <strong><strong>de</strong>s</strong> terres oligotrophes, très pauvres sur<br />

le plan <strong>de</strong> la nutrition minérale, avec <strong><strong>de</strong>s</strong> pH tombant parfois à<br />

3,0. Ce fait entraîne <strong><strong>de</strong>s</strong> adaptations très originales <strong><strong>de</strong>s</strong> systèmes<br />

d’assimilation minérale. Des espèces endémiques y sont parfois<br />

cantonnées à <strong><strong>de</strong>s</strong> zones <strong>de</strong> quelques km 2 .<br />

L’ouvrage étudie ainsi <strong>de</strong> façon détaillée, outre les climats,<br />

les flores, les végétations, les cultures (y compris ornementales)<br />

<strong>et</strong> la présence d’espèces exotiques naturalisées <strong>et</strong> leur importance<br />

dans les flores locales (environ 10 % du nombre d’espèces<br />

régionales, en moyenne). Les succès <strong>et</strong> les échecs <strong>de</strong> transfert<br />

transcontinentaux d’espèces d’une zone méditerranéenne à<br />

l’autre sont examinés. Ces échanges ont donné lieu à <strong><strong>de</strong>s</strong> succès<br />

spectaculaires en partie dus à l’émigration <strong>de</strong> populations humaines<br />

méditerranéennes au Nouveau Mon<strong>de</strong> <strong>et</strong> en Australie (Acacia australiens,<br />

Agropyron spp, Amandier, Artichaut, Asperge, Atriplex,<br />

Eucalyptus, Luzerne, Olivier, Vigne, <strong>et</strong>c.). On note aussi l’invasion<br />

d’espèces comme le brome <strong><strong>de</strong>s</strong> toits ou cheat grass (Bromus<br />

109<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 107-110


◆ ANALYSES D’OUVRAGES<br />

110<br />

tectorum), <strong>de</strong>venu au siècle <strong>de</strong>rnier une peste dans les parcours<br />

du NW <strong><strong>de</strong>s</strong> USA ainsi que d’autres espèces irano-touraniennes.<br />

On note aussi <strong><strong>de</strong>s</strong> échecs cuisants (Tamarugo, Jojoba, Maireana,<br />

Mulga). Ces échecs résultent en général d’un manque <strong>de</strong> prise<br />

en compte suffisant <strong><strong>de</strong>s</strong> spécificités bioclimatiques ou édaphiques<br />

<strong><strong>de</strong>s</strong> espèces concernées.<br />

La classification phytogéographique proposée prend en considération<br />

les critères climatiques, floristiques, végétationnels <strong>et</strong><br />

agronomiques. Elle élève la zone phytogéographique méditerranéenne,<br />

jusqu’ici considérée comme une simple région, au rang<br />

supérieur <strong>de</strong> royaume. Nous avons ainsi : un empire holarctique,<br />

lequel inclut les royaumes euro-sibérien <strong>et</strong> méditerranéen, entre<br />

autres. Ce <strong>de</strong>rnier comprend 7 régions : bassin méditerranéen,<br />

saharo-arabique, Asie moyenne (aralo-caspienne ou iranotouranienne),<br />

région du Cap, Californie <strong>et</strong> Great Basin, Chili-<br />

Argentine, Sud-Est <strong>et</strong> Sud-Ouest australiens. C<strong>et</strong>te classification<br />

est différente dans sa conception <strong>de</strong> celle <strong>de</strong> Takhtajan, mais reste<br />

compatible avec elle dans son résultat.<br />

Restoration Ecology: the new frontier<br />

J. Van An<strong>de</strong>l & J. Aronson (eds.)<br />

Blackwell Publishing, USA: 319 p. (2006)<br />

This book explores the interface b<strong>et</strong>ween restoration ecology<br />

and ecological restoration. It aims at introducing to interactions<br />

b<strong>et</strong>ween theory and practice. It challenges ecologist to explore the<br />

applicability of current theories and concepts, recognizing that<br />

these have not been <strong>de</strong>veloped with such applications in mind.<br />

The aca<strong>de</strong>mic foundations of restoration ecology are revisited for<br />

this purpose, to pave the way towards a review of the causes of<br />

successes and failures and to i<strong>de</strong>ntify the perspectives of ecological<br />

restoration in different ecosystem types. These are <strong>de</strong>alt with<br />

biome-by-biome and consi<strong>de</strong>red from the historical perspective<br />

of land use. The final section addresses problems of ecological<br />

restoration in a soci<strong>et</strong>al context, ecological restoration is meant<br />

to achieve sustainable, resilient and interconnected ecosystems<br />

and socioecological systems. This will result in newly emerging<br />

ecosystems.<br />

The originality of this book comparing to the previous<br />

published in restoration ecology is that a lot of chapters are<br />

case studies from Europe and not only from North-America.<br />

Nevertheless only one chapter is <strong>de</strong>voted to Mediterranean ecosystems<br />

(Restoration of Mediterranean woodlands, pp. 193-207).<br />

As a conclusion this book is a good introduction for Masters and<br />

Ph. D stu<strong>de</strong>nts, teachers, researchers and natural-resource managers<br />

to the theory and practices of ecological restoration.<br />

Cartografia geobotanica<br />

F. Pedrotti<br />

Pitagora editrice, bologna: 236 p. (2004).<br />

email : pited@pitagoragroup.it<br />

Ce livre, rédigé par Franco Pedrotti, professeur à l’Université <strong>de</strong><br />

Camerino (Italie) se propose <strong>de</strong> dresser un panorama <strong><strong>de</strong>s</strong> différentes<br />

métho<strong><strong>de</strong>s</strong> <strong>et</strong> techniques utilisables pour la cartographie <strong>de</strong> la végétation.<br />

Il repose sur le fruit d’une longue expérience <strong>de</strong> l’auteur, dans le<br />

cadre <strong>de</strong> la spatialisation <strong><strong>de</strong>s</strong> données <strong>de</strong> la flore <strong>et</strong> <strong>de</strong> la végétation, <strong>et</strong><br />

<strong>de</strong> très nombreux exemples sont donc issus <strong>de</strong> ses travaux antérieurs.<br />

Ce traité présente la cartographie <strong><strong>de</strong>s</strong> divers niveaux d’organisation <strong>de</strong><br />

la flore <strong>et</strong> <strong>de</strong> la végétation, <strong>de</strong>puis l’espèce (individus <strong>et</strong> populations)<br />

jusqu’aux unités phytogéographiques supérieures.<br />

L’ouvrage est divisé en 14 chapitres, d’inégale importance<br />

(le chapitre 3, consacré à la « cartographie synusiale » ne comporte<br />

qu’une seule page…). L’auteur débute par un chapitre introductif<br />

présentant la cartographie géobotanique, puis développe les<br />

aspects cartographiques au niveau <strong><strong>de</strong>s</strong> populations (chapitre 2) <strong>et</strong><br />

<strong>de</strong> l’ensemble <strong>de</strong> l’aire <strong>de</strong> distribution d’une espèce (chapitre 4).<br />

Les quatre chapitres suivants sont consacrés à la cartographie <strong>de</strong><br />

la végétation, <strong>et</strong> <strong>de</strong> nombreux exemples <strong>de</strong> cartes sont fournis. Le<br />

chapitre 9 est dévolu à la cartographie phytogéographique, avec<br />

quelques exemples <strong>de</strong> cartes <strong>de</strong> subdivision phytogéographique<br />

(Mon<strong>de</strong>, Espagne, Italie). Les <strong>de</strong>rniers chapitres concernent plus<br />

particulièrement les apports <strong>de</strong> la cartographie géobotanique à la<br />

gestion environnementale <strong>et</strong> à la conservation <strong><strong>de</strong>s</strong> territoires. Une<br />

bibliographie assez riche termine c<strong>et</strong> ouvrage.<br />

Au final, il s’agit d’un travail <strong><strong>de</strong>s</strong>criptif <strong>et</strong> qui abor<strong>de</strong> les<br />

thèmes classiques <strong>de</strong> la géobotanique, souvent sur une base<br />

phytosociologique, sans réellement proposer <strong>de</strong> méthodologies<br />

claires ; sur quelles bases, par exemple, les cartes <strong>de</strong> subdivisions<br />

phytogéographiques (chapitre 9) s’opèrent-elles ? Et le traitement<br />

<strong>de</strong> la cartographie <strong>de</strong> la biodiversité végétale en trois pages est<br />

bien décevant, alors que <strong>de</strong> nombreux travaux récents existent !<br />

Le plus dommageable est l’absence <strong>de</strong> prise en compte <strong><strong>de</strong>s</strong><br />

développements récents issus <strong>de</strong> la modélisation biogéographique<br />

(analyses DIVA, Parsimony Analysis of En<strong>de</strong>micity…) qui ont<br />

permis <strong><strong>de</strong>s</strong> avancées significatives dans ce domaine, sans parler<br />

<strong>de</strong> la phylogéographie qui n’est même pas évoquée… Il manque<br />

en fait clairement tout le vol<strong>et</strong> concernant la simulation <strong>de</strong> la<br />

répartition géographique <strong><strong>de</strong>s</strong> espèces <strong>et</strong> <strong>de</strong> la végétation ; c<strong>et</strong>te<br />

thématique est pourtant en plein essor (voir A. Guisan, 2003,<br />

Saussurea 33, pour une synthèse récente en français), notamment<br />

dans le cadre <strong><strong>de</strong>s</strong> étu<strong><strong>de</strong>s</strong> <strong>de</strong> la réponse biotique face aux<br />

changements globaux.<br />

THIERRY DUTOIT<br />

UMR INRA-UAPV 406<br />

Écologie <strong><strong>de</strong>s</strong> invertébrés<br />

IUT, Université d’Avignon <strong>et</strong> <strong><strong>de</strong>s</strong> <strong>Pays</strong> <strong>de</strong> <strong>Vaucluse</strong><br />

FRÉDÉRIC MÉDAIL<br />

Institut méditerranéen d’écologie <strong>et</strong> <strong>de</strong> paléoécologie<br />

(IMEP, UMR CNRS 6116),<br />

Université Paul-Cézanne-Aix-Marseille III.<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


Résumés <strong>de</strong> thèse<br />

Carey M. Suehs<br />

Facteurs écologiques <strong>et</strong> évolutifs influençant<br />

les processus d’invasion chez Carpobrotus (Aizoaceae)<br />

en région méditerranéenne<br />

Thèse <strong>de</strong> doctorat en sciences soutenue le 8 juill<strong>et</strong> 2005<br />

à l’université Paul-Cézanne / Aix-Marseille III,<br />

Institut méditerranéen d’écologie <strong>et</strong> <strong>de</strong> paléoécologie<br />

(IMEP, UMR-CNRS 6116)<br />

Jury<br />

Frédéric Médail (maître <strong>de</strong> conférences, université Paul-Cézanne, directeur<br />

<strong>de</strong> thèse), Laurence Affre (maître <strong>de</strong> conférences, université Paul-Cézanne,<br />

co-directrice <strong>de</strong> thèse), Carla M. d’Antonio (professeur, rapporteur), John<br />

Thompson (directeur <strong>de</strong> recherche, rapporteur), Serge Muller (professeur,<br />

examinateur), Jacques Maill<strong>et</strong> (professeur, examinateur).<br />

Malgré la présence <strong>de</strong> Carpobrotus edulis <strong>et</strong> C. affine acinaciformis<br />

sur les côtes méditerranéennes françaises <strong>de</strong>puis 200 ans, peu<br />

d’étu<strong><strong>de</strong>s</strong> ont abordé la dynamique d’invasion <strong>de</strong> ces plantes grasses<br />

d’origine sud-africaine. La prise en compte à la fois du rôle<br />

<strong><strong>de</strong>s</strong> caractères génétiques <strong>et</strong> reproducteurs, <strong>de</strong> la forte fréquence<br />

d’hybridation, <strong><strong>de</strong>s</strong> pollinisateurs indigènes <strong>et</strong> <strong>de</strong> la dissémination<br />

<strong><strong>de</strong>s</strong> graines par <strong><strong>de</strong>s</strong> mammifères introduits en liaison avec les phénomènes<br />

liés à l’insularité, suggère que l’invasion <strong><strong>de</strong>s</strong> Carpobrotus<br />

spp. constitue un phénomène complexe <strong>et</strong> évolutif qui a pour<br />

conséquence <strong><strong>de</strong>s</strong> changements profonds au sein <strong><strong>de</strong>s</strong> écosystèmes<br />

insulaires envahis. Ceci résulte, notamment, en une diminution du<br />

pourcentage d’abondance <strong>de</strong> divers groupes d’espèces végétales,<br />

en une transformation du sol dans le cas <strong>de</strong> C. affine acinaciformis,<br />

en une restructuration <strong><strong>de</strong>s</strong> réseaux <strong><strong>de</strong>s</strong> pollinisateurs <strong>et</strong> en une<br />

facilitation <strong><strong>de</strong>s</strong> mammifères introduits. La plus forte fréquence<br />

d’occurrence <strong>de</strong> C. edulis dans le sud-est <strong>de</strong> la France par rapport<br />

à C. affine acinaciformis est potentiellement expliquée par <strong><strong>de</strong>s</strong><br />

différences génétiques <strong>et</strong> reproductrices entre ces <strong>de</strong>ux taxons.<br />

Plusieurs indications d’hybridations fréquentes pourraient expliquer<br />

une partie <strong>de</strong> la nature envahissante <strong>de</strong> ces <strong>de</strong>ux xénophytes,<br />

leurs changements par rapport à leur aire d’origine, <strong>et</strong> leur fort<br />

potentiel évolutif avec possibilité <strong>de</strong> polyploïdisation. L’ensemble<br />

<strong>de</strong> ces résultats suggère que l’étu<strong>de</strong> <strong>de</strong> la biologie évolutive <strong><strong>de</strong>s</strong><br />

espèces envahissantes est nécessaire pour mieux comprendre les<br />

processus d’invasion <strong>et</strong> l’évolution contemporaine.<br />

Mots-clés : Carpobrotus, endozoochorie, évolution, invasion biologique,<br />

hybridation, pollinisateur, structure génétique, système<br />

<strong>de</strong> reproduction, xénophyte.<br />

Buisson Elise<br />

Ecological restoration of Mediterranean plant<br />

communities: case studies in Southern France<br />

and Coastal California (USA)<br />

Thèse <strong>de</strong> doctorat en sciences soutenue le 20 septembre 2005<br />

à l’université Paul-Cézanne / Aix-Marseille III, Institut méditerranéen<br />

d’écologie <strong>et</strong> <strong>de</strong> paléoécologie (IMEP, UMR-CNRS 6116)<br />

Jury<br />

Thierry Dutoit (professeur, université d’Avignon), Emmanuel Corck<strong>et</strong><br />

(MCF, université Bor<strong>de</strong>aux 1), directeur <strong>et</strong> co-directeur ; Karen Holl<br />

(professeur, university Santa Cruz, California, USA), Richard Michal<strong>et</strong><br />

(professeur, université Bor<strong>de</strong>aux 1), rapporteurs ; Thierry Tatoni (professeur,<br />

université Paul-Cézanne), James Aronson (directeur <strong>de</strong> recherche,<br />

CNRS-CEFE Montpellier), examinateurs ; Sean An<strong>de</strong>rson (docteur,<br />

Stanford University), Grey Hayes (docteur, Elkhorn Slough National<br />

Estuarine Research Reserve, USA), membres invités.<br />

Disturbances, events that change the structure of an entity<br />

(ecosystem, community, population) by modifying resources,<br />

substrates or physical environments, are a major factor in entity<br />

dynamics. Resilience is the ability of the entity to resist or recover<br />

from an exogenous disturbance (originating from outsi<strong>de</strong> forces<br />

while an endogenous disturbance originates within the entity<br />

and is thus a part of its “normal” functioning). Disturbances are<br />

studied because they are at the heart of theories in community<br />

ecology. They maintain spatial h<strong>et</strong>erogeneity and biodiversity<br />

dynamics but the mechanisms through which they function<br />

have y<strong>et</strong> to be more comprehensively <strong><strong>de</strong>s</strong>cribed. The concept of<br />

resilience is important because it is linked to that of stability and<br />

to (functional) biodiversity. Its study helps un<strong>de</strong>rstanding the<br />

relationships b<strong>et</strong>ween disturbance, biodiversity and ecosystem<br />

functioning.<br />

The absence or low long-term resilience of an ecosystem to an<br />

exogenous disturbance suggests that irreversibility thresholds have<br />

been crossed and that the ecosystem is dysfunctional. The second<br />

objective of this thesis is to use such an opportunity to isolate one<br />

or several functions and un<strong>de</strong>rstand b<strong>et</strong>ter the whole functioning<br />

of the ecosystem. Grassland species are introduced to <strong>de</strong>gra<strong>de</strong>d<br />

ecosystems as functions are manipulated (environmental factors<br />

such as soil fertility and stone cover and biotic factors such as<br />

grazing, comp<strong>et</strong>ition/facilitation of neighbor species). A factorial<br />

experiment allows for the isolation of each of the tested functions<br />

and for the un<strong>de</strong>rstanding of their combined effect. Both experiments<br />

were carried out in herbaceous ecosystems as they are a<br />

good study mo<strong>de</strong>l. They are wi<strong>de</strong>ly distributed and species-rich.<br />

They have been subjected to endogenous disturbances (e.g. graz-<br />

111<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 111-113


◆ RÉSUMÉS DE THÈSES<br />

112<br />

ing) un<strong>de</strong>r which they were formed and to exogenous disturbances<br />

un<strong>de</strong>r which they have recently been altered (plowing in<br />

the 19 or 20 th century). Both types of disturbances are relatively<br />

remnant. Mediterranean ecosystems are particularly interesting<br />

as they are species-rich (local hot-spot of biodiversity) and have<br />

a wi<strong>de</strong> vari<strong>et</strong>y of endogenous and exogenous disturbances. Our<br />

study sites thus inclu<strong>de</strong>d several Mediterranean grasslands in<br />

the plain of La Crau (South-Eastern France) and in California<br />

Central Coastal. Comparing similar mo<strong>de</strong>ls subjected to different<br />

conditions and histories allows a b<strong>et</strong>ter un<strong>de</strong>rstanding of some<br />

basic processes.<br />

In La Crau (South-Eastern France), melon cultivation (1965-<br />

1985) followed by cereal and alfafa cultivation greatly disturbed the<br />

steppe veg<strong>et</strong>ation. To assess the resilience of the steppe veg<strong>et</strong>ation,<br />

we studied the margins of three abandoned melon fields, all adjacent<br />

to the same remnant of steppe. Data on soil, above-ground veg<strong>et</strong>ation,<br />

seed bank, seed rain and seed dispersal by ants showed that<br />

resilience is low. This suggests that the presence of remnant patches<br />

of steppe do not play a role in propagule dissemination and that the<br />

ecosystem is dysfunctional. In or<strong>de</strong>r to b<strong>et</strong>ter un<strong>de</strong>rstand the functioning<br />

of the steppe, four ecosystem functions were manipulated<br />

in a factorial experiment: soil fertility, sheep grazing, stone percent<br />

cover and arable weed interactions. To do so, Thymus vulgaris and<br />

Brachypodium r<strong>et</strong>usum i<strong>de</strong>ntified as keystone species (perennial<br />

and dominant plant of the undisturbed steppe) were sown and<br />

transplanted on three plots on a fertility gradient: an abandoned<br />

melon field, an abandoned cereal field and a remnant patch of<br />

steppe. Results show that nutrient-rich/mycorrhizae-poor soil is<br />

not suitable for both steppe species (stress tolerant) to germinate.<br />

However, it is suitable to their establishment and growth if they<br />

are planted. Grazing strongly reduces seedling growth. Tall neighbors<br />

comp<strong>et</strong>e against both species for light. Shorter neighbors<br />

(cereal field) do not comp<strong>et</strong>e as much against Thymus. Restored<br />

stone percent cover plays a greater positive role on focal species<br />

growth where neighbors are short (cereal field). Results will be<br />

applied to ecological restoration.<br />

In coastal California, grasslands have been <strong>de</strong>gra<strong>de</strong>d by<br />

agriculture and over-grazing. There is no autogenic restoration,<br />

partly, because the reference ecosystem (coastal prairie) and seed<br />

sources are rare, and because exotic grasses and forbs are particularly<br />

invasive. Re-introduction of grazing alone does not make the<br />

ecosystem more resilient (grazing has a positive effect on native<br />

annual forbs, no effect on native sedges and grasses and a negative<br />

effect on native perennial forbs). In or<strong>de</strong>r to b<strong>et</strong>ter un<strong>de</strong>rstand<br />

the coastal grassland functioning, three ecosystem functions were<br />

manipulated in a factorial experiment: grazing, topsoil and exotic<br />

interactions. To do so, two keystone species (native Californian<br />

perennial species) were sown and transplanted on three sites: two<br />

sites for Danthonia california within seven km from the coast<br />

and two site for Nassella pulchra 25 km from the coast. Results<br />

show that heavy cattle grazing strongly reduces seedling growth,<br />

while light grazing (rabbits, ground squirrels and <strong>de</strong>er) may help<br />

it. However, within grazed plots, cattle <strong>de</strong>creases the negative<br />

effect of neighbors. Topsoil removal may not be necessary for<br />

plant establishment but may be useful in the long run. Results are<br />

discussed within the framework of ecological restoration.<br />

For both locations, disturbances and resilience have been i<strong>de</strong>ntified<br />

and <strong>de</strong>gra<strong>de</strong>d functions studied. A b<strong>et</strong>ter un<strong>de</strong>rstanding of<br />

ecosystem functioning shows, at an applied level, the functions<br />

that need to be manipulated to successfully re-introduce dominant<br />

grassland species to <strong>de</strong>gra<strong>de</strong>d ecosystems. Wh<strong>et</strong>her high biodiversity<br />

leads to b<strong>et</strong>ter ecosystem functioning is still being discussed.<br />

However, many ecosystem functions may only <strong>de</strong>pend on a few<br />

dominant species. One efficient ecological restoration strategy<br />

is to first improve habitats in or<strong>de</strong>r to restore major functions.<br />

Then, dominant species of the reference ecosystem (nurse plants)<br />

should be re-introduce in or<strong>de</strong>r to restore some other functions<br />

and facilitate the re-establishment of the whole biodiversity (e.g.<br />

plant and insects). Such a future study would be an opportunity<br />

to assess the role of positive biotic interactions (facilitation) in<br />

improving biodiversity within stressful conditions as well as the<br />

role of biodiversity on ecosystem functioning.<br />

Key-words: disturbance, resilience, plant dispersal, comp<strong>et</strong>ition,<br />

seed bank, seed rain, myrmecochory, comp<strong>et</strong>ition, facilitation,<br />

plant community, edge effect, ecological restoration, sheep grazing,<br />

dry grasslands, Mediterranean areas, California, Southern<br />

France.<br />

Ricouart Francine<br />

La gestion <strong>de</strong> l’espace <strong>et</strong> la prévention <strong><strong>de</strong>s</strong> incendies<br />

<strong>de</strong> forêt dans les Pyrénées méditerranéennes : paysage,<br />

diversité <strong><strong>de</strong>s</strong> Rhopalocères <strong>et</strong> réduction <strong>de</strong> combustible<br />

Thèse <strong>de</strong> doctorat en géographie soutenue le 19 septembre 2005<br />

à l’université <strong>de</strong> Toulouse-Le Mirail, UMR-CNRS 5602 GEODE<br />

(géographie <strong>de</strong> l’environnement), UFR sciences, espaces, sociétés,<br />

Département <strong>de</strong> géographie aménagement, Maison <strong>de</strong> la recherche,<br />

5 allées Antonio-Machado, 31058 Toulouse ce<strong>de</strong>x 01.<br />

Jury<br />

Thierry Dutoit (professeur, université d’Avignon), Jean-Pierre Lumar<strong>et</strong><br />

(professeur, université Montpellier), rapporteurs ; Jean-Charles Filleron<br />

(professeur, université Toulouse II), Jean-François Galtié (chargé <strong>de</strong><br />

recherche CNRS, Toulouse), examinateurs ; Jean-Paul Métailié (directeur<br />

<strong>de</strong> recherche CNRS, Toulouse), prési<strong>de</strong>nt ; Luc Legal (maître <strong>de</strong><br />

conférence, université Paul-Sabatier, Toulouse), directeur.<br />

Ce travail s’inscrit dans une problématique multiple qui<br />

traite <strong>de</strong> la question <strong><strong>de</strong>s</strong> incendies, <strong>de</strong> la gestion <strong>de</strong> l’espace <strong>et</strong> <strong>de</strong><br />

l’évaluation <strong><strong>de</strong>s</strong> impacts <strong><strong>de</strong>s</strong> coupures <strong>de</strong> combustible. Il vise à<br />

mieux comprendre les impacts <strong><strong>de</strong>s</strong> aménagements réalisés pour<br />

la gestion <strong><strong>de</strong>s</strong> milieux méditerranéens dans un but <strong>de</strong> DFCI<br />

(Défense <strong><strong>de</strong>s</strong> forêts contre les incendies), tant au niveau <strong>de</strong> la<br />

dynamique paysagère qu’au niveau <strong><strong>de</strong>s</strong> éventuels marqueurs <strong><strong>de</strong>s</strong><br />

modifications introduites par ces nouveaux milieux. Il vise aussi<br />

à proposer <strong><strong>de</strong>s</strong> outils aux acteurs locaux <strong>de</strong> l’aménagement pas-<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005


RÉSUMÉS DE THÈSES ◆<br />

toral <strong>et</strong> <strong>de</strong> la DFCI pour l’élaboration <strong><strong>de</strong>s</strong> aménagements futurs.<br />

C<strong>et</strong>te recherches s’appuie sur une analyse globale <strong><strong>de</strong>s</strong> milieux <strong>et</strong><br />

sur une approche fine <strong><strong>de</strong>s</strong> formations végétales <strong>et</strong> <strong>de</strong> la faune <strong>de</strong><br />

papillons. Les impacts paysagers <strong>et</strong> écologiques <strong><strong>de</strong>s</strong> réductions<br />

<strong>de</strong> combustibles sont appréciés à partir d’exemples localisés dans<br />

les Pyrénées-Orientales, représentatifs <strong><strong>de</strong>s</strong> milieux rencontrés en<br />

région forestière <strong>et</strong> sub-forestière méditerranéenne. Pour mesurer<br />

ces impacts, nous avons étudié la diversité biologique <strong>et</strong> nous<br />

avons choisi d’utiliser en particulier les Lépidoptères « diurnes »<br />

(Rhopalocères). Notre propos est ainsi essentiellement basé sur<br />

la mise en relation <strong>de</strong> ces populations avec les milieux évoqués.<br />

Pour réaliser une approche originale <strong>de</strong> classification hiérarchique<br />

selon les sites où les espèces sont relevées, ceux-ci ont été classés<br />

selon <strong>de</strong>ux critères écologiques, niveau d’ouverture du milieu<br />

<strong>et</strong> caractéristiques hygrométriques. À partir <strong>de</strong> la matrice ainsi<br />

constituée, nous obtenons une répartition théorique <strong><strong>de</strong>s</strong> espèces<br />

en six groupes fonctionnels, marqueurs théoriques <strong>de</strong> six types<br />

<strong>de</strong> milieu. C<strong>et</strong>te approche originale <strong>de</strong> classification hiérarchique<br />

appliquée aux relevés effectués indique <strong><strong>de</strong>s</strong> assemblages d’espèces,<br />

selon les zones, très proches du regroupement théorique.<br />

Par contre, la réorganisation obtenue dans les arbres par classe<br />

d’abondance ne nous perm<strong>et</strong> pas d’affirmer que nous obtenons<br />

une structure stable, car les espèces, pour une classe donnée, sont<br />

trop peu nombreuses. La cartographie <strong><strong>de</strong>s</strong> Rhopalocères perm<strong>et</strong><br />

<strong>de</strong> m<strong>et</strong>tre en relation les lieux, les dates <strong>et</strong> l’abondance <strong><strong>de</strong>s</strong> espèces<br />

inventoriées. Cela nous perm<strong>et</strong> également <strong>de</strong> visualiser rapi<strong>de</strong>ment<br />

les différences <strong>de</strong> faune entre les sites <strong>et</strong> entre les zones.<br />

Pour rechercher les facteurs qui établissent c<strong>et</strong>te répartition,<br />

nous avons réalisé une analyses discriminante par une analyse<br />

factorielle, multiple puis une classification <strong><strong>de</strong>s</strong> facteurs. La correspondance<br />

<strong><strong>de</strong>s</strong> Rhopalocères avec les plantes-hôtes relevées est<br />

réalisée par une analyse factorielle <strong><strong>de</strong>s</strong> correspondances binaires<br />

sur la matrice m<strong>et</strong>tant en relation Rhopalocères <strong>et</strong> plantes (198<br />

espèces végétales <strong>et</strong> 81 espèces <strong>de</strong> Rhopalocères en individus)<br />

suivie d’une classification hiérarchique.<br />

Nos résultats montrent que les aménagements <strong>de</strong> prévention<br />

entraînent <strong><strong>de</strong>s</strong> modifications <strong>de</strong> la faune locale. Mais, ces changements<br />

sont à m<strong>et</strong>tre en relation avec l’échelle <strong><strong>de</strong>s</strong> aménagements.<br />

La faune totale s’est enrichie d’espèces <strong>de</strong> milieux ouverts <strong>et</strong><br />

anthropisés. Les acquis <strong>de</strong> trois années <strong>de</strong> suivi ont permis <strong>de</strong><br />

vali<strong>de</strong>r l’utilisation <strong><strong>de</strong>s</strong> Lépidoptères comme marqueurs <strong><strong>de</strong>s</strong><br />

changements observés dans le cadre <strong>de</strong> la prévention <strong><strong>de</strong>s</strong> grands<br />

incendies <strong>de</strong> végétation. Les résultats apportés par ce travail<br />

sont encourageants quant à l’utilisation <strong><strong>de</strong>s</strong> Rhopalocères dans<br />

les étu<strong><strong>de</strong>s</strong> <strong><strong>de</strong>s</strong> impacts <strong><strong>de</strong>s</strong> mesures <strong>de</strong> gestion <strong>de</strong> l’espace sur la<br />

diversité biologique. Il serait maintenant important <strong>de</strong> poursuivre<br />

c<strong>et</strong>te étu<strong>de</strong> à long terme, incluant plusieurs cycles d’entr<strong>et</strong>ien<br />

(ouverture/ferm<strong>et</strong>ure) dont le brûlage dirigé, <strong>et</strong> en diversifiant les<br />

milieux suivis. Il faut que la base <strong>de</strong> données établie soit complétée<br />

par d’autres relevés suivant le même protocole. Une comparaison<br />

pourrait être faite entre les impacts <strong><strong>de</strong>s</strong> débroussaillements <strong>et</strong> ceux<br />

<strong><strong>de</strong>s</strong> incendies sur les populations <strong>de</strong> Rhopalocères.<br />

Mots-clés : déprise agro-pastorale, analyse structurale, bio-indicateurs,<br />

biodiversité, enfrichement, reboisement, politiques <strong>de</strong> gestion,<br />

analyses multi-variées, Pyrénées-Orientales, Albères, Aspres,<br />

Fenouillè<strong><strong>de</strong>s</strong>.<br />

113<br />

<strong>ecologia</strong> <strong>mediterranea</strong>, tome 31, fascicule 1, 2005, p. 111-113


ÉDISUD<br />

ÉCOLOGIE ❈ NATURE<br />

REVUE ECOLOGIA MEDITERRANEA<br />

Numéros thématiques<br />

Biologie <strong>de</strong> la conservation<br />

<strong>et</strong> <strong><strong>de</strong>s</strong> espaces naturels en Crau<br />

vol. 30 (1/2), 132 p., 2004, 31 €<br />

The sustainability of chesnut forest<br />

in the <strong>mediterranea</strong>n region<br />

vol. 26 (1/2), 179 p., 2000, 25 €<br />

Écologie <strong>et</strong> conservation <strong><strong>de</strong>s</strong> mares<br />

temporaires méditerranéennes<br />

vol. 21 (2), 135 p., 1998, 25 €<br />

Connaissance <strong>et</strong> conservation<br />

<strong>de</strong> la flore <strong><strong>de</strong>s</strong> îles <strong>de</strong> la Méditerranée<br />

vol. 21 (1/2), 379 p., 1995, 25 €<br />

Volume jubilaire dédié<br />

au professeur Pierre Quézel<br />

vol. 16, 459 p., 1990, 20 €<br />

Offre spéciale sur les 4 volumes suivants :<br />

30,49 € ‡ 15 €<br />

Influence of fire on the stability<br />

of Mediterranean forest ecosystems<br />

vol. 13 (4), 196 p., 1987, 15 €<br />

Changements hydrologiques<br />

<strong>de</strong> la zone tempérée au cours<br />

<strong><strong>de</strong>s</strong> quinze <strong>de</strong>rniers millénaires<br />

vol. 11 (1), 236 p., 1985, 15 €<br />

Définition <strong>et</strong> localisation<br />

<strong><strong>de</strong>s</strong> écosystèmes méditerranéens<br />

terrestres<br />

vol. 8 (1/2), 495 p., 1982, 15 €<br />

Étu<strong><strong>de</strong>s</strong> écologiques<br />

<strong>et</strong> <strong>et</strong>hnologiques dans le Niolu<br />

vol. 6, 232 p., 1980, 15 €<br />

PAYSAGE<br />

Sainte-Victoire<br />

À la découverte d’un sentier<br />

Association pour le reboisement<br />

<strong>et</strong> la protection du Cengle - Sainte-Victoire<br />

Découvrir le massif <strong>de</strong> Sainte-Victoire<br />

par son versant sud.<br />

22,5 x 20 cm • 144 p.• © 1998 • broché<br />

• tout en couleur • 20,58 € • ISBN 2-7449-0012-5<br />

<strong>Pays</strong>ages <strong>de</strong> terrasses<br />

R. Ambroise, P. Frapa, S. Giorgis<br />

Photographies <strong>de</strong> V. Motte <strong>et</strong> R. Sauvaire<br />

Très beau livre illustré, hommage au travail <strong><strong>de</strong>s</strong> paysans<br />

qui ont transformé une nature parfois hostile<br />

en d’immenses jardins cultivés.<br />

24 x 30 cm • 192 p. • © 1989 • relié • nbr. photos N&B<br />

<strong>et</strong> couleur • 28,97 € • ISBN 2-85744-449-8<br />

FLORE<br />

La Connaissance <strong><strong>de</strong>s</strong> Succulentes<br />

<strong>et</strong> Xérophytes du Mon<strong>de</strong><br />

Francis <strong>et</strong> Martine Bugar<strong>et</strong><br />

Un ouvrage <strong>de</strong> référence fondamental<br />

par d’éminents spécialistes.<br />

Coll. “La Connaissance <strong>de</strong>…” • 17 x 24 cm • 408 p.<br />

• © 2006 • cartonné • très nombr. ill. couleur • 33 €<br />

• ISBN 2-7449-0083-4<br />

La Végétation <strong>de</strong> la Corse<br />

Jacques Gamisans<br />

Un ouvrage <strong>de</strong> référence fondamental par le plus<br />

éminent spécialiste actuel sur la question.<br />

16 x 24 cm • 408 p. • © 1999 - 2003 • broché • ill. N & B<br />

<strong>et</strong> 16 p. couleur • 24,39 € • ISBN 2-7449-0083-4<br />

La Flore endémique <strong>de</strong> la Corse<br />

Jacques Gamisans – Jean-François Marzocchi<br />

Chaque espèce, i<strong>de</strong>ntifiée par une photographie,<br />

est décrite avec ses noms latin, corse <strong>et</strong> français,<br />

l’indication <strong>de</strong> la famille, la pério<strong>de</strong> <strong>de</strong> floraison,<br />

son aire géographique, son indice <strong>de</strong> rar<strong>et</strong>é,<br />

son écologie <strong>et</strong> sa répartition en Corse.<br />

Une liste exhaustive figure en fin d’ouvrage.<br />

16 x 22,5 cm • 192 p. • © 1996-2003 • broché avec rabats<br />

• 14,94 € • ISBN 2-85744-777-9<br />

La Flore <strong><strong>de</strong>s</strong> montagnes méditerranéennes<br />

Christian Boucher<br />

De l’Andalousie à l’Anatolie <strong>et</strong> au Proche-Orient,<br />

250 plantes décrites <strong>et</strong> illustrées.<br />

16 x 22,5 cm • 208 p. • © 2000 • 256 photos couleur<br />

• 3 cartes • broché avec rabats • 24,39 €<br />

• ISBN 2-7449-0146-6<br />

Flore du Verdon<br />

Un parc en fleurs<br />

Parc naturel régional du Verdon – Georges<br />

Guen<strong>de</strong><br />

Après présentation du parc, l’auteur décline, par secteur<br />

géographique, les espèces qui peuplent c<strong>et</strong>te région.<br />

16 x 22,5 cm • 192 p. • © 2004 • broché • ill. couleur<br />

• 20 € • ISBN 2-7449-0467-8<br />

Flore du Luberon<br />

Georges Guen<strong>de</strong><br />

Nouvelle édition. Encore relativement bien préservé,<br />

le Luberon offre à sa flore une gran<strong>de</strong> diversité <strong>de</strong> climat <strong>et</strong><br />

<strong>de</strong> types d’habitat.<br />

Coll. “Luberon Images <strong>et</strong> Signes” • 16,5 x 22,5 cm<br />

• 144 p. • © 1993-2004 •broché • nombr. ill. couleur<br />

• 15 € • ISBN 2-7449-0476-7<br />

Orchidées sauvages du Luberon<br />

Roland Martin<br />

Le Luberon, en Provence, offre aux orchidées un habitat<br />

<strong>et</strong> un climat privilégiés. Découvrir ces trésors<br />

<strong>de</strong> la nature est un enchantement.<br />

Coll. “Luberon Images <strong>et</strong> Signes” • 16,5 x 22,5 cm<br />

• 224 p. • © 2005 •broché • env. 200 photographies couleur<br />

• 15 € • ISBN 2-7449-0468-6<br />

Fleurs <strong>de</strong> Vanoise<br />

Parc national <strong>de</strong> la Vanoise<br />

Un gui<strong>de</strong> qui recense 615 espèces florales du massif<br />

<strong>de</strong> la Vanoise, dont 500 illustrées par <strong><strong>de</strong>s</strong> photographies<br />

couleur.<br />

12 x 18 cm • 320 p. • © 1993 • cartonné<br />

• 19,81 € • ISBN 2-85744-653-5<br />

Splen<strong>de</strong>ur <strong>et</strong> harmonie <strong><strong>de</strong>s</strong> plantes libres<br />

Pierre Vignes<br />

Grâce à <strong>de</strong> magnifiques planches photographiques,<br />

inhabituelles <strong>et</strong> originales, démarche scientifique<br />

<strong>et</strong> sens artistique s’allient à la découverte esthétique.<br />

22 x 30 cm • 160 p. • © 2004<br />

• 28,50 € • ISBN 2-7449-0450-3


Herbier vagabond<br />

Clau<strong>de</strong> Meslay<br />

Aquarelles <strong>de</strong> M.-F. Delarozière<br />

Une initiation variée <strong>et</strong> passionnante<br />

à la promena<strong>de</strong> botanique.<br />

22,5 x 26,5 cm • 160 p. • © 2002 • cartonné<br />

• aquarelles • 29 € • ISBN 2-7449-0331-0<br />

Herbier <strong><strong>de</strong>s</strong> bords <strong>de</strong> l’eau<br />

Clau<strong>de</strong> Meslay<br />

Aquarelles <strong>de</strong> M.-F. Delarozière<br />

150 plantes <strong><strong>de</strong>s</strong> lacs, étangs, mares, ruisseaux, canaux<br />

d’irrigation <strong>et</strong> leur voisinage immédiat. Un regard sur les<br />

zones aquatiques à la flore si riche.<br />

22,5 x 26,5 cm • 176 p. • © 2004 • cartonné<br />

• aquarelles • 29 € • ISBN 2-7449-0387-6<br />

FAUNE<br />

Le Thon <strong>de</strong> Méditerranée<br />

La saga d’un poisson mythique<br />

Patrick Mouton<br />

Le thon <strong>de</strong> Méditerranée effectue chaque année <strong>de</strong><br />

gran<strong><strong>de</strong>s</strong> migrations <strong>de</strong> plusieurs milliers d’individus.<br />

Une saga passionnante illustrée d’une iconographie<br />

abondante <strong>et</strong> variée.<br />

Coll. “Mémoire <strong>de</strong> mer” • 27 x 21 cm • 144 p. © 2004<br />

• cartonné sous jaqu<strong>et</strong>te • photos couleur <strong>et</strong> N&B<br />

• 26 € • ISBN 2-7449-0408-2<br />

Vie secrète au royaume montagne<br />

Les quatre saisons <strong>de</strong> la faune alpine<br />

Brys Bonnal – Préface Allain Bougrain Dubourg<br />

Saison après saison, <strong><strong>de</strong>s</strong> images sans équivalent,<br />

mais aussi un texte alliant avec beaucoup <strong>de</strong> finesse<br />

les atmosphères poétiques <strong>et</strong> les faits scientifiques.<br />

24 x 23 cm • 144 p. • © 1997 • cartonné • photos couleur<br />

• 22,10 € • ISBN 2-85744-917-8<br />

Faune du Luberon<br />

Max Gallardo<br />

Le Luberon offre à sa faune une gran<strong>de</strong> diversité <strong>de</strong><br />

climat <strong>et</strong> <strong>de</strong> types d’habitat. C<strong>et</strong> ouvrage perm<strong>et</strong> d’en<br />

abor<strong>de</strong>r la connaissance selon ses milieux les plus typés.<br />

Coll. “Luberon Images <strong>et</strong> signes” • 16,5 x 22,5 cm • 144 p.<br />

• © 1993 • broché • 13,73 € • ISBN 2-85744-663-2<br />

Le Luberon <strong><strong>de</strong>s</strong> insectes<br />

Parc naturel régional du Luberon<br />

Un aperçu <strong><strong>de</strong>s</strong> 17 000 espèces d’insectes répertoriées dans<br />

le Luberon. Environ 150 d’entre elles, parmi les plus<br />

significatives, sont citées, dont une centaine illustrées <strong>de</strong><br />

<strong><strong>de</strong>s</strong>sins, d’aquarelles <strong>et</strong> <strong>de</strong> gouaches.<br />

Coll. “Luberon Images <strong>et</strong> Signes” • 16,5 x 22,5 cm<br />

• 120 p. • © 1998 • broché • nbr. ill. couleur<br />

• 12,96 € • ISBN 2-7449-0058-3<br />

Garrigue secrète<br />

Patrick Lorne<br />

D’innombrables instants <strong>de</strong> vie <strong><strong>de</strong>s</strong> insectes <strong>de</strong> la<br />

garrigue, rythmés selon les quatre saisons. Chaque<br />

partie est introduite par un texte dans lequel l’auteur<br />

dévoile les mœurs <strong>de</strong> c<strong>et</strong>te micro-faune <strong>et</strong> ses propres<br />

observations.<br />

26 x 23 cm • 144 p. • © 1998 • relié sous jaqu<strong>et</strong>te<br />

• tout en couleur • 22 € • ISBN 2-7449-0035-4<br />

Les Insectes, amis <strong>de</strong> nos jardins<br />

Pourquoi <strong>et</strong> comment les protéger<br />

Vincent Albouy, Jean-Paul Delfino<br />

Coll. “Que la nature est belle !” • 17 x 23 cm • 136 p.<br />

• © 1995 • broché • 13,73 € • ISBN 2-85744-776-0<br />

L’ARBRE<br />

L’Arbre familier en Provence<br />

De la vocation du platane <strong>et</strong> <strong>de</strong> quelques autres arbres<br />

Annie-Hélène Dufour<br />

Photos Martin Johansen <strong>et</strong> Annie-Hélène Dufour<br />

Au travers <strong>de</strong> c<strong>et</strong> aperçu historique, le lecteur découvrira<br />

si le platane est réellement <strong>de</strong>venu l’élément végétal<br />

dominant, <strong>et</strong> quelle place il occupe dans les pratiques <strong>et</strong><br />

les représentations <strong><strong>de</strong>s</strong> Provençaux.<br />

16 x 24 cm • 112 p. • © 2001 • broché • photos couleur<br />

<strong>et</strong> N&B • 15,50 € • ISBN 2-7449-0296-9<br />

Le Livre <strong>de</strong> l’Olivier<br />

Marie-Claire Amour<strong>et</strong>ti, Georges Com<strong>et</strong><br />

Les aspects culturels, économiques <strong>et</strong> culturaux <strong>de</strong><br />

l’olivier en Méditerranée.<br />

224 p. • © 1999 • 15 € • ISBN 2-7449-0198-9-7<br />

Liège <strong>de</strong> Méditerranée<br />

Gérard Dessain, Margar<strong>et</strong> Ton<strong>de</strong>lier<br />

Le liège, ses mythes, ses utilisations. Un livre où<br />

découvrir origines, transformations, utilisations passées<br />

ou présentes du liège.<br />

21,5 x 29 cm • 80 p. • © 1991 • cartonné<br />

• 14,94 € • ISBN 2-85744-548-2<br />

Le Tilleul<br />

Arbre d’amour, arbre <strong>de</strong> liberté<br />

Guy Bontempelli<br />

Le point sur les croyances, superstitions, culture,<br />

utilisation du bois, vertus thérapeutiques <strong>de</strong> c<strong>et</strong> arbre<br />

symbole.<br />

24 x 27,5 cm • 168 p. • © 1989 • relié • 22,87 €<br />

• ISBN 2-907836-00-5<br />

Le Noyer <strong>et</strong> la noix<br />

J.-J. <strong>de</strong> Corcelles, J.-Y. Catherin <strong>et</strong> Robert Mazin<br />

Ce livre répond à toutes les questions que l’on peut se<br />

poser sur c<strong>et</strong> arbre <strong>et</strong> sur ce fruit secr<strong>et</strong> <strong>et</strong> méconnu.<br />

160 p. • © 1995 • 14,94 € • ISBN 2-85744-791-4<br />

Châtaignes <strong>et</strong> châtaigniers<br />

en régions méditerranéennes françaises<br />

G. Briane, C. Catoire, P. Challaye, J.-J. Gianni,<br />

R. <strong>et</strong> A. Sauvezon<br />

Tous les usages propres au châtaignier <strong>et</strong> à ses fruits,<br />

comment on peut sauver, aujourd’hui, le patrimoine<br />

qu’il constitue, en vivre, l’aimer.<br />

168 p.• © 2001 • 15,10 € • ISBN 2-7449-0186-5<br />

LA FORÊT<br />

La Futaie irrégulière<br />

Théorie <strong>et</strong> pratique <strong>de</strong> la sylviculture irrégulière,<br />

continue <strong>et</strong> proche <strong>de</strong> la nature<br />

Max Bruciamacchie, Brice <strong>de</strong> Turckheim<br />

Max Bruciamacchie, enseignant-chercheur à l’Engref,<br />

Nancy, <strong>et</strong> Brice <strong>de</strong> Turckheim, praticien forestier,<br />

associent ici leurs compétences pour présenter aux<br />

praticiens sylvicoles <strong>et</strong> à tous ceux qui s’intéressent<br />

au <strong>de</strong>venir <strong>de</strong> nos forêts, ce livre <strong><strong>de</strong>s</strong>tiné à gui<strong>de</strong>r leur<br />

réflexion.<br />

17 x 24 cm • broché • N&B <strong>et</strong> couleur • 288 p.<br />

• 29,50 € • ISBN 2-85744-304-8<br />

Incendies <strong>de</strong> forêt <strong>et</strong> argent public<br />

Paul-Henry Fleur<br />

Quelles interventions ? Quelle prévention ?<br />

Quels résultats ? Une enquête objective <strong>et</strong> sérieuse.<br />

192 p. • © 2004 • 18 € • ISBN 2-7449-0484-8<br />

L’Économie <strong>de</strong> la forêt<br />

Mieux exploiter un patrimoine<br />

Henri Prévôt<br />

Une nouvelle approche qui embrasse tous les aspects<br />

<strong>de</strong> la forêt. L’auteur explique le blocage dont souffre ce<br />

secteur économique. Puis, il propose <strong>de</strong> nouveaux outils<br />

financiers <strong>et</strong> <strong>de</strong> nouvelles relations commerciales.<br />

16 x 24 cm • 176 p. • © 1993 • broché<br />

• 19,52 € • ISBN 2-85744-651-9<br />

ÉDITIONS ÉDISUD – 3120, route d’Avignon – FR 13090 Aix-en-Provence<br />

Tél. [0033](0)4 42 21 61 44 – Fax [0033](0)4 42 21 56 20 – info@edisud.com – www.edisud.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!