22.10.2014 Views

THESE de DOCTORAT - cerfacs

THESE de DOCTORAT - cerfacs

THESE de DOCTORAT - cerfacs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LIST OF FIGURES 7<br />

4.10 Analytical solution vs Numerical solution . . . . . . . . . . . . . . . . . . . . . . 65<br />

4.11 The 2D laminar premixed flame burner . . . . . . . . . . . . . . . . . . . . . . . 65<br />

4.12 2D premixed laminar flame. Steady state . . . . . . . . . . . . . . . . . . . . . . . 67<br />

4.13 2D premixed laminar flame. Four snapshorts for one cycle. u ′ /ū = 0.1 . . . . . 68<br />

4.14 Exercise of comparison: CFD method vs. Acoustic solver . . . . . . . . . . . . . 69<br />

4.15 2D premixed laminar flame. Comparison between LES and AVSP-f (u ′ /ū = 0.1). 70<br />

4.16 2D premixed laminar flame. Four snapshorts for one cycle. u ′ /ū = 0.5 . . . . . 70<br />

4.17 2D premixed laminar flame. Comparison between LES and AVSP-f (u ′ /ū = 0.5). 71<br />

5.1 Schematic view of a tranversal section through the premixer and circular manifolds.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

5.2 Two staged swirled premixed combustor. (Courtesy of École Centrale Paris) . . 75<br />

5.3 Computational grid of EC2 combustor . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

5.4 Instantaneous Field of Pope’s Criterion. The black line stands for the isocontour<br />

line Q LES = 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

5.5 Velocity Profiles: ◦ Experimental PIV measurements . . . . . . . . . . . . . . . . 79<br />

5.6 Velocity Profiles: ◦ Experimental PIV measurements . . . . . . . . . . . . . . . . 80<br />

5.7 Heat Release and rate of change of heat release . . . . . . . . . . . . . . . . . . . 80<br />

5.8 Sound Pressure Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

5.9 Exercise of comparison: Direct Approach vs. Hybrid Approach . . . . . . . . . . 82<br />

5.10 Typical iso-surface of the instantaneous unsteady heat release rate ˙ω T . . . . . 83<br />

5.11 Mean sound velocity ¯c over a longitudinal plane of the EC2 combustor . . . . . 83<br />

5.12 The combustion source of noise oscillating at 377 Hz. 5 snapshots during one<br />

cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

5.13 Sound Pressure Levels from the direct and hybrid approaches . . . . . . . . . . 84<br />

5.14 Sound Pressure Levels from the direct and hybrid approaches . . . . . . . . . . 84<br />

5.15 Longitudinal pressure waves oscillating at 377 Hz . . . . . . . . . . . . . . . . . . 85<br />

5.16 Longitudinal pressure waves oscillating at 251 Hz . . . . . . . . . . . . . . . . . . 85<br />

5.17 Longitudinal pressure Waves oscillating at 954 Hz . . . . . . . . . . . . . . . . . 86<br />

5.18 Longitudinal pressure Waves oscillating at 1658 Hz . . . . . . . . . . . . . . . . . 86

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!