THESE de DOCTORAT - cerfacs

THESE de DOCTORAT - cerfacs THESE de DOCTORAT - cerfacs

22.10.2014 Views

132 BIBLIOGRAPHY [62] NICOUD, F., BENOIT, L., AND SENSIAU, C. Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA Journal 45 (2007), 426– 441. [63] NICOUD, F., AND POINSOT, T. Thermoacoustic instabilities: should the Rayleigh criterion be extended to include entropy changes ? Combust. Flame 142 (2005), 153–159. [64] NICOUD, F., AND WIECZOREK, K. About the zero Mach number assumption in the calculation of thermoacoustic instabilities. International Journal of Spray and Combustion Dynamics 1 (2009), 67–112. [65] OBERAI, A., ROKNALDIN, F., AND HUGHES, T. Computation of trailing-edge noise due to turbulent flow over an airfol. AIAA Journal 40 (2002), 2206–2216. [66] PHILLIPS, O. M. On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9 (1960), 1–28. [67] PIERCE, C. D., AND MOIN, P. Progress-variable approach for Large Eddy Simulation of non-premixed turbulent combustionddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504 (2004), 73–97. [68] PITSCH, H. Large Eddy Simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38 (2006), 453–482. [69] PITSCH, H., AND DE LA GENESTE, L. D. Large Eddy Simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29 (2002), 2001–2008. [70] PITSCH, H., AND STEINER, H. Large Eddy Simulation of a turbulent piloted methane/air diffusion flame (sandia flame d). Phys. Fluids 12 (2000), 2541–2554. [71] POINSOT, T., AND CANDEL, S. Interactions between acoustics and combustion. In Acoustics 88. (1988). [72] POINSOT, T., AND LELE, S. Boundary conditions for direct simulation of compressible viscous flows. J. Comput. Phys. 101, 1 (1992), 104–129. [73] POINSOT, T., TROUVÉ, A., VEYNANTE, D., CANDEL, S., AND ESPOSITO, E. Vortex driven acoustically coupled combustion instabilities. J. Fluid Mech. 177 (1987), 265– 292. [74] POINSOT, T., AND VEYNANTE, D. Theoretical and numerical combustion. R. T. Edwards, 2005. [75] POPE, S. B. Turbulent Flows. Cambridge University Press., Cambridge, UK, 2000. [76] PRICE, R., HURLE, I., AND SUDGEN, T. Optical studies of the generation of noise in turbulent flames. In Twelf Symposium (International) on combustion. (Pittsburg, 1968), The Combustion Institute„ pp. 1093–1102. [77] RAO, P., AND MORRIS, P. Use of finite element methods in frequency domain aeroacoustics. AIAA Journal 44 (2006), 1643–1652.

BIBLIOGRAPHY 133 [78] RAYLEIGH, L. The explanation of certain acoustic phenomena. Nature July 18 (1878), 319–321. [79] ROGALLO, R. S., AND MOIN, P. Numerical simulation of turbulent flows. Ann. Rev. Fluid Mech. 16 (1984), 99–137. [80] ROGER, M. Aeroacoustics of wall-bounded flows. In Lecture Series. March 9-13 (2009), Von Karman Institute for Fluid Dynamics. [81] ROGERS, D. E., AND MARBLE, F. E. A mechanism for high frequency oscillations in ramjet combustors and afterburners. Jet Propulsion 26 (1956), 456–462. [82] ROUX, S., LARTIGUE, G., POINSOT, T., MEIER, U., AND BÉRAT, C. Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and largeeddy simulations. Combust. Flame 141 (2005), 40–54. [83] SAAD, Y., AND SCHULTZ, M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (1986), 856–869. [84] SCHMITT, P., POINSOT, T., SCHUERMANS, B., AND GEIGLE, K. Large Eddy Simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner. J. Fluid Mech. 570 (17-46), 17–46. [85] SCHRAM, C. A boundary element extension of Curle’s analogy for non-compact geometries at low-mach numbers. J. Sound Vib. 322, 264-281 (200). [86] SCHULLER, T. Mécanismes de Couplage dans les Interactions Acoustique-Combustion. Phd thesis, Ecole Centrale de Paris, 2003. [87] SEARBY, G., AND ROCHWERGER, D. A parametric acoustic instability in premixed flames. J. Fluid Mech. 231 (1991), 529–543. [88] SELLE, L. Simulation aux grandes échelles des interactions flamme-acoustique dans un écoulement vrillé. Phd thesis, INP Toulouse, 2004. [89] SELLE, L., BENOIT, L., POINSOT, T., NICOUD, F., AND KREBS, W. Joint use of compressible Large-Eddy Simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combust. Flame 145, 1-2 (2006), 194–205. [90] SELLE, L., LARTIGUE, G., POINSOT, T., KOCH, R., SCHILDMACHER, K. U., KREBS, W., PRADE, B., KAUFMANN, P., AND VEYNANTE, D. Compressible Large-Eddy Simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137, 4 (2004), 489–505. [91] SELLE, L., NICOUD, F., AND POINSOT, T. The actual impedance of non-reflecting boundary conditions: implications for the computation of resonators. AIAA Journal 42, 5 (2004), 958–964. [92] SENGISSEN, A. X., KAMPEN, J. F. V., HULS, R. A., STOFFELS, G. G. M., KOK, J. B. W., AND POINSOT, T. LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation. Combust. Flame 150 (2007), 40–53.

BIBLIOGRAPHY 133<br />

[78] RAYLEIGH, L. The explanation of certain acoustic phenomena. Nature July 18 (1878),<br />

319–321.<br />

[79] ROGALLO, R. S., AND MOIN, P. Numerical simulation of turbulent flows. Ann. Rev.<br />

Fluid Mech. 16 (1984), 99–137.<br />

[80] ROGER, M. Aeroacoustics of wall-boun<strong>de</strong>d flows. In Lecture Series. March 9-13 (2009),<br />

Von Karman Institute for Fluid Dynamics.<br />

[81] ROGERS, D. E., AND MARBLE, F. E. A mechanism for high frequency oscillations in<br />

ramjet combustors and afterburners. Jet Propulsion 26 (1956), 456–462.<br />

[82] ROUX, S., LARTIGUE, G., POINSOT, T., MEIER, U., AND BÉRAT, C. Studies of mean and<br />

unsteady flow in a swirled combustor using experiments, acoustic analysis and largeeddy<br />

simulations. Combust. Flame 141 (2005), 40–54.<br />

[83] SAAD, Y., AND SCHULTZ, M. GMRES: A generalized minimal residual algorithm for<br />

solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (1986), 856–869.<br />

[84] SCHMITT, P., POINSOT, T., SCHUERMANS, B., AND GEIGLE, K. Large Eddy Simulation<br />

and experimental study of heat transfer, nitric oxi<strong>de</strong> emissions and combustion instability<br />

in a swirled turbulent high pressure burner. J. Fluid Mech. 570 (17-46), 17–46.<br />

[85] SCHRAM, C. A boundary element extension of Curle’s analogy for non-compact geometries<br />

at low-mach numbers. J. Sound Vib. 322, 264-281 (200).<br />

[86] SCHULLER, T. Mécanismes <strong>de</strong> Couplage dans les Interactions Acoustique-Combustion.<br />

Phd thesis, Ecole Centrale <strong>de</strong> Paris, 2003.<br />

[87] SEARBY, G., AND ROCHWERGER, D. A parametric acoustic instability in premixed<br />

flames. J. Fluid Mech. 231 (1991), 529–543.<br />

[88] SELLE, L. Simulation aux gran<strong>de</strong>s échelles <strong>de</strong>s interactions flamme-acoustique dans un<br />

écoulement vrillé. Phd thesis, INP Toulouse, 2004.<br />

[89] SELLE, L., BENOIT, L., POINSOT, T., NICOUD, F., AND KREBS, W. Joint use of compressible<br />

Large-Eddy Simulation and Helmholtz solvers for the analysis of rotating mo<strong>de</strong>s in<br />

an industrial swirled burner. Combust. Flame 145, 1-2 (2006), 194–205.<br />

[90] SELLE, L., LARTIGUE, G., POINSOT, T., KOCH, R., SCHILDMACHER, K. U., KREBS, W.,<br />

PRADE, B., KAUFMANN, P., AND VEYNANTE, D. Compressible Large-Eddy Simulation<br />

of turbulent combustion in complex geometry on unstructured meshes. Combust.<br />

Flame 137, 4 (2004), 489–505.<br />

[91] SELLE, L., NICOUD, F., AND POINSOT, T. The actual impedance of non-reflecting<br />

boundary conditions: implications for the computation of resonators. AIAA Journal<br />

42, 5 (2004), 958–964.<br />

[92] SENGISSEN, A. X., KAMPEN, J. F. V., HULS, R. A., STOFFELS, G. G. M., KOK, J. B. W.,<br />

AND POINSOT, T. LES and experimental studies of cold and reacting flow in a swirled<br />

partially premixed burner with and without fuel modulation. Combust. Flame 150<br />

(2007), 40–53.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!