Continuous Wavelet Transform on the Hyperboloid - Université de ...

Continuous Wavelet Transform on the Hyperboloid - Université de ... Continuous Wavelet Transform on the Hyperboloid - Université de ...

22.10.2014 Views

On the other hand, applying the Fourier-Helgason transform on s ∗ f we get ∫ (s ̂∗ f)(ν, ξ)= ∫ = ∫ = ∫ = ∫ = ∫ = H 2 + H 2 + H 2 + H 2 + H 2 + H 2 + (s ∗ f)(y)(y · ξ) − 1 2 −iν dµ(y) ∫ dµ(y) dµ(x)s([y] −1 x)f(x)(y · ξ) − 1 2 −iν H+ 2 ∫ dµ(x)f(x) dµ(y)s([y] −1 x)(y · ξ) − 1 2 −iν ∫ dµ(x)f(x) ∫ dµ(x)f(x) ∫ dµ(x)f(x) H 2 + H 2 + H 2 + H 2 + dµ(y)s([x] −1 y)(y · ξ) − 1 2 −iν dµ(y)s(y)([x]y · ξ) − 1 2 −iν dµ(y)s(y)(y · [x] −1 ξ) − 1 2 −iν . Since ξ belongs to the projective null cone, we can write (y · [x] −1 ξ)=([x] −1 ξ) 0 (y · and using ([x] −1 ξ) 0 =(x · ξ), we finally obtain [x] −1 ) ξ , (63) ([x] −1 ξ) 0 ∫ ∫ ( (s ̂∗ f)(ν, ξ)= dµ(x)f(x)(x · ξ) − 1 2 +iν [x] −1 ) − 1 2 ξ −iν dµ(y)s(y) y · H+ 2 H+ 2 ([x] −1 ξ) 0 = ˆf(ν, ξ)ŝ(ν) where we used the rotation invariance of s. Based on Theorem 3, we can write the hyperbolic continuous wavelet transform of a function f with respect to an axisymmetric wavelet ψ as W f (a, g) ≡ W f (a, [x]) = ( ¯ψa ∗ f ) (x). (64) 6.2 ong>Waveletong>s on the hyperboloid We now come to the heart of this paper : we prove that the hyperbolic wavelet transform is a well-defined invertible map, provided the wavelet satisfies an admissibility condition. Theorem 4 (Admissibility condition) Let ψ ∈ L 1 (H+ 2 ) be an axisymmetric function, a ↦→ α(a) a positive function on R + ∗ and m, M two constants such 18

that 0

On <strong>the</strong> o<strong>the</strong>r hand, applying <strong>the</strong> Fourier-Helgas<strong>on</strong> transform <strong>on</strong> s ∗ f we get<br />

∫<br />

(s ̂∗ f)(ν, ξ)=<br />

∫<br />

=<br />

∫<br />

=<br />

∫<br />

=<br />

∫<br />

=<br />

∫<br />

=<br />

H 2 +<br />

H 2 +<br />

H 2 +<br />

H 2 +<br />

H 2 +<br />

H 2 +<br />

(s ∗ f)(y)(y · ξ) − 1 2 −iν dµ(y)<br />

∫<br />

dµ(y) dµ(x)s([y] −1 x)f(x)(y · ξ) − 1 2 −iν<br />

H+<br />

2 ∫<br />

dµ(x)f(x) dµ(y)s([y] −1 x)(y · ξ) − 1 2 −iν<br />

∫<br />

dµ(x)f(x)<br />

∫<br />

dµ(x)f(x)<br />

∫<br />

dµ(x)f(x)<br />

H 2 +<br />

H 2 +<br />

H 2 +<br />

H 2 +<br />

dµ(y)s([x] −1 y)(y · ξ) − 1 2 −iν<br />

dµ(y)s(y)([x]y · ξ) − 1 2 −iν<br />

dµ(y)s(y)(y · [x] −1 ξ) − 1 2 −iν .<br />

Since ξ bel<strong>on</strong>gs to <strong>the</strong> projective null c<strong>on</strong>e, we can write<br />

(y · [x] −1 ξ)=([x] −1 ξ) 0<br />

(y ·<br />

and using ([x] −1 ξ) 0 =(x · ξ), we finally obtain<br />

[x] −1 )<br />

ξ<br />

, (63)<br />

([x] −1 ξ) 0<br />

∫<br />

∫<br />

(<br />

(s ̂∗ f)(ν, ξ)= dµ(x)f(x)(x · ξ) − 1 2 +iν [x] −1 ) −<br />

1<br />

2<br />

ξ<br />

−iν<br />

dµ(y)s(y) y ·<br />

H+<br />

2 H+<br />

2 ([x] −1 ξ) 0<br />

= ˆf(ν, ξ)ŝ(ν)<br />

where we used <strong>the</strong> rotati<strong>on</strong> invariance of s. <br />

Based <strong>on</strong> Theorem 3, we can write <strong>the</strong> hyperbolic c<strong>on</strong>tinuous wavelet transform<br />

of a functi<strong>on</strong> f with respect to an axisymmetric wavelet ψ as<br />

W f (a, g) ≡ W f (a, [x]) = ( ¯ψa ∗ f ) (x). (64)<br />

6.2 <str<strong>on</strong>g>Wavelet</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> hyperboloid<br />

We now come to <strong>the</strong> heart of this paper : we prove that <strong>the</strong> hyperbolic wavelet<br />

transform is a well-<strong>de</strong>fined invertible map, provi<strong>de</strong>d <strong>the</strong> wavelet satisfies an<br />

admissibility c<strong>on</strong>diti<strong>on</strong>.<br />

Theorem 4 (Admissibility c<strong>on</strong>diti<strong>on</strong>) Let ψ ∈ L 1 (H+ 2 ) be an axisymmetric<br />

functi<strong>on</strong>, a ↦→ α(a) a positive functi<strong>on</strong> <strong>on</strong> R + ∗ and m, M two c<strong>on</strong>stants such<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!