22.10.2014 Views

Continuous Wavelet Transform on the Hyperboloid - Université de ...

Continuous Wavelet Transform on the Hyperboloid - Université de ...

Continuous Wavelet Transform on the Hyperboloid - Université de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Note that <strong>the</strong> transform FH maps functi<strong>on</strong>s <strong>on</strong> H+ 2 to secti<strong>on</strong>s of L and <strong>the</strong><br />

inverse transform maps secti<strong>on</strong>s to functi<strong>on</strong>s. Thus, we have<br />

Propositi<strong>on</strong> 1 [Helgas<strong>on</strong>, 1994] The Fourier-Helgas<strong>on</strong> transform <strong>de</strong>fined in<br />

equati<strong>on</strong>s (34, 35) extends to an isometry of L 2 (H+, 2 dµ) <strong>on</strong>to L 2 (L, dη) so<br />

that we have ∫<br />

∫<br />

|f(x)| 2 dµ(x) = | ˆf(ξ,ν)| 2 dη(ξ,ν). (41)<br />

H 2 +<br />

jΞ<br />

6 <str<strong>on</strong>g>C<strong>on</strong>tinuous</str<strong>on</strong>g> <str<strong>on</strong>g>Wavelet</str<strong>on</strong>g> <str<strong>on</strong>g>Transform</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Hyperboloid</strong><br />

One way of c<strong>on</strong>structing <strong>the</strong> CWT <strong>on</strong> <strong>the</strong> hyperboloid H 2 + would be to find a<br />

suitable group c<strong>on</strong>taining both SO 0 (1, 2) and <strong>the</strong> group of dilati<strong>on</strong>s, and <strong>the</strong>n<br />

find its square-integrable representati<strong>on</strong>s in <strong>the</strong> Hilbert space ψ ∈ L 2 (H 2 + , dµ),<br />

where dµ is <strong>the</strong> normalized SO 0 (1, 2)-invariant measure <strong>on</strong> H 2 +. We will take<br />

ano<strong>the</strong>r approach by directly studying <strong>the</strong> following wavelet transform<br />

∫<br />

ψ a,g (x)f(x)dµ(x) =〈ψ a,g ,f〉,<br />

where <strong>the</strong> notati<strong>on</strong> ψ a,g has been introduced in (4) and will be now ma<strong>de</strong><br />

more precise in terms of group representati<strong>on</strong>. Looking at pseudo-rotati<strong>on</strong>s<br />

(moti<strong>on</strong>s) <strong>on</strong>ly, we have <strong>the</strong> unitary acti<strong>on</strong> :<br />

[U g ψ](x) =f(g −1 x), g ∈ SO 0 (1, 2), ψ ∈ L 2 (H 2 +, dµ). (42)<br />

Clearly, U g is a quasi-regular representati<strong>on</strong> of SO 0 (1, 2) <strong>on</strong> L 2 (H 2 + ).<br />

We now have to incorporate <strong>the</strong> dilati<strong>on</strong>. However, <strong>the</strong> measure dµ is not dilati<strong>on</strong><br />

invariant, so that a Rad<strong>on</strong>-Nikodym <strong>de</strong>rivative λ(a, x) must be inserted,<br />

namely:<br />

λ(a, x) = dµ(a−1 x)<br />

, a ∈ R + ∗ . (43)<br />

dµ(x)<br />

The functi<strong>on</strong> λ is a 1-cocycle and satisfies <strong>the</strong> equati<strong>on</strong><br />

λ(a 1 a 2 ,x)=λ(a 1 ,x)λ(a 2 ,a −1<br />

1 x). (44)<br />

In <strong>the</strong> case of dilating <strong>the</strong> hyperboloid through c<strong>on</strong>ic dilati<strong>on</strong> with parameter<br />

p>0, we have<br />

λ(a, χ) = dcoshχ 1/a<br />

dcoshχ<br />

= 1 a<br />

sinh χ 1/a<br />

sinh χ<br />

cosh pχ<br />

cosh pχ 1/a<br />

, (45)<br />

with sinh pχ 1/a = 1 sinh pχ. Note here that <strong>the</strong> case p = 1 is unique in <strong>the</strong><br />

a<br />

2<br />

sense that λ(a, χ) does not <strong>de</strong>pend <strong>on</strong> χ : λ(a, χ) =a −2 .In<strong>the</strong>casep =1,we<br />

14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!