22.10.2014 Views

Debris-flow monitoring in Japan

Debris-flow monitoring in Japan

Debris-flow monitoring in Japan

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bolzano 2012 Workshop on Monitor<strong>in</strong>g Bedload and <strong>Debris</strong> Flows<br />

<strong>Debris</strong>-<strong>flow</strong> <strong>monitor<strong>in</strong>g</strong> <strong>in</strong> <strong>Japan</strong><br />

Hiroshi SUWA<br />

Center for Spatial Information Science, University of Tokyo,<br />

and Research Center for Disaster Mitigation of Urban Cultural Heritage,<br />

Ritsumeikan University<br />

suwa@csis.u-tokyo.ac.jp<br />

Photo: September 4, 2011 <strong>Debris</strong> <strong>flow</strong> disaster at Nachi Katsuura, Wakayama, <strong>Japan</strong>


More than 70 % of ma<strong>in</strong><br />

islands of <strong>Japan</strong> are<br />

composed of steep mounta<strong>in</strong>s<br />

that are be<strong>in</strong>g produced by the<br />

active tectonics and blessed<br />

with hazards of earthquakes,<br />

volcanic activities, ra<strong>in</strong>storms<br />

and so on.<br />

We <strong>Japan</strong>ese suffers serious<br />

disasters from these hazards.<br />

Landslides and debris <strong>flow</strong>s<br />

br<strong>in</strong>g us significant damages<br />

and great losses of lives every<br />

year.


<strong>Debris</strong>-<strong>flow</strong> disasters <strong>in</strong> the late 60’s<br />

A succession of serious debris-<strong>flow</strong><br />

disasters <strong>in</strong> <strong>Japan</strong> <strong>in</strong> the late 60’s<br />

forced us to promote studies on debris<br />

<strong>flow</strong>.<br />

For <strong>in</strong>stance, the 17 August 1968<br />

heavy ra<strong>in</strong>storm <strong>in</strong>duced a debris <strong>flow</strong>.<br />

It <strong>in</strong>corporated two buses on a highway<br />

and claimed 104 lives of passengers.<br />

At that time, this author was an<br />

undergraduate student.<br />

This disaster forced him jo<strong>in</strong> a study<br />

group of DPRI of Kyoto University<br />

which just started a debris-<strong>flow</strong><br />

<strong>monitor<strong>in</strong>g</strong> at Mount Yakedake <strong>in</strong> 1970.<br />

The slope of this debris <strong>flow</strong> that caused the<br />

17 August 1968 Hida River Bus Accident


<strong>Debris</strong>-<strong>flow</strong> <strong>monitor<strong>in</strong>g</strong> by DPRI, Kyoto Univ.<br />

<strong>Debris</strong>-<strong>flow</strong> <strong>monitor<strong>in</strong>g</strong> has been conducted at the torrents where<br />

debris-<strong>flow</strong> frequency is high. Four slopes are at volcanoes.<br />

• 1970-now: Kamikamihorizawa torrent of Mount Yakdake, <strong>Japan</strong><br />

(with Matsumoto Sabo Erosion Control Office) (Volcano)<br />

• 1991-1998: Mizunashigawa torrent of Mount Unzen, <strong>Japan</strong><br />

(Volcano)<br />

• 1991-1998 Jiang-jia Gou torrent <strong>in</strong> Yunnan, Ch<strong>in</strong>a (with Chendu<br />

Institute of Mounta<strong>in</strong> Hazards and Environments) (Sedimentary rock)<br />

• 1991-1993 Gu-xian Gou torrent <strong>in</strong> Xīzàng, Ch<strong>in</strong>a (with Lanzhou<br />

Institute of Glaciology and Geocryology) (Metamorphic rock)<br />

• 1991-1995 Kali Bebeng torrent of Mount Merapi, Indonesia<br />

(with Research Institute for Water Resources Development) (Volcano)<br />

• 2000-2006 Kali Curah Lengkong torrent of Mount Semeru, Indonesia<br />

(with Dr. Lavigne, F., Prof. Thouret, J-P., and VSI) (Volcano)<br />

• 2000 Hushe River <strong>in</strong> Karakorum, Pakistan (Metamorphic rock)


Hushe River,<br />

Karakorum<br />

Jiang-jia Gou,<br />

Yunnan<br />

Kamikamihorizawa<br />

torrent,<br />

Mt. Yakedake<br />

Gu-xian Gou,<br />

Xizang<br />

Bebeng R.<br />

Mt Merapi,<br />

Java Island<br />

Mizunashigawa<br />

torrent, Mt. Unzen<br />

Curah Lengkong<br />

R. Mt. Semeru,<br />

Java Island


Monitor<strong>in</strong>g at Mount Yakedake<br />

L<strong>in</strong>k to video 1


Topics from the synthesis of the <strong>monitor<strong>in</strong>g</strong><br />

1)Rheological type<br />

2)Pulsation<br />

3)Mass and boulder focus<strong>in</strong>g<br />

4)Ground tremor and sound<br />

5) Test of moderation of debris-<strong>flow</strong><br />

discharge


RHEOLOGICAL TYPE<br />

A stony type-debris <strong>flow</strong> is<br />

dom<strong>in</strong>ant at the torrents of<br />

active volcanoes,<br />

while the turbulent type at<br />

Fushe River (metamorphic<br />

rock),<br />

and the viscous type at<br />

Jiang-jia Gou torrent<br />

(sedimentary rock).


RHEOLOGICAL TYPE<br />

Astonytype-debris <strong>flow</strong> is<br />

dom<strong>in</strong>ant at the torrents of<br />

active volcanoes,<br />

while the turbulent type at<br />

Fushe River (metamorphic<br />

rock),<br />

and the viscous type at<br />

Jiangjia-gou torrent<br />

(sedimentary rock).<br />

= f (rock type, water availability,<br />

geomorphic aspects of torrent, etc)<br />

(Turbulent)<br />

Relative height<br />

(Viscous)<br />

Relative height=<strong>flow</strong> depth/median diameter of solid particle<br />

(Stony)<br />

After Takahashi (2000)


PULSATION<br />

<strong>Debris</strong> <strong>flow</strong>s are monitored<br />

as a s<strong>in</strong>gle episode of<br />

surg<strong>in</strong>g <strong>in</strong> m<strong>in</strong>or cases.<br />

They, <strong>in</strong> major cases, appear<br />

as a series of pulsation of<br />

multiple surges.<br />

L<strong>in</strong>k to video 2


PULSATION<br />

Pulsation every 2–10 hours <strong>in</strong> the<br />

case of debris <strong>flow</strong>s from glacier<br />

outburst flood <strong>in</strong> the Hushe River,<br />

Karakorum (Suwa, 2003)<br />

64 surges <strong>in</strong>140<br />

m<strong>in</strong>utes dur<strong>in</strong>g the<br />

13 August 1993<br />

debris <strong>flow</strong>s at<br />

Jiang-jia Gou<br />

torrent (Suwa et<br />

al., 1999)<br />

9 surges <strong>in</strong> 15 m<strong>in</strong>utes dur<strong>in</strong>g the<br />

17 July 1997 debris <strong>flow</strong>s at Mount<br />

Yakedake.


PULSATION<br />

We have to pay attention to<br />

the pulsation especially <strong>in</strong> the<br />

midst of rescue works !!!<br />

64 surges <strong>in</strong>140<br />

m<strong>in</strong>utes dur<strong>in</strong>g the<br />

13 August 1993<br />

debris <strong>flow</strong>s at<br />

Jiang-jia Gou<br />

torrent (Suwa et<br />

al., 1999)<br />

9 surges <strong>in</strong> 15 m<strong>in</strong>utes dur<strong>in</strong>g the<br />

17 July 1997 debris <strong>flow</strong>s at Mount<br />

Yakedake.


PULSATION<br />

<strong>Debris</strong> <strong>flow</strong>s are monitored<br />

as a s<strong>in</strong>gle episode of<br />

surg<strong>in</strong>g <strong>in</strong> m<strong>in</strong>or cases.<br />

They appear as a series of<br />

pulsation of multiple surges<br />

whose <strong>in</strong>termission ranges<br />

from 1 m<strong>in</strong>ute to several<br />

hours accord<strong>in</strong>g to pulsation<br />

mechanism.<br />

1. Pulsation of ra<strong>in</strong>fall<br />

<strong>in</strong>tensity (Yakedake, etc.)<br />

2. Successive breach of<br />

landslide dams<br />

3. Break down of force<br />

balance between shear<br />

strength and shear stress <strong>in</strong><br />

the bed slurry (Jiang-jia Gou)<br />

4. Instability of the <strong>flow</strong><br />

regime (Yakedake, Jiang-jia<br />

Gou, etc.)<br />

5. Pulsation of meltwater<br />

discharge from glaciers<br />

(Fushe River)


MASS AND BOULDER<br />

FOCUSING<br />

Mass focus<strong>in</strong>g toward the surge<br />

front: Flow <strong>in</strong>stability<br />

(for All debris <strong>flow</strong>s)<br />

Boulder focus<strong>in</strong>g toward the<br />

surge front: A comb<strong>in</strong>ation of a<br />

few factors<br />

(for Boulder rich <strong>flow</strong>s).<br />

1. Upward migration of larger<br />

boulders by dispersive pressure.<br />

2. Upward migration of larger<br />

boulders by k<strong>in</strong>etic siev<strong>in</strong>g.<br />

3. Higher term<strong>in</strong>al velocity of<br />

larger boulders (Suwa, 1988).<br />

4. Exposure of larger boulders to<br />

higher velocities <strong>in</strong> the upper<br />

layers <strong>in</strong> the <strong>flow</strong>, etc.


MASS AND BOULDER<br />

FOCUSING<br />

Mass focus<strong>in</strong>g toward the surge<br />

front: Flow <strong>in</strong>stability<br />

(for All debris <strong>flow</strong>s)<br />

Boulder focus<strong>in</strong>g toward the<br />

surge front: A comb<strong>in</strong>ation of a<br />

few factors<br />

(for Boulder rich <strong>flow</strong>s).<br />

1. Upward migration of larger<br />

boulders by dispersive pressure.<br />

2. Upward migration of larger<br />

boulders by k<strong>in</strong>etic siev<strong>in</strong>g.<br />

3. Higher term<strong>in</strong>al velocity of<br />

larger boulders (Suwa, 1988).<br />

4. Exposure of larger boulders to<br />

higher velocities <strong>in</strong> the upper<br />

layers <strong>in</strong> the <strong>flow</strong>, etc.<br />

Excessively boulder-rich frontal<br />

part of debris <strong>flow</strong> is called as<br />

boulder dam.<br />

Mass and boulder focus<strong>in</strong>g to the<br />

<strong>flow</strong> front is a major factor for<br />

debris-<strong>flow</strong> super-elevation.<br />

The super-elevation often<br />

unexpectedly enlarges the<br />

hazardous area over elevated<br />

grounds on the terraces.


GROUND TREMOR AND<br />

ACOUSTIC SOUND<br />

Due to the focus<strong>in</strong>g, debris <strong>flow</strong>s<br />

radiates elastic waves and acoustic<br />

sounds especially <strong>in</strong> the case with<br />

boulder dam.<br />

Evacuation is possible from the<br />

hazards detect<strong>in</strong>g sounds and/or<br />

ground tremor.<br />

Discharge estimation is capable<br />

from ground-tremor <strong>monitor<strong>in</strong>g</strong>.


GROUND TREMOR AND<br />

ACOUSTIC SOUND<br />

Efficiency of energy conversion from<br />

potential energy to elastic-wave<br />

energy is the magnitude of 10 -3 .<br />

Very low compared with efficiency<br />

10 -1 for earthquakes.<br />

Energy radiation from the 17 July 1997 Yakedake debris <strong>flow</strong>s<br />

After Suwa et al. (2003)


Sand reservoir is the best<br />

for complete trap of debris<br />

<strong>flow</strong>s <strong>in</strong> the case the space<br />

for reservoir is obta<strong>in</strong>able.<br />

MODERATION TESTS OF DEBRIS-FLOW DISCHARGE<br />

Unzen, <strong>Japan</strong><br />

Sarno, Italy<br />

Sand reservoir


MODERATION TESTS OF DEBRIS-FLOW DISCHARGE<br />

Sand reservoir is the best<br />

for complete trap of debris<br />

<strong>flow</strong>s <strong>in</strong> the case the space<br />

for reservoir is obta<strong>in</strong>able.<br />

Otherwise…..<br />

Tests for moderat<strong>in</strong>g debris-<strong>flow</strong><br />

discharge are necessary and<br />

were tried at the <strong>monitor<strong>in</strong>g</strong> site<br />

of Mount Yakedake.<br />

1. Grid net debris-<strong>flow</strong> breaker<br />

2. Flat-board debris-<strong>flow</strong> breaker<br />

3. R<strong>in</strong>g-net debris-<strong>flow</strong> breaker


MODERATION TESTS OF DEBRIS-FLOW DISCHARGE<br />

Grid net debris-<strong>flow</strong> breaker<br />

is designed to check debris <strong>flow</strong>s.<br />

And partly successful. It captured<br />

small size <strong>flow</strong>s, however the net<br />

was broken by large <strong>flow</strong>s.


MODERATION TESTS OF DEBRIS-FLOW DISCHARGE<br />

Flat-board debris-<strong>flow</strong> breaker<br />

is designed to check the boulder<br />

dam. And partly successful.<br />

The mechanism is as follows.<br />

The boulders <strong>in</strong> the dam lose their<br />

buoyancy as soon as the dam<br />

arrives at and gets on the board.<br />

Due to the change <strong>in</strong> the fluid<br />

pressure distribution of the <strong>flow</strong>,<br />

the change from hydrostatic<br />

pressure regime <strong>in</strong>to quasiatmospheric<br />

one.<br />

Then the boulders suddenly s<strong>in</strong>k<br />

and <strong>in</strong>terlock each other to br<strong>in</strong>g<br />

about large forces of <strong>in</strong>ternal friction,<br />

and the dam has to cease mov<strong>in</strong>g.


MODERATION TESTS OF DEBRIS-FLOW DISCHARGE<br />

R<strong>in</strong>g-net debris-<strong>flow</strong> breaker<br />

is designed to completely check the<br />

boulder dam with its flexible and<br />

shock-absorb<strong>in</strong>g structure. And the<br />

test was almost fully successful.<br />

For <strong>in</strong>stance, the July 12, 2005<br />

debris <strong>flow</strong> was checked.<br />

The breaker captured 2090 m 3 of<br />

deposits, which was 54% of the<br />

total 3880-m 3 volume.<br />

L<strong>in</strong>k to video 3


MODERATION TESTS OF DEBRIS-FLOW DISCHARGE<br />

The July 12, 2005 debris <strong>flow</strong> was<br />

checked.<br />

The breaker captured 2090 m 3 of<br />

deposits, which was 54% of the<br />

total 3880-m 3 volume.<br />

However, the video analysis<br />

showed the sediments of 2090 m 3<br />

were the sum of the deposits<br />

brought about both by the debris<strong>flow</strong><br />

surges and by the successive<br />

hyper-concentrated stream <strong>flow</strong>.


Conclud<strong>in</strong>g remarks so far are<br />

given as follows.<br />

1) Stony type debris <strong>flow</strong>s are major at the active volcanoes, while a<br />

turbulent type at Fushe River, and a viscous type at Jiangj-ia Gou.<br />

2) Although some debris <strong>flow</strong>s are monitored as a s<strong>in</strong>gle episode, they<br />

often appear as a series of multiple surg<strong>in</strong>g pulsation, whose<br />

<strong>in</strong>termission time be<strong>in</strong>g depend<strong>in</strong>g to their pulsation mechanism.<br />

3) Focus<strong>in</strong>g of mass towards the <strong>flow</strong> fronts are common, and focus<strong>in</strong>g<br />

of large boulders towards the front is marked <strong>in</strong> boulder-rich type.<br />

4) Due to these focus<strong>in</strong>g, debris <strong>flow</strong>s radiate ground tremors and<br />

acoustic sounds. Those signals are useful for early warn<strong>in</strong>g as well as<br />

for estimat<strong>in</strong>g debris-<strong>flow</strong> discharge.<br />

5) Moderation of debris-<strong>flow</strong> hydrographs is achievable us<strong>in</strong>g new<br />

types of debris-<strong>flow</strong> breakers. However complete check by use of sand<br />

reservoirs are preferable.<br />

These outcomes are expected to give us implication for effective<br />

hazard-mitigation strategies aga<strong>in</strong>st debris <strong>flow</strong>s.


And I would like to draw your attention to the<br />

follow<strong>in</strong>g po<strong>in</strong>t:<br />

Water availability controls debris-<strong>flow</strong> motion and deposition.


RHEOLOGICAL TYPE<br />

The stony type debris <strong>flow</strong><br />

is dom<strong>in</strong>ant at the torrents<br />

of active volcanoes,<br />

while the turbulent type at<br />

Fushe River (metamorphic<br />

rock),<br />

and the viscous type at<br />

Jiangjia-gou torrent<br />

(sedimentary rock).<br />

= f (rock type, water availability,<br />

geomorphic aspects of torrent, etc)<br />

(Turbulent)<br />

Relative height<br />

(Viscous)<br />

Relative height=<strong>flow</strong> depth/median diameter of solid particle<br />

(Stony)<br />

After Takahashi (2000)


RAINFALL CONTROL of BOULDER DAMS<br />

Hydrologic analysis revealed that<br />

debris <strong>flow</strong>s can be categorized <strong>in</strong>to<br />

three types (Okano et al., 2012).<br />

Type I is large and have a boulder dam<br />

filled with slurry matrix.<br />

Type II is small and has a boulder<br />

dam scarcely filled with matrix.<br />

Type III is small and has a boulder<br />

dam filled with matrix.<br />

Namely, ra<strong>in</strong>fall controls not only<br />

magnitude of debris <strong>flow</strong> but also<br />

boulder-dam structure.


RAINFALL CONTROL<br />

of BOULDER DAMS<br />

Ra<strong>in</strong>fall of high <strong>in</strong>tensity <strong>in</strong> a<br />

duration as short as 10 m<strong>in</strong>utes<br />

<strong>in</strong>duces fast and large storm<br />

runoff to the headwaters and<br />

source reaches of debris <strong>flow</strong>.<br />

While large ra<strong>in</strong>falls <strong>in</strong> a<br />

duration as long as 24 hours<br />

raise water content <strong>in</strong> the<br />

bottom deposits along the<br />

debris-<strong>flow</strong> growth reaches and<br />

generate substantial runoff from<br />

the tributaries.<br />

The group<strong>in</strong>g to 3 types can be<br />

understood based on water<br />

availability for debris <strong>flow</strong>s <strong>in</strong> the<br />

source and growth reaches of<br />

the debris <strong>flow</strong> (Okano et al.,<br />

2012)


DEPOSITION (1)<br />

<strong>Debris</strong> <strong>flow</strong>s decelerate with decrease <strong>in</strong> slope<br />

angle <strong>in</strong> the downstream reaches and the fan, and<br />

halt there to deposit coarse clastic materials.<br />

Photos show a debris <strong>flow</strong> <strong>in</strong> motion (A), deposits<br />

artificially trapped by a r<strong>in</strong>g-net debris-<strong>flow</strong> breaker<br />

(B), and a debris-<strong>flow</strong> lobe <strong>in</strong> the fan (C).<br />

The pictures show that the ma<strong>in</strong> part of boulder<br />

dams consists of openwork structure.<br />

It should be marked that the debris <strong>flow</strong>s of Type II<br />

leaves this openwork structure.<br />

However attention may be paid to a scenario that<br />

this openwork structure might be caused also by<br />

escape of slurry matrix at the moment of debris-<strong>flow</strong><br />

term<strong>in</strong>ation as Hooke (1967) suggested.


DEPOSITION (2)<br />

Suwa and Yamakoshi (1999)<br />

showed the regulated distribution<br />

of debris-<strong>flow</strong> lobes <strong>in</strong> the fan<br />

where swollen lobes locate <strong>in</strong> the<br />

upper fan and the flat lobes <strong>in</strong> the<br />

lower fan.<br />

This distribution now <strong>in</strong>dicates that<br />

the debris-<strong>flow</strong>s of types I and III<br />

can travel longer distance <strong>in</strong> the<br />

fan and leaves flat lobes with<br />

matrix, while the type II travels<br />

shorter distance and leaves<br />

swollen lobes without matrix.<br />

The longer travel distance may be<br />

ascribed to the higher mobility of<br />

the <strong>flow</strong>s of types I and III.<br />

We may say that the data <strong>in</strong>dicate<br />

the ra<strong>in</strong>fall control of debris-<strong>flow</strong><br />

deposition.


Here the follow<strong>in</strong>g additional remarks are given<br />

6. Three types of debris <strong>flow</strong>s are found: Large <strong>flow</strong>s with boulder dam<br />

with matrix (Type I), small <strong>flow</strong>s with boulder dam without matrix (Type<br />

II), and small <strong>flow</strong>s with boulder dam with matrix (Type III).<br />

7. Ra<strong>in</strong>fall controls this difference through water availability for debris<br />

<strong>flow</strong>s at the source and the growth reaches.<br />

8. <strong>Debris</strong> <strong>flow</strong>s term<strong>in</strong>ate <strong>in</strong> the fan leav<strong>in</strong>g 2 types of debris-<strong>flow</strong><br />

lobes: swollen lobe and flat lobe. Ma<strong>in</strong> source of the flat lobe is<br />

attributed to Types I and III, while the swollen lobe to Type II.<br />

9. It must be important to understand this concept of volcanic debris<br />

<strong>flow</strong>s from their <strong>in</strong>itiation to term<strong>in</strong>ation for mitigation of debris-<strong>flow</strong><br />

hazards.


References (1)<br />

Okano, K., Suwa, H. and Kanno,T. (2012) Characterization of debris <strong>flow</strong>s by<br />

ra<strong>in</strong>storm condition at a torrent on the Mount Yakedake volcano, <strong>Japan</strong>,<br />

Geomorphology, 136, 88-94.<br />

Suwa, H., Okano, K. and Kanno, T. (2009) Behavior of debris <strong>flow</strong>s monitored<br />

at the test slopes <strong>in</strong> the Kamikamihorizawa Creek, Mount Yakedake, <strong>Japan</strong>,<br />

International Journal of Erosion Control Eng<strong>in</strong>eer<strong>in</strong>g, 2(2), 33-45.<br />

Thouret, J-C, Lavigne, F., Suwa, H., Sukatja, B. and Surono (2007) Volcanic<br />

hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars,<br />

Bullet<strong>in</strong> of Volcanology, 70(2), 221-244.<br />

Lavigne, F. and Suwa, H. (2004) Contrasts between debris <strong>flow</strong>s,<br />

hyperconcentrated <strong>flow</strong>s and stream <strong>flow</strong>s at a channel of Mount Semeru,<br />

East Java, Indonesia, Geomorphology, Vol.61, 41-58.<br />

Suwa, H. (2003) Repetition of debris <strong>flow</strong>s on sunny days at a torrent <strong>in</strong><br />

Karakorum, Proc. 3rd Inter. Conf. on <strong>Debris</strong>-Flow Hazards Mitigation:<br />

Mechanics, Prediction, and Assessment ed. by D. Rikkenmann & G.Wieczorek,<br />

Balkema, 1025-1035.


References (2)<br />

Suwa, H., Akamatsu, J. and Nagai, Y. (2003) Energy radiation by elastic<br />

waves from debris <strong>flow</strong>s, , Proc. 3rd Inter. Conf. on <strong>Debris</strong>-Flow Hazards<br />

Mitigation: Mechanics, Prediction, and Assessment ed. by D. Rikkenmann &<br />

G.Wieczorek, Balkema, 895-904.<br />

Okunishi, K. and Suwa, H. (2001): Assessment of <strong>Debris</strong>-Flow Hazards of<br />

Alluvial Fans, Natural Hazards, 23, 259-269.<br />

Yamakoshi, T. and Suwa, H. (2000): Post-eruption characteristics of surface<br />

runoff and sediment discharge on the slopes of pyroclastic-<strong>flow</strong> deposits,<br />

Mount Unzen, <strong>Japan</strong>, Trans. <strong>Japan</strong>. Geomorph. Union, 21(4), 469-497.<br />

Suwa H. and Yamakoshi, T.(2000) : Estimation of debris-<strong>flow</strong> motion by field<br />

survey, Proc. 2nd Inter. Conf. on <strong>Debris</strong>-Flow Hazards Mitigation: Mechanics,<br />

Prediction, and Assessment ed. by G. Wieczorek & N. Naeser, Balkema, ISBN<br />

90 5809 149 X, 293-299.<br />

Suwa, H., Yamakoshi, T. and Sato, K. (2000) : Relationship between debris<strong>flow</strong><br />

discharge and ground vibration, Proc. 2nd Inter. Conf. on <strong>Debris</strong>-Flow<br />

Hazards Mitigation: Mechanics, Prediction, and Assessment ed. by G.<br />

Wieczorek & N. Naeser, Balkema, ISBN 90 5809 149 X, 311-318.


References (3)<br />

Lavigne, F., Thouret, J., Voight, B., Suwa, H. and Sumaryono, A. (2000) :<br />

Lahars at Merapi volcano, Central Java: an overview, Journal of Volcanology<br />

and Geothermal Research, Vol. 100, 423-456.<br />

Lavigne, F., Thouret, J., Voight, B., Young, K., LaHusen, R., Marso, J., Suwa,<br />

H., Sumaryono, A., Sayudi, D. and Dejean, M. (2000) : Instrumental lahar<br />

<strong>monitor<strong>in</strong>g</strong> at Merapi Volcano, Central Java, Indonesia, Journal of Volcanology<br />

and Geothermal Research, Vol. 100, 457-478.<br />

Suwa, H. and Yamakoshi, T. (1999): Sediment discharge by storm runoff at<br />

volcanic torrents affected by eruption, Zeitschrift fur Geomorph. N. F., Suppl.-<br />

Bd. 114, 68-88.<br />

Kawakami, H., Suwa, H., Marui, H., Sato, O. and Izumi, K. (1999) : The Otari<br />

debris <strong>flow</strong> disaster occurred <strong>in</strong> December 1996, Proc. Inter. Sympo. on Slope<br />

Stability Eng<strong>in</strong>eer<strong>in</strong>g “Slope Stability Eng<strong>in</strong>eer<strong>in</strong>g”, 1379-1384.<br />

Suwa, H. and T. Yamakoshi (1997) : Eruption, debris <strong>flow</strong> and<br />

hydrogeomorphic condition at Mount Unzen, Proc. First Conf. on <strong>Debris</strong>-Flow<br />

Hazard Mitigation, ASCE, 289-298.


References (4)<br />

Suwa, H. and A. Sumaryono (1996): Sediment discharge by storm runoff from<br />

a creek on Merapi Volcano, Jour. <strong>Japan</strong>. Soc. Erosion Control Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Vol.48, Special issue, 117-128.<br />

Okunishi, K., H. Suwa and S. Hamana(1988): Hydrological control of erosion<br />

and sediment transport <strong>in</strong> volcanic torrent, Hydrological Science-Journal,<br />

Vol.33, No.6, pp.575-587.<br />

Suwa, H. and S. Okuda(1988): Seasonal Variation of Erosional Processes <strong>in</strong><br />

the Kamikamihori Valley of Mt. Yakedake, Northern <strong>Japan</strong> Alps, CATENA,<br />

Suppl. 13, pp.61-77.<br />

Suwa, H.(1988): Focus<strong>in</strong>g Mechanism of Large Boulders to a <strong>Debris</strong>-Flow<br />

Front, Trans. <strong>Japan</strong>. Geomorph. Union, Vol.9, No.3, pp.151-178.<br />

Okuda, S. and H. Suwa(1984): Some relationships between debris <strong>flow</strong><br />

motion and micro-topography for the Kamikamihori Fan, North <strong>Japan</strong> Alps, <strong>in</strong><br />

“Catchment experiments <strong>in</strong> Fluvial Geomorphology” ed. by Burt, T. P. & D. E.<br />

Wall<strong>in</strong>g, Geo Books Norwich, pp.447-464.


References (5)<br />

Suwa, H. and S. Okuda(1983): Deposition of <strong>Debris</strong> Flows on a Fan Surface,<br />

Mt. Yakedake, <strong>Japan</strong>, Zeitschrift fur Geomorphology, Suppl.-Bd.46, pp.79-101.<br />

Okuda, S., H. Suwa, K. Okunishi, K. and K. Yokoyama(1981): Depositional<br />

Processes of <strong>Debris</strong> Flow at Kamikamihori Fan, Northern <strong>Japan</strong> Alps, Trans.<br />

<strong>Japan</strong>. Geomorph. Union, Vol.2, No.2, pp.353-361.<br />

Suwa, H. and S. Okuda(1981):Topographical Change Caused by <strong>Debris</strong><br />

Flow <strong>in</strong> Kamikamihori Valley, Northern <strong>Japan</strong> Alps, Trans. <strong>Japan</strong>. Geomorph.<br />

Union, Vol.2, No.2, pp. 343-352.<br />

Okuda, S., H. Suwa, K. Okunishi, K. Yokoyama and M. Nakano(1980):<br />

Observation of the motion of debris <strong>flow</strong> and its geomorphological effects,<br />

Zeitschrift fur Geomorphology, Suppl.-Bd.35, pp.142-163.<br />

Suwa, H. and S. Okuda(1980): Dissection of valleys by debris <strong>flow</strong>s,<br />

Zeitschrift fur Geomorphology, Suppl.-Bd.35, pp.164-182.<br />

Suwa, H., S. Okuda and K. Yokoyama(1973): Observation System on Rocky<br />

Mud<strong>flow</strong>, Bull. Disas. Prev. Res. Inst. Kyoto Univ., No.23, pp.59-73.


References (6)<br />

Hooke, R. L. (1967): Processes on arid region alluvial fans, Jour. Geol., 75,<br />

438-460.<br />

Suwa, H., Okano, K. and Kanno, T. (2011) Forty years of debris-<strong>flow</strong><br />

<strong>monitor<strong>in</strong>g</strong> at Kamikamihorizawa Creek, Mount Yakedake, Proc. 5th<br />

International Conference on <strong>Debris</strong>-Flow Hazards Mitigation: Mechanics,<br />

Prediction, and Assessment, ed. by R. Genevois, D.L. Hamilton and A.<br />

Prest<strong>in</strong><strong>in</strong>zi, Italian Journal of Eng<strong>in</strong>eer<strong>in</strong>g Geology and Environment - Book,<br />

Casa Editrice La Sapienza, Rome, Italy, 605-613.<br />

Suwa, H., Mizuno, T. and Ishii, T. (2010) Prediction of a landslide and analysis<br />

of slide motion with reference to the 2004 Ohto slide <strong>in</strong> Nara, <strong>Japan</strong>,<br />

Geomorphology, 124(3-4), 157-163.<br />

Suwa, H., Mizuno, T. Suzuki, S., Yamamoto, Y. and Ito, K. (2008) Sequential<br />

processes <strong>in</strong> a landslide hazard at a slate quarry <strong>in</strong> Okayama, <strong>Japan</strong>, Natural<br />

Hazards, 45(2), 321-331.<br />

Suwa, H. and Nakaya, S. (2007) Two catastrophic debris avalanches triggered<br />

by ra<strong>in</strong>storms <strong>in</strong> <strong>Japan</strong> and Philipp<strong>in</strong>es, Proc. 4th Inter. Conf. on <strong>Debris</strong>-Flow<br />

Hazards Mitigation: Mechanics, Prediction, and Assessment ed. by Chenglung<br />

Chen & Jon J. Major, Millpress Science Publishers, 341-351

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!