21.10.2014 Views

Outline Beauty of Structure Morphology Functional Morphology ...

Outline Beauty of Structure Morphology Functional Morphology ...

Outline Beauty of Structure Morphology Functional Morphology ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Outline</strong><br />

• <strong>Functional</strong> morphology and biomechanics<br />

Funktionelle Morphologie und Biomechanik<br />

• An example: biological surfaces and interfaces<br />

• Biological attachment devices<br />

• Phenomenon <strong>of</strong> ceiling walk: Why morphology is so important?<br />

Stanislav N. Gorb<br />

• Biomimetics<br />

Vorlesung ‚Einführung in die Biologie‘<br />

<strong>Beauty</strong> <strong>of</strong> <strong>Structure</strong><br />

<strong>Morphology</strong><br />

Development<br />

Population biology<br />

Biomechanics<br />

Morphometry:<br />

(quantitative<br />

approach to study<br />

growth and<br />

development)<br />

Pathomorphology:<br />

(studies<br />

morphological<br />

abnormalities and<br />

deviations)<br />

Medicine<br />

Veterinary<br />

Descriptive:<br />

(provides basic<br />

information on<br />

biological structure)<br />

<strong>Morphology</strong><br />

studies on biological structure<br />

<strong>Functional</strong>:<br />

(understanding <strong>of</strong> the<br />

relationship between<br />

structure and function)<br />

Comparative:<br />

(comparison <strong>of</strong><br />

organisms)<br />

Taxonomy<br />

Systematics<br />

Evolution<br />

Ecomophology:<br />

(studies environmental<br />

effects on the structure<br />

and morphological<br />

adaptations to<br />

environment)<br />

Ecology<br />

<strong>Functional</strong> <strong>Morphology</strong><br />

Biomechanics<br />

<strong>Functional</strong> morphology focuses on the link between animal form and performance<br />

Gaining insight in the precise way in which biological machinery performs under relevant conditions is <strong>of</strong> primary importance<br />

Chemistry<br />

Biomechanics<br />

Physics<br />

<strong>Functional</strong> <strong>Morphology</strong><br />

Integrative Biology<br />

Physiology<br />

Neurobiology<br />

Sensorics<br />

Control<br />

Behaviour<br />

Pipes and pumps:<br />

(circulatory systems,<br />

lung, gills, etc.,<br />

suspension feeding)<br />

Human/biomedical<br />

areas: (prostheses,<br />

orthopedics,<br />

cardiovascular systems,<br />

motion analysis)<br />

Biological materials:<br />

(rigid vs. pliant,<br />

biocomposites,<br />

viscoelasticity)<br />

Biomechanics<br />

<strong>Structure</strong>s and systems:<br />

(beams, columns, ties,<br />

hydrostatic systems)<br />

Living in moving fluids:<br />

(plants and animals in<br />

winds and fluids)<br />

Molecular<br />

biology<br />

Materials<br />

science<br />

Evolution<br />

Biomimetics<br />

Bionics<br />

Biologically-Inspired<br />

Technologies<br />

Microsystems:<br />

(motility mechanisms,<br />

filtration mechanisms,<br />

diffusion)<br />

Locomotion:<br />

(swimming, flying,<br />

walking, running)<br />

Ecomechanics:<br />

(cost/benefit <strong>of</strong> activities,<br />

interspecific activities,<br />

behavioral mechanics)<br />

1


<strong>Outline</strong><br />

Surfaces and Interfaces<br />

• <strong>Functional</strong> morphology and biomechanics<br />

• An example: biological surfaces and interfaces<br />

• Biological attachment devices<br />

• Phenomenon <strong>of</strong> ceiling walk: Why morphology is so important?<br />

• Biomimetics<br />

Romalea microptera<br />

sensorics<br />

attachment<br />

drag reduction<br />

optics (anti-reflection)<br />

grinding<br />

anti-friction<br />

sound generation<br />

respiration<br />

thermoregulation<br />

coloration pattern<br />

self-cleaning<br />

etc., etc....<br />

Technological Surfaces<br />

Biological Surfaces vs Technological Surfaces<br />

FEATURES<br />

BIO<br />

TECHNO<br />

drag reduction<br />

optics<br />

coloration<br />

friction<br />

self-cleaning<br />

haptics (s<strong>of</strong>t-touch)<br />

thermoregulation<br />

multifunctionality very high low<br />

production method top-to-down down-to-top<br />

lifetime short long<br />

environmental conditions narrow broad<br />

adaptability strong weak<br />

degradability, recyclability very high low<br />

Biological Surfaces vs Technological Surfaces<br />

Surface Phenomena in Materials Science<br />

TECHNO<br />

<strong>Structure</strong> Properties<br />

Function<br />

BIO<br />

Function<br />

<strong>Structure</strong> Properties<br />

adhesion<br />

friction<br />

anti-wear, anti-abrasion<br />

lubrication<br />

filtering<br />

sensorics<br />

wettability<br />

self-cleaning<br />

anti-fouling<br />

thermoregulation<br />

optical reflection<br />

anti-adhesion<br />

anti-friction<br />

controllable wear<br />

anti-aquaplaning<br />

non-wettability<br />

anti-reflection<br />

2


Goals<br />

Diversity <strong>of</strong> Surfaces<br />

to understand<br />

functional<br />

principles<br />

studies on<br />

ultrastructure,<br />

material<br />

properties,<br />

force range,<br />

motion in<br />

biological<br />

systems<br />

FUNCTIONAL PROJECTS<br />

to develop<br />

methods<br />

microscopy<br />

techniques,<br />

measurements <strong>of</strong><br />

stiffness, hardness,<br />

adhesion, friction at<br />

local and global<br />

scales<br />

to understand<br />

evolutionary<br />

tendencies<br />

broad comparative<br />

studies<br />

EVOLUTIONARY PROJECTS<br />

to find interesting<br />

properties <strong>of</strong> systems<br />

transfer <strong>of</strong> the natural design<br />

solutions in the material science<br />

BIOMIMETCS PROJECTS<br />

Surface-Related Biomechanics<br />

Applications <strong>of</strong> Surface Related Phenomena<br />

Pipes and pumps:<br />

(circulatory systems,<br />

lung, gills, etc.,<br />

suspension feeding)<br />

Human/biomedical<br />

areas: (prostheses,<br />

orthopedics,<br />

cardiovascular systems,<br />

motion analysis)<br />

Microsystems:<br />

(motility mechanisms,<br />

filtration mechanisms,<br />

diffusion)<br />

Biological materials:<br />

(rigid vs. pliant,<br />

biocomposites,<br />

viscoelasticity)<br />

Biomechanics<br />

Locomotion:<br />

(swimming, flying,<br />

walking, running)<br />

<strong>Structure</strong>s and systems:<br />

(beams, columns, ties,<br />

hydrostatic systems)<br />

Living in moving fluids:<br />

(plants and animals in<br />

winds and fluids)<br />

Ecomechanics:<br />

(cost/benefit <strong>of</strong> activities,<br />

interspecific activities,<br />

behavioral mechanics)<br />

Continental AG<br />

Ehand<br />

biomechanics (animal<br />

locomotion, attachment<br />

systems)<br />

biomimetics (surface<br />

structured composite<br />

materials)<br />

medicine (joint mechanics,<br />

properties <strong>of</strong> prosteses)<br />

ecology (animal-plant<br />

interactions)<br />

agriculture (pest control by<br />

preventing attachment <strong>of</strong><br />

particular insects to the<br />

plant surface)<br />

Frictional Systems vs Anti-Frictional Systems<br />

Surface Adaptations<br />

for Friction and Drag Reduction<br />

Contacting surfaces<br />

Drag<br />

Force enhancing<br />

systems<br />

Surfaces are<br />

predefined<br />

One surface is<br />

unpredictable<br />

Force reducing<br />

systems<br />

Surfaces are<br />

predefined<br />

One surface is<br />

unpredictable<br />

Minimising friction<br />

in joints for economic<br />

energy expenditure<br />

Maximising friction:<br />

Friction is needed to<br />

generate the force to<br />

move on a substrate or<br />

to overcome the drag<br />

caused by friction<br />

elsewhere<br />

• head arrester<br />

• locking devices<br />

• soles <strong>of</strong> animals<br />

• attachment devices<br />

• joints<br />

• skin in fluid media<br />

•snakeskin<br />

Living creatures have developed systems for decreasing friction (anti-frictional<br />

systems), and vice versa, for increasing it (frictional systems). Interestingly, in both<br />

cases the purpose <strong>of</strong> such a system is to save muscular energy<br />

3


Joints and Articular Cartilage<br />

<strong>Outline</strong><br />

femur<br />

• Cartilage is the gliding surface <strong>of</strong> the joint<br />

• Friction coefficient is very low (0.0026)<br />

lig. collaterale<br />

• <strong>Functional</strong> morphology and biomechanics<br />

lig. cruciatum<br />

meniscus medialis<br />

• An example: biological surfaces and interfaces<br />

meniscus lateralis<br />

• Biological attachment devices<br />

Synovial membrane (SM) <strong>of</strong><br />

human cartilage composed <strong>of</strong><br />

collagen fibers, elastic fibers,<br />

and synovial cells responsible<br />

for secretion <strong>of</strong> proteoglycans<br />

and hyaluronic acid<br />

A, macrophage-like A cells<br />

Ad, white adipose cells<br />

B, B cells<br />

BL, basal lamina<br />

Cap, capillaries<br />

CF, collagen fibers<br />

EF, elastic fibers<br />

F, fibroblasts<br />

FL, fibrous layer<br />

NE, nerve endings<br />

P, processes <strong>of</strong> synovial cells<br />

Ph, phagolysosomes<br />

SG, secretory granules<br />

• Phenomenon <strong>of</strong> ceiling walk: Why morphology is so important?<br />

• Biomimetics<br />

Picture: Kristic 1991 (Springer Verlag)<br />

Attachment Devices<br />

Head-Arresting System in Dragonflies<br />

are known in<br />

• head-arresting<br />

systems<br />

• wing-to-body binding<br />

mechanisms<br />

• joints <strong>of</strong> leg segments<br />

• unguitractor plate<br />

• ovipositor<br />

Head-Arresting System in Dragonflies<br />

Head-Arresting System in Dragonflies<br />

The head is large compared<br />

with the area <strong>of</strong> articulation to<br />

the thorax and function as<br />

specialised gravity organ<br />

The head is extremely mobile<br />

Head<br />

MF<br />

SPC<br />

The disadvantage <strong>of</strong> this<br />

construction - weak<br />

mechanical stability - is<br />

compensated by so called<br />

arresting system<br />

Thorax<br />

The system consists <strong>of</strong> a pair<br />

mobile neck sclerites<br />

In the medial position, sclerites loose<br />

their contact to the head: the head is<br />

free mobile<br />

In the lateral position, sclerites contact<br />

to the microtrichia fields <strong>of</strong> the head: the<br />

head is arrested<br />

4


Head-Arresting System in Dragonflies<br />

Head-Arresting System in Dragonflies<br />

Gorb, 1999<br />

Lestes sponsa<br />

50 µm<br />

Neck<br />

Gorb, 1999 Lestes sponsa<br />

50 µm Head<br />

Head-Arresting System in Dragonflies<br />

Head-Arresting System in Dragonflies<br />

Neck<br />

Neck<br />

Aeshna mixta<br />

Head<br />

Coenagrion puella<br />

Head<br />

Head-Arresting System in Dragonflies<br />

Head-Arresting System in Dragonflies<br />

Neck<br />

Neck<br />

Zygonyx ida<br />

Head<br />

Epipleoneura fernandezi<br />

Head<br />

5


Wing-Interlocking <strong>Structure</strong>s in Beetles<br />

Unguitractor Plate<br />

The plate is connected through<br />

a long tendon with the claw<br />

flexor muscle. On the other side,<br />

it is connected to claws through<br />

two short tendons<br />

TA<br />

TDM<br />

Tribolium castaneum<br />

•CL<br />

•AX<br />

•TN<br />

•TA<br />

•UT<br />

•PT<br />

claw<br />

axis <strong>of</strong> rotation<br />

tendon<br />

tarsomere<br />

unguitractor<br />

support<br />

When the flexor muscle is<br />

contracted and the claw has<br />

contact to the substrate, the<br />

unguitractor plate presses itself<br />

against the supporting surface<br />

<strong>of</strong> the terminal tarsomere<br />

Unguitractor Plate<br />

Coxa-Arresting Mechanism in Cicada<br />

In cicada <strong>of</strong> the family<br />

Cercopidae, the medial<br />

surfaces <strong>of</strong> coxae <strong>of</strong> the third<br />

leg pair are covered by<br />

microtrichia<br />

To expose contact between<br />

unguitractor plate and<br />

corresponding supporting structure<br />

<strong>of</strong> the tarsomere, a part <strong>of</strong> the<br />

tarsomere wall was removed<br />

Melolontha melolontha<br />

Cercopis vulnerata<br />

Coxa-Arresting Mechanism in Cicada<br />

Friction Enhancement:<br />

Two Corresponding Surfaces<br />

These surfaces fixate coxae<br />

together during jump<br />

performance. Such a<br />

mechanism provides<br />

synchronisation <strong>of</strong> fast<br />

movements <strong>of</strong> both legs<br />

Cercopis vulnerata<br />

6


Armoured Membranes in Diptera<br />

Armoured Membranes in Diptera<br />

These highly-complex friction systems<br />

can define the direction <strong>of</strong> folds and<br />

fixate intersegmental membranes in a<br />

folded condition<br />

Fixation <strong>of</strong> intersegmental membranes in a<br />

folded condition may be a mechanism<br />

holding head <strong>of</strong> Calliphora in perturbed<br />

condition (up to 60°)<br />

Tabanus bovinus<br />

Myathropa florea<br />

<strong>Outline</strong><br />

Releasable Adhesives<br />

• <strong>Functional</strong> morphology and biomechanics<br />

• An example: biological surfaces and interfaces<br />

• Biological attachment devices<br />

• Phenomenon <strong>of</strong> ceiling walk: Why morphology is so important?<br />

• Biomimetics<br />

Ceiling Situation (Static)<br />

Ceiling Situation<br />

friction<br />

adhesion<br />

weight<br />

contact formation<br />

-fast<br />

- reliable<br />

- minimal load on the ceiling<br />

strong adhesion<br />

contact breakage<br />

-fast<br />

- minimal force<br />

7


Insect Terrain<br />

structures for<br />

interlocking and<br />

friction enhancement<br />

on rough substrata<br />

-claws<br />

- stiff pointed hairs<br />

structures for<br />

adhesion and friction<br />

enhancement on<br />

smooth substrata<br />

- pulvilli<br />

- arolia<br />

- euplantulae<br />

- etc, etc.<br />

Two Designs <strong>of</strong> Animal Attachment Pads<br />

Two Designs <strong>of</strong> Attachment Pads<br />

Gorb and Beutel, 2001, Naturwissenschaften<br />

Blattaria<br />

Orthoptera<br />

Plecoptera<br />

Hymenoptera<br />

Homoptera<br />

Heteroptera<br />

Diptera<br />

Coleoptera<br />

Megaloptera<br />

Raphidioptera<br />

arolium<br />

pulvilli<br />

euplantulae<br />

hairy soles<br />

present<br />

smooth<br />

present<br />

present<br />

absent<br />

hairy<br />

absent<br />

absent<br />

present in some species<br />

smooth in some species<br />

present in some species<br />

Smooth Attachment System<br />

Pad Surface and Cuticle Architecture<br />

Gorb, Jiao, Scherge, 2000<br />

Gorb, Jiao, Scherge, 2000<br />

Tettigonia viridissima<br />

Tettigonia viridissima<br />

8


Material Design<br />

Hairy Pads <strong>of</strong> Insects<br />

Gorb, Jiao, Scherge, 2000<br />

Beutel and Gorb, 2001, J. Zool. Syst. Evol. Res.<br />

A. Dobsonfly Sialis lutaria<br />

B. Beetle Priacma serrata<br />

C. Beetle Rhagonycha fulva<br />

D. Fly Bibio nigriventris<br />

E. Fly Episyrphus balteatus<br />

F. Earwig Forficula auricularia<br />

G. Beetle Cantharis fusca<br />

Tettigonia viridissima<br />

Bioinspired Patterned Surfaces<br />

Dimension and Density <strong>of</strong> Setae<br />

Sitti and Fearing 2002 Northen and Turner, 2005<br />

Glassmaker<br />

et al., 2004<br />

Gorb, Peressadko et al.<br />

Arzt, Gorb, Spolenak, 2003, PNAS<br />

Setal density dependence<br />

on the body mass<br />

Geim et al., 2003<br />

Campolo, Jones, Fearing, 2003<br />

Yurdumakan et al.,<br />

2005<br />

Dependence <strong>of</strong> the hair density<br />

(terminal elements) <strong>of</strong> the<br />

attachment pads on the body mass<br />

in hairy pad systems <strong>of</strong><br />

representatives from diverse animal<br />

groups<br />

<strong>Outline</strong><br />

Experiment<br />

with the <strong>Structure</strong>d Polymer Surface<br />

Peressadko and Gorb, 2004, J. Adhesion<br />

• <strong>Functional</strong> morphology and biomechanics<br />

• An example: biological surfaces and interfaces<br />

• Biological attachment devices<br />

• Phenomenon <strong>of</strong> ceiling walk: Why morphology is so important?<br />

• Biomimetics<br />

9


Literature<br />

• W. Nachtigall (2001) Biomechanik. Grundlagen - Beispiele -<br />

Übungen (Taschenbuch). F. Vieweg & Sohn: Braunschweig.<br />

• S. Vogel (2003) Comparative Biomechanics: Life's Physical<br />

World. Princeton Univ. Press.<br />

• M. Scherge and S. N. Gorb (2001) Biological micro- and<br />

nanotribology. Springer: Berlin.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!