17.10.2014 Views

Passive modelocking - the Keller Group

Passive modelocking - the Keller Group

Passive modelocking - the Keller Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ultrafast Laser Physics <br />

Ursula <strong>Keller</strong> / Lukas Gallmann<br />

ETH Zurich, Physics Department, Switzerland<br />

www.ulp.ethz.ch<br />

Chapter 8: <strong>Passive</strong> <strong>modelocking</strong><br />

Ultrafast Laser Physics<br />

ETH Zurich


Pulse-shaping in passive <strong>modelocking</strong><br />

U. <strong>Keller</strong>, Ultrafast solid-state lasers, Landolt-Börnstein, <strong>Group</strong> VIII/1B1, edited by G. Herziger, H. Weber, R. Proprawe,<br />

pp. 33-167, 2007, ISBN 978-3-540-26033-2


Slow saturable absorber and dynamic gain saturation<br />

loss<br />

gain<br />

pulse<br />

time<br />

Conditions for stable <strong>modelocking</strong>:<br />

1) at <strong>the</strong> beginning loss is larger than gain:<br />

l 0<br />

> g 0<br />

2) absorber saturates faster than <strong>the</strong> gain:<br />

3) absorber recovers faster than <strong>the</strong> gain:<br />

E sat ,A<br />

< E sat ,L<br />

⇔ A A<br />

σ A<br />

τ A<br />

< τ L<br />

< A L<br />

σ L


Colliding pulse <strong>modelocking</strong> (CPM)<br />

Amplifier jet: Rhodamine 6G (R6G)<br />

Saturable absorber jet: DODCI (3,3-Diethylocadicarbocyanin)<br />

Rhodamine 6G (R6G) σ L<br />

= 1.36 ⋅10 −16 cm 2 τ L<br />

= 4 ns<br />

DODCI σ A<br />

= 0.52 ⋅10 −16 cm 2 τ A<br />

= 2.2 ns<br />

Photo-isomer σ A<br />

= 1.08 ⋅10 −16 cm 2 τ A<br />

≈ 1 ns


Colliding pulse <strong>modelocking</strong> (CPM)<br />

CPM Rhodamine 6G-laser Typical Best [86Val]<br />

FWHM pulse duration<br />

τ p<br />

100 fs 27 fs<br />

Emission wavelength<br />

λ L<br />

620 nm 620 nm<br />

Average power<br />

P av<br />

2 ⋅ 25 mW 2 ⋅ 20 mW<br />

Resonator length<br />

L<br />

3.3 m 3.3 m<br />

Repetition rate<br />

f rep<br />

100 MHz 100 MHz<br />

Pulse peak power in resonator<br />

P peak<br />

100 kW 190 kW<br />

Output coupling transmission<br />

T out<br />

Pump power<br />

Amplifier jet thickness (at focus) and<br />

pressure<br />

Absorber jet thickness (at focus) and<br />

pressure<br />

Prisms for GDD-compensation<br />

2.5 % 3.5 %<br />

5 W at 514<br />

nm<br />

4 W at 514 nm<br />

80 m<br />

300 m nozzle, 40<br />

psi<br />

30 – 50 m<br />

120 m nozzle, 15<br />

psi<br />

Quartz glass


Loss modulation for a slow and fast saturable absorber<br />

dq( t)<br />

dt<br />

= − q( t)<br />

− q 0<br />

τ A<br />

− q t<br />

( ) P ( t)<br />

E sat ,A<br />

slow saturable absorber:<br />

τ p<br />

> τ A<br />

neglect recovery within pulse duration follows “immediately” incoming power<br />

dq( t)<br />

dt<br />

≈ − q t<br />

( ) P ( t)<br />

E sat ,A<br />

0 = − q( t)<br />

− q 0<br />

τ A<br />

− q t<br />

( ) P ( t)<br />

E sat ,A<br />

T R<br />

∫<br />

P ( t) = E p<br />

f ( t) , where f t<br />

0<br />

( )dt = 1<br />

( )<br />

( )<br />

P sat ,A<br />

= E sat ,A<br />

, ⇒ P t = I t A<br />

τ A<br />

P sat ,A<br />

I sat ,A<br />

( ) = q 0<br />

exp − E p<br />

q t<br />

⎡<br />

⎢<br />

⎣<br />

t<br />

⎤<br />

f ( t′<br />

)d t′<br />

E sat ,A<br />

∫ ⎥<br />

0 ⎦<br />

q( t) =<br />

q 0<br />

1+ I A<br />

t ( ) I sat ,A


Slow saturable absorber and dynamic gain saturation<br />

q( t) = σ A<br />

N A<br />

d A<br />

e −E p( t) E sat ,A<br />

P ( t) = E p<br />

f ( t)<br />

E p<br />

( t) = A L<br />

A t′<br />

t<br />

∫<br />

−∞<br />

( ) 2 d t′<br />

loss<br />

gain<br />

pulse<br />

time<br />

g( t) = σ L<br />

N L<br />

d L<br />

e −E p( t) E sat ,L<br />

Assume slow saturable absorber and slow gain saturation<br />

net gain window:<br />

g T<br />

( t) = g t<br />

( ) − q( t) = g 0<br />

e −E p t<br />

( ) E sat ,L<br />

− q A<br />

e −E p( t) E sat ,A<br />

− l R<br />

resonator loss:<br />

s-parameter:<br />

l 0<br />

= q A<br />

+ l R<br />

s ≡ E sat,L<br />

E sat,A<br />

q A<br />

= σ A<br />

N A<br />

d A


Slow saturable absorber and dynamic gain saturation<br />

g T<br />

( t) = g( t) − q( t) = g 0<br />

e −E p( t) E sat ,L<br />

− q A<br />

e −E p( t) E sat ,A<br />

− l R<br />

e x ≈ 1+ x + x2<br />

2<br />

g T<br />

(E) ≈ (g 0<br />

− q A<br />

− l R<br />

) + (q A<br />

− g 0<br />

s )⋅ E + 1 2<br />

g 0<br />

s 2 − q A<br />

For stable pulse generation we need to have g T < 0 at both beginning and end of <strong>the</strong> pulse.<br />

(see later that this does not always need to be <strong>the</strong> case - see soliton <strong>modelocking</strong>)<br />

⎛<br />

⎝<br />

⎜<br />

⎞<br />

⎠<br />

⎟ ⋅ E 2<br />

loss<br />

gain<br />

g T ( 0) ≤ 0<br />

g T<br />

Shorter pulses for larger max<br />

( E p ) ≤ 0<br />

g T<br />

pulse<br />

time<br />

g T max = g T<br />

( E max ), with<br />

∂g T<br />

∂E E=Emax<br />

= 0


Slow saturable absorber and dynamic gain saturation<br />

g T<br />

(E) ≈ (g 0<br />

− q A<br />

− l R<br />

) + (q A<br />

− g 0<br />

s )⋅ E + 1 2<br />

⎛<br />

⎝<br />

⎜<br />

g 0<br />

s 2 − q A<br />

⎞<br />

⎠<br />

⎟ ⋅ E 2<br />

For stable pulse generation we assume to have g T < 0 at both beginning and end of <strong>the</strong> pulse.<br />

g T<br />

max<br />

loss<br />

gain<br />

pulse<br />

time<br />

g T ( 0) ≤ 0<br />

g T<br />

max<br />

E<br />

Shorter pulses for larger<br />

( p ) ≤ 0<br />

g T<br />

g T max = g T<br />

g T max = l 0<br />

2<br />

( E max ), with<br />

( 1− 1 s) 2<br />

1− 1 s 2<br />

( )<br />

∂g T<br />

∂E E=Emax<br />

= 0<br />

optimize s-parameter: goal in CPM<br />

s<br />

3 < s = σ AA L<br />

σ L<br />

A A<br />

< 12


Colliding pulse <strong>modelocking</strong> (CPM)<br />

jet thickness 30-50 µm<br />

jet thickness ≈80 µm<br />

Amplifier jet: Rhodamine 6G (R6G)<br />

Saturable absorber jet: DODCI (3,3-Diethylocadicarbocyanin)<br />

3 < s = σ AA L<br />

σ L<br />

A A<br />

< 12<br />

Optimization of s-parameter:<br />

• mode size: factor of 4<br />

• colliding pulse in absorber (bi-directional pulse propagation in ring laser): factor of 2 - 3<br />

need thin absorber < spatial extend of pulses (100 fs pulses)<br />

d<br />

s ≈ 12<br />

A<br />

< c n τ p<br />

≈ 20 µm


Slow saturable absorber and dynamic gain saturation<br />

Master equation:<br />

∂A( T ,t)<br />

T R<br />

∂T<br />

⎛<br />

= ⎜ g t<br />

⎝<br />

( ) − q( t) + g 0<br />

Ω g<br />

2<br />

d 2<br />

dt 2 + t D<br />

d<br />

dt<br />

⎞<br />

⎟<br />

⎠<br />

A T ,t<br />

( ) = 0<br />

SAM (self-amplitude modulation) time shift of pulse<br />

A out<br />

( t) = exp ⎡⎣ −q( t)<br />

⎤⎦ A in<br />

t<br />

ΔA 2<br />

≈ −q( t) A( T ,t)<br />

( )<br />

q( t) = q A<br />

exp − A t<br />

⎛<br />

L<br />

σ A<br />

A ( t′<br />

) 2 ⎞<br />

⎜<br />

A A<br />

hν<br />

∫ d t′<br />

⎟<br />

⎝<br />

−∞ ⎠<br />

q A : unsaturated loss of <strong>the</strong> absorber<br />

Solution: A ( t ) = A sech ⎛ t ⎞<br />

Rhodamin 6G:<br />

0 ⎝<br />

⎜<br />

τ ⎠<br />

⎟ τ ≤ 4 π Δν g<br />

Δν g<br />

≈ 4 ⋅10 13 Hz<br />

With SPM: factor of 2 shorter (Martinez numerically)<br />

1<br />

ΔA 3<br />

= t D<br />

H. A. Haus, “Theory of <strong>modelocking</strong> with a slow saturable absorber,”<br />

IEEE J. Quantum Electron. 11, 736, 1975<br />

d<br />

dt A T ,t ( )<br />

τ p<br />

= 1.76 ⋅τ ≤ 56 fs


<strong>Passive</strong> mode locking with an ideally fast saturable absorber<br />

loss<br />

loss<br />

gain<br />

gain<br />

pulse<br />

pulse<br />

time<br />

time<br />

Semiconductor and dye<br />

lasers:<br />

Dynamic gain saturation<br />

G.H.C. New,<br />

Opt. Com. 6, 188, 1974<br />

Solid-state lasers (e.g. Ti:sapphire)<br />

Kerr lens <strong>modelocking</strong> (KLM)<br />

Ideally fast saturable absorber<br />

Opt. Lett. 16, 42, 1991


Ultrashort pulse generation with <strong>modelocking</strong><br />

FWHM pulse width (sec)<br />

10 ps<br />

1 ps<br />

100 fs<br />

10 fs<br />

1 fs<br />

1960<br />

A. J. De Maria, D. A. Stetser, H. Heynau<br />

Appl. Phys. Lett. 8, 174, 1966<br />

Nd:glass
<br />

first passively modelocked laser
<br />

Q-switched modelocked!<br />

Science 286, 1507, 1999!<br />

dye laser<br />

27 fs with ≈10 mW<br />

compressed<br />

Ti:sapphire laser<br />

≈5.5 fs with ≈200 mW<br />

1960<br />

1970<br />

1970 1980 # 1990<br />

1990<br />

2000
<br />

2000<br />

Year<br />

Year#<br />

Kerr lens <strong>modelocking</strong> (KLM): 
<br />

200 ns/div#<br />

discovered - initially not understood (“magic <strong>modelocking</strong>”)
<br />

D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42, 1991
<br />

50 ns/div#<br />

KLM mechanism explained for <strong>the</strong> first time:
<br />

U. <strong>Keller</strong> et al., Opt. Lett. 16, 1022, 1991#<br />

KLM!<br />

c


World record pulse duration at ETH<br />

Tages Anzeiger 7./8. Juni 1997


How does such a short pulse look like?<br />

λ/c = 2.7 fs @800 nm#<br />

“The shortest pulses (≈5 fs at 800 nm)<br />

in <strong>the</strong> VIS-IR spectral region<br />

are still generated with<br />

KLM Ti:sapphire lasers”<br />

1.5 µm #<br />

speed of light#<br />

“under laser lab conditions KLM is stable” 1 fs 0.3 µm<br />

spatial extent of a 5-fs pulse


Kerr Lens Modelocking (KLM)<br />

D. E. Spence, P. N. Kean, W. Sibbett, Optics Lett. 16, 42, 1991<br />

Effective Saturable Absorber<br />

Saturation fluence<br />

Fast Self-Amp. Modulation<br />

Loss<br />

Gain<br />

Loss<br />

Pulse fluence on absorber<br />

Pulse<br />

Time


Kerr Lens Modelocking (KLM)<br />

First Demonstration: D. E. Spence, P. N. Kean, W. Sibbett, Optics Lett. 16, 42, 1991<br />

Explanation: U. <strong>Keller</strong> et al., Optics Lett. 16, 1022, 1991<br />

•<br />

Advantages of KLM<br />

very fast thus shortest pulses<br />

very broadband thus broader tunability<br />

Disadvantages of KLM<br />

not self-starting<br />

critical cavity adjustments<br />

(operated close to <strong>the</strong> stability limit)<br />

saturable absorber coupled to cavity<br />

design (limited application)


Kerr Lens Modelocking (KLM)<br />

q( t) = q 0<br />

− γ A<br />

A( t) 2<br />

g( t) = g<br />

Ideally fast saturable absorber and cw gain saturation for solid-state lasers<br />

(no dynamic pulse-to-pulse gain saturation)


Ideally fast saturable absorber <strong>modelocking</strong><br />

cw Argon-Ionen<br />

Pumplaser<br />

f=12.5 cm<br />

R=10cm<br />

Ti:Saphir, 4mm dick<br />

R=10cm<br />

Fused Quartz Prismen<br />

60 cm<br />

Master equation:<br />

T = 3 - 10 %<br />

Auskopplung<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1+ 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2


Master equation without SPM and GDD<br />

∂A<br />

T R<br />

∂T = g ⎛<br />

⎜ 1+ 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A = 0<br />

( ) = A sech t<br />

0 ⎝<br />

⎜<br />

τ<br />

A t<br />

⎛<br />

⎞<br />

⎠<br />

⎟<br />

τ =<br />

4D g<br />

γ A<br />

E p<br />

Limit of very long pulses (cw limit):<br />

g =<br />

l 0<br />

1 + 1<br />

Ω g 2 τ 2 ⇒ g = l 0<br />

, for τ → ∞<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen, “Structures for additive pulse <strong>modelocking</strong>,”<br />

J. Opt. Soc. Am. B 8, 2068, 1991


Master equation without SPM and GDD<br />

∂A<br />

T R<br />

∂T = g ⎛<br />

⎜ 1+ 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A = 0<br />

( ) = A sech t<br />

0 ⎝<br />

⎜<br />

τ<br />

A t<br />

⎛<br />

⎞<br />

⎠<br />

⎟<br />

τ =<br />

4g<br />

Ω g 2 γ A<br />

E p<br />

= 4D g<br />

γ A<br />

E p<br />

E p<br />

= P t<br />

Comparison with active <strong>modelocking</strong>:<br />

τ 4 = 2g<br />

M<br />

1<br />

ω 2 2<br />

m<br />

Ω g<br />

2<br />

∫ ( ) dt = ∫ A dt =<br />

2 A0<br />

Mω m 2 ⇔ γ A A 0<br />

τ 2<br />

2<br />

∫<br />

t<br />

sech 2 ⎛ ⎞<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟dt = 2A 2 0<br />

τ<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen, “Structures for additive pulse <strong>modelocking</strong>,”<br />

J. Opt. Soc. Am. B 8, 2068, 1991


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2


Linearized operators: self-phase modulation (SPM)<br />

n 2<br />

> 0<br />

I(t)<br />

( )<br />

I t<br />

φ 2<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

leading edge<br />

SPM: red<br />

Pulsfront<br />

Gaussian Pulse<br />

Zeitabhängige Intensität<br />

trailing Pulsflanke edge<br />

SPM: blue<br />

( t)<br />

t<br />

ω ( 2 t)<br />

ω 0<br />

0<br />

Verbreiterung des Spektrums<br />

Spectral broadening ω 2<br />

t<br />

t<br />

δ ≡ kn 2<br />

L K<br />

( ) = dφ ( t ) 2<br />

dt<br />

= −δ dI ( t)<br />

dt<br />

E ( L K<br />

,t) = A 0,t<br />

( )exp ⎡⎣ iω 0<br />

t + iφ ( t)<br />

⎤⎦ = A( 0,t)exp<br />

⎡ iω 0t − ik n<br />

ω<br />

⎣<br />

0<br />

A( L K<br />

,t) = e −iδ A 2 A( 0,t)e −ik n ω 0<br />

( )L K δ A 2


Linearized operators: group delay dispersion (GDD)<br />

A ( z,Δω ) = A ( 0,Δω )e −iΔknz = A 0,Δω<br />

( )e −i ⎡⎣ k n ω 0 +Δω<br />

( )−k n ω 0<br />

( )<br />

⎤ ⎦ z<br />

k n<br />

( ω ) − k n ( ω 0 ) ≅ + k n<br />

′ Δω + 1 2 k′′<br />

Δω 2 n<br />

+ ...<br />

A ( z, Δω ) ≅ A 0, Δω<br />

Δ AGDD<br />

⎛<br />

( )exp −i 1 2 k′′<br />

nΔω 2<br />

⎝<br />

⎜<br />

⎞<br />

⎠<br />

⎟<br />

k n ′′ Δω 2


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2<br />

Here normalize pulse envelope as follows:<br />

P ( t) = A( t) 2<br />

Therefore:<br />

δ → δ ≡ δ A L<br />

γ A<br />

→ γ A<br />

≡ γ A<br />

A A


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2<br />

( ) = A sech t<br />

0 ⎢ ⎝<br />

⎜<br />

τ<br />

A t<br />

⎡<br />

⎣<br />

g − l 0<br />

+ 1 − β 2<br />

τ 2<br />

⎛<br />

⎞ ⎤<br />

⎠<br />

⎟ ⎥<br />

⎦<br />

g<br />

Ω g<br />

2<br />

2<br />

1<br />

τ = γ A<br />

A 0 2<br />

⎛ g<br />

⎜ 2 − β 2<br />

2<br />

⎝ Ω g<br />

1+iβ<br />

− 2βD<br />

τ 2 = 0<br />

( ) − 3βD<br />

β = 1 ⎧<br />

⎪<br />

2<br />

3 D g<br />

D ± 9 ⎛ D g ⎞<br />

⎨<br />

⎝<br />

⎜<br />

D ⎠<br />

⎟<br />

⎩⎪<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

+ 8 + 4 δ A 2 0τ 2<br />

D<br />

⎫<br />

⎪<br />

⎬<br />

⎭⎪<br />

no SPM and GDD: β = 0<br />

A ( t ) = A sech ⎛ t ⎞<br />

0 ⎝<br />

⎜<br />

τ ⎠<br />

⎟<br />

g − l 0<br />

+ g 1<br />

= 0<br />

2<br />

Ω g<br />

τ 2<br />

4g<br />

τ = = 4D g<br />

Ω 2 g<br />

γ A<br />

E p<br />

γ A<br />

E p<br />

D<br />

δ = D g<br />

γ A<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen, “Structures for additive pulse <strong>modelocking</strong>,”<br />

J. Opt. Soc. Am. B 8, 2068, 1991


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2<br />

( ) = A sech t<br />

0 ⎢ ⎝<br />

⎜<br />

τ<br />

A t<br />

⎡<br />

⎣<br />

⎛<br />

⎞ ⎤<br />

⎠<br />

⎟ ⎥<br />

⎦<br />

1+iβ<br />

β = − 3 2 χ ± ⎛ 3<br />

⎝<br />

⎜<br />

2 χ ⎞<br />

⎠<br />

⎟<br />

2<br />

+ 2<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen,<br />

J. Opt. Soc. Am. B 8, 2068, 1991<br />

τ n<br />

≡ E p<br />

2D g<br />

τ<br />

D n<br />

≡<br />

D<br />

g Ω = D 3β<br />

2<br />

g<br />

D g 2 − β = δ + γ D A n<br />

2<br />

δ D n<br />

− γ A<br />

≡ 1 χ


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2<br />

( ) = A sech t<br />

0 ⎢ ⎝<br />

⎜<br />

τ<br />

A t<br />

⎡<br />

⎣<br />

⎛<br />

⎞ ⎤<br />

⎠<br />

⎟ ⎥<br />

⎦<br />

1+iβ<br />

τ n<br />

= 2 − β 2 − 3βD n<br />

γ A<br />

= −2D n<br />

+ D n<br />

β 2 − 3β<br />

δ<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen,<br />

J. Opt. Soc. Am. B 8, 2068, 1991<br />

τ n<br />

≡ E p<br />

2D g<br />

τ<br />

D n<br />

≡<br />

D<br />

g Ω = D 3β<br />

2<br />

g<br />

D g 2 − β = δ + γ D A n<br />

2<br />

δ D n<br />

− γ A<br />

≡ 1 χ


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2<br />

( ) = A sech t<br />

0 ⎢ ⎝<br />

⎜<br />

τ<br />

A t<br />

⎡<br />

⎣<br />

⎛<br />

⎞ ⎤<br />

⎠<br />

⎟ ⎥<br />

⎦<br />

1+iβ<br />

Stability of solution (a simple criteria):<br />

l cw<br />

> g ⇒ g − l cw<br />

< 0<br />

l cw<br />

> 1<br />

T R<br />

T R<br />

∫<br />

0<br />

l ( t)dt<br />

l cw<br />

≈ l 0<br />

g − l 0<br />

= − ( 1− β 2<br />

)<br />

g<br />

Ω 2 g<br />

τ + 2βD < 0<br />

2 τ 2<br />

S ≡ ( 1− β 2<br />

) − 2βD n<br />

> 0<br />

τ n<br />

≡ E p<br />

2D g<br />

τ<br />

D n<br />

≡<br />

D<br />

g Ω = D 3β<br />

2<br />

g<br />

D g 2 − β = δ + γ D A n<br />

2<br />

δ D n<br />

− γ A<br />

≡ 1 χ


Master equation with SPM and GDD<br />

T R<br />

∂A<br />

∂T = g ⎛<br />

⎜ 1 + 1 2<br />

⎝ Ω g<br />

∂ 2<br />

∂t 2<br />

⎞<br />

⎟<br />

⎠<br />

A − l A + γ A 2 0 A<br />

A + iD ∂ 2<br />

∂t A − iδ A 2 A − iψ A = 0<br />

2<br />

( ) = A sech t<br />

0 ⎢ ⎝<br />

⎜<br />

τ<br />

A t<br />

⎡<br />

⎣<br />

⎛<br />

⎞ ⎤<br />

⎠<br />

⎟ ⎥<br />

⎦<br />

1+iβ<br />

S ≡ ( 1 − β 2<br />

) − 2βD n<br />

> 0<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen,<br />

J. Opt. Soc. Am. B 8, 2068, 1991<br />

τ n<br />

≡ E p<br />

2D g<br />

τ<br />

D n<br />

≡<br />

D<br />

g Ω = D 3β<br />

2<br />

g<br />

D g 2 − β = δ + γ D A n<br />

2<br />

δ D n<br />

− γ A<br />

≡ 1 χ


Master equation with SPM and GDD<br />

H. A. Haus, J. G. Fujimoto, E. P. Ippen,<br />

J. Opt. Soc. Am. B 8, 2068, 1991


Self-starting <strong>modelocking</strong>?<br />

Fast Absorber<br />

without Dynamic Gain Saturation<br />

Modelocking Driving Force<br />

Active<br />

Modelocking<br />

Slow Absorber<br />

with dynamic gain saturation<br />

Dispersion<br />

Limit<br />

( 1 / Pulse width )<br />

shorter pulse width<br />

E. P. Ippen, “Principles of passive <strong>modelocking</strong>,” Appl. Phys. B 58, 159, 1994


Ultrashort pulse generation with <strong>modelocking</strong><br />

A. J. De Maria, D. A. Stetser, H. Heynau<br />

Appl. Phys. Lett. 8, 174, 1966<br />

Q-switching instabilities 
<br />

continued to be a problem until 1992"<br />

200 ns/div#<br />

SESAM#<br />

Nd:glass
<br />

first passively modelocked laser
<br />

Q-switched modelocked!<br />

50 ns/div#<br />

#<br />

KLM!<br />

First passively modelocked
<br />

(diode-pumped) solid-state laser
<br />

without Q-switching
<br />


<br />

U. <strong>Keller</strong> et al.
<br />

Opt. Lett. 17, 505, 1992
<br />


<br />

IEEE JSTQE 2, 435, 1996 
<br />

Nature 424, 831, 2003 #<br />

1960 1970 1980 1990 2000
<br />

Year#<br />

Flashlamp-pumped
<br />

solid-state lasers !<br />

Diode-pumped solid-state lasers
<br />

(first demonstration 1963)#


SESAM <strong>modelocking</strong><br />

U. <strong>Keller</strong> et al. Opt. Lett. 17, 505, 1992
<br />

IEEE JSTQE 2, 435, 1996#<br />

Progress in Optics 46, 1-115, 2004"<br />

Nature 424, 831, 2003#<br />

SESAM solved Q-switching problem<br />

for diode-pumped solid-state lasers<br />

Gain!<br />

Output
<br />

coupler!<br />

SESAM
<br />

SEmiconductor Saturable Absorber Mirror
<br />

#<br />

self-starting, stable, and reliable # <strong>modelocking</strong> of<br />

diode-pumped ultrafast solid-state # lasers


KLM vs. Soliton <strong>modelocking</strong><br />

loss<br />

loss<br />

gain<br />

gain<br />

pulse<br />

pulse<br />

time<br />

Kerr lens <strong>modelocking</strong> (KLM)<br />

Fast saturable absorber<br />

D. E. Spence, P. N. Kean, W. Sibbett<br />

Opt. Lett. 16, 42, 1991<br />

time<br />

Soliton <strong>modelocking</strong><br />

“not so fast” saturable absorber<br />

F. X. Kärtner, U. <strong>Keller</strong>,<br />

Opt. Lett. 20, 16, 1995


<strong>Passive</strong> mode locking with slow saturable absorbers<br />

loss<br />

loss<br />

gain<br />

gain<br />

pulse<br />

pulse<br />

time<br />

Semiconductor lasers:<br />

Dynamic gain saturation<br />

G.H.C. New,<br />

Opt. Com. 6, 188, 1974<br />

time<br />

Ion-doped solid-state lasers:<br />

Constant gain saturation:<br />

soliton <strong>modelocking</strong><br />

F. X. Kärtner, U. <strong>Keller</strong>,<br />

Opt. Lett. 20, 16, 1995


Pulse-shaping<br />

VECSEL<br />

KLM<br />

Solid-state<br />

and SESAM<br />

Gain window can be<br />

up to 20 times longer<br />

than <strong>the</strong> pulse<br />

before mode locking<br />

becomes unstable<br />

fast/broadband sat. abs.#<br />

critical cavity adjustment: 
<br />

KLM better at cavity<br />

stability limit #<br />

typically not self-starting<br />

“not so fast” sat. abs<br />

absorber independent of<br />

cavity design<br />

self-starting<br />

For stable pulse generation it was initially assumed that we need g T < 0 at both<br />

beginning and end of <strong>the</strong> pulse. This is however not <strong>the</strong> case!<br />

See SESAM <strong>modelocking</strong> with slow saturable absorber and soliton <strong>modelocking</strong>


Slow saturable absorber <strong>modelocking</strong><br />

R. Paschotta, U. <strong>Keller</strong>, Appl. Phys. B 73, 653, 2001<br />

absorber delays pulse!<br />

loss<br />

Fully saturated absorber:#<br />

leading edge of pulse#<br />

negligible loss for#<br />

has significant loss from #<br />

trailing edge of pulse#<br />

<strong>the</strong> saturable absorber#<br />

time<br />

Dominant stabilization process:!<br />

Picosecond domain: absorber delays pulse#<br />

The pulse is constantly moving backward and #<br />

can swallow any noise growing behind itself#<br />

Femtosecond domain: dispersion in soliton <strong>modelocking</strong>#


Soliton <strong>modelocking</strong>: GDD negative, n 2 > 0<br />

Outputcoupler<br />

<strong>Group</strong><br />

Delay Velocity<br />

Dispersion<br />

Self-<br />

Phase-<br />

Modulation<br />

Gain<br />

Slow<br />

Absorber<br />

A out ( T ,t) = e −q(t ) A in ( T ,t)<br />

Master equation:<br />

( ) = ⎡⎣ 1− q( t)<br />

⎤⎦ A in ( T ,t)<br />

( ) = −q( t) A( T ,t)<br />

A out<br />

T ,t<br />

⇒ ΔA T ,t<br />

T R<br />

∂<br />

∂T A T ,t<br />

⎛ ⎝<br />

⎜<br />

( ) = iD ∂ 2<br />

( ) 2<br />

− iδ A T ,t<br />

2<br />

∂t<br />

⎞<br />

⎠<br />

⎟ A T ,t<br />

⎛<br />

⎝<br />

⎜<br />

( ) + g − l + D g<br />

∂ 2<br />

∂t 2 − q t<br />

( )<br />

⎞<br />

⎠<br />

⎟ A T ,t<br />

( ) = 0<br />

( ) = A sech t<br />

⎝<br />

⎜ 0 ⎝<br />

⎜<br />

τ<br />

A T ,t<br />

⎛<br />

⎛<br />

⎞ ⎞<br />

⎠<br />

⎟<br />

⎠<br />

⎟ exp ⎡<br />

⎢ iφ 0<br />

⎣<br />

T<br />

T R<br />

⎤<br />

⎥ + continuum τ = 4 D<br />

⎦<br />

δ ⋅ F p,L


Soliton <strong>modelocking</strong>: GDD negative, n 2 > 0<br />

F. X. Kärtner, U. <strong>Keller</strong>, Optics Lett. 20, 16, 1995<br />

Invited Paper: F. X. Kärtner, I. D. Jung, U. <strong>Keller</strong>, IEEE JSTQE, 2, 540, 1996<br />

Soliton #<br />

Perturbation #<br />

Theory:#<br />

A(T,t) =<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

Asech t ⎜<br />

⎝ τ<br />

⎞ ⎞<br />

⎟ ⎟<br />

⎠ ⎠<br />

⎢ T<br />

⎟ exp⎢<br />

i Φ 0 T<br />

⎣ ⎢ R<br />

{<br />

soliton<br />

⎡<br />

⎤<br />

⎥<br />

⎥<br />

⎦ ⎥<br />

+<br />

small perturbations<br />

{<br />

“continuum”<br />

only GDD & SAM (no SPM)<br />

Continuum<br />

Loss<br />

GDD<br />

Continuum<br />

spreading<br />

GDD<br />

Gain<br />

Gain<br />

Pulse<br />

Pulse<br />

Frequency<br />

Time<br />

Frequency domain<br />

Time domain<br />

Stabilization: Dispersion spreads continuum out where it sees more loss


A T ,t<br />

Soliton <strong>modelocking</strong>: GDD negative, n 2 > 0<br />

Solution: stable soliton pulses<br />

⎛<br />

( ) = A sech t ⎝<br />

⎜ 0 ⎝<br />

⎜<br />

τ<br />

⎛<br />

⎞ ⎞<br />

⎠<br />

⎟<br />

⎠<br />

⎟ exp ⎡<br />

⎢ iφ 0<br />

⎣<br />

T<br />

T R<br />

≈ 0<br />

⎤<br />

τ = 4 D<br />

⎥ + continuum δ ⋅ F p,L<br />

⎦<br />

Continuum<br />

Loss<br />

GDD<br />

Continuum<br />

GDD<br />

Gain<br />

Gain<br />

Pulse<br />

Pulse<br />

Frequency<br />

Frequency domain<br />

Time<br />

Time domain<br />

Stabilization: Dispersion spreads continuum out where it sees more loss


Experimental confirmation: example Ti:sapphire laser<br />

T=3%<br />

output<br />

coupler<br />

SF 10<br />

prism<br />

45 cm<br />

5 µm etalon<br />

SF 10<br />

prism<br />

ROC<br />

10cm<br />

Ti:sapphire<br />

4mm, 0.15%<br />

doping<br />

40cm<br />

ROC<br />

10cm<br />

Argon pump<br />

d<br />

R=10cm<br />

Absorber<br />

(A-FPSA) SESAM<br />

SESAM: LT-GaAs<br />

Impulse response measured with 300 fs pulses<br />

clearly a slow saturable absorber<br />

No KLM: cavity operated in <strong>the</strong> middle of cavity<br />

stability regime (and use etalon for bandwidth limitation)<br />

Reflection, %<br />

98.4<br />

98.2<br />

98.0<br />

97.8<br />

97.6<br />

97.4<br />

97.2<br />

0<br />

A<br />

= 10 ps<br />

10 20 30<br />

Time delay, ps<br />

40<br />

50<br />

I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. <strong>Keller</strong>, "Experimental verification of<br />

soliton <strong>modelocking</strong> using only a slow saturable absorber," Opt. Lett., vol. 20, pp. 1892-1894, 1995


Experimental confirmation: example Ti:sapphire laser<br />

Solution: soliton pulse<br />

A s ( T ,t) = F p,L<br />

soliton phase per resonator roundtrip<br />

φ 0<br />

= D τ 2<br />

= δ ⋅ F p,L<br />

4τ<br />

Stability<br />

(soliton perturbation <strong>the</strong>ory):<br />

continuum loss l c is<br />

larger than soliton loss l s<br />

Normalized abs. recovery<br />

lc/q0 , l s/q0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2τ sech<br />

⎛<br />

⎝<br />

⎜<br />

Kontinuumverluste<br />

continuum loss<br />

soliton loss<br />

Solitonverluste<br />

T<br />

t ⎞<br />

τ ⎠<br />

⎟ e iφ 0<br />

T R<br />

τ FWHM<br />

= 1.76 ⋅τ = 1.76 4 D<br />

τ FWHM<br />

stabiles<br />

stable<br />

regime<br />

Regime<br />

unstabiles<br />

unstable<br />

regime<br />

Regime<br />

1000<br />

800<br />

600<br />

400<br />

δ ⋅ F p,L<br />

Pulse Width τ FWHM , fs<br />

w = τ A<br />

τ<br />

q 0<br />

φ 0<br />

= τ A<br />

q 0<br />

D ∝<br />

1 D<br />

0.0<br />

0<br />

10 20 30<br />

Normalized Absorber Recovery Time w<br />

40<br />

200<br />

I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. <strong>Keller</strong>, "Experimental verification of<br />

soliton <strong>modelocking</strong> using only a slow saturable absorber," Opt. Lett., vol. 20, pp. 1892-1894, 1995


Experimental confirmation: example Ti:sapphire laser<br />

τ FWHM<br />

1.0<br />

0.8<br />

= 1.76 ⋅τ = 1.76 4 D<br />

0.6<br />

δ ⋅ F p,L<br />

0.4<br />

lc/q0 , l s/q0<br />

0.2<br />

0.0<br />

τ FWHM<br />

stabiles unstabiles<br />

Kontinuumverluste<br />

stable unstable<br />

continuum loss<br />

Regime regime regime Regime<br />

Solitonverluste<br />

soliton loss<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0 10 20 30 40<br />

Normalized Absorber Recovery Time w<br />

Pulse Width τ FWHM , fs<br />

Autocorrelation, a. u.<br />

- D = 200 fs 2<br />

- D = 300 fs 2<br />

- D = 500 fs 2<br />

- D = 800 fs 2<br />

FWHM<br />

= 312 fs<br />

- D = 1000 fs 2<br />

- D = 1200 fs 2<br />

-2000 -1000 0 1000 2000<br />

Time, fs<br />

FWHM<br />

=391 fs<br />

FWHM<br />

= 469 fs<br />

I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. <strong>Keller</strong>, "Experimental verification of<br />

soliton <strong>modelocking</strong> using only a slow saturable absorber," Opt. Lett., vol. 20, pp. 1892-1894, 1995<br />

Intensity, a. u.<br />

- D = 200 fs 2<br />

- D = 300 fs 2<br />

- D = 500 fs 2<br />

- D = 800 fs 2<br />

- D = 1000 fs 2<br />

- D = 1200 fs 2 f = .68THz<br />

802<br />

804<br />

806 808<br />

Wavelength, nm<br />

f = .97 THz<br />

f = .85 THz<br />

810<br />

812


Experimental confirmation: example Ti:sapphire laser<br />

τ FWHM<br />

1.0<br />

0.8<br />

= 1.76 ⋅τ = 1.76 4 D<br />

0.6<br />

δ ⋅ F p,L<br />

0.4<br />

lc/q0 , l s/q0<br />

0.2<br />

0.0<br />

τ FWHM<br />

stabiles unstabiles<br />

Kontinuumverluste<br />

stable unstable<br />

continuum loss<br />

Regime regime regime Regime<br />

Solitonverluste<br />

soliton loss<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0 10 20 30 40<br />

Normalized Absorber Recovery Time w<br />

Pulse Width τ FWHM , fs<br />

Autocorrelation, a. u.<br />

- D = 200 fs 2<br />

- D = 300 fs 2<br />

- D = 500 fs 2<br />

- D = 800 fs 2<br />

FWHM<br />

= 312 fs<br />

- D = 1000 fs 2<br />

- D = 1200 fs 2<br />

-2000 -1000 0 1000 2000<br />

Time, fs<br />

FWHM<br />

=391 fs<br />

FWHM<br />

= 469 fs<br />

High dynamic range autocorrelation: 330 fs<br />

Opt. Lett. 20, 1889, 1995<br />

I. D. Jung, F. X. Kärtner, L. R. Brovelli, M. Kamp, U. <strong>Keller</strong>, "Experimental verification of<br />

soliton <strong>modelocking</strong> using only a slow saturable absorber," Opt. Lett., vol. 20, pp. 1892-1894, 1995<br />

Autocorrelation, a.u.<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

-3 -2 -1 0 1 2 3<br />

Time, ps


Coupled cavity <strong>modelocking</strong><br />

Chapter 8.5: for historical reasons summarized here - not used much anymore<br />

The soliton laser<br />

L. F. Mollenauer, R. H. Stolen, "The soliton laser," Optics Lett., vol. 9, pp. 13-15, 1984.<br />

Additive pulse <strong>modelocking</strong> (APM)<br />

K. J. Blow and D. Wood, "Modelocked lasers with nonlinear external cavities,"<br />

J. Opt. Soc. Am B, vol. 5, pp. 629-632, 1988<br />

P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Landford, W. Sibbett, "Enhanced <strong>modelocking</strong><br />

of color center lasers," Optics Lett., vol. 14, pp. 39-41, 1989 9<br />

E. P. Ippen, H. A. Haus, L. Y. Liu, "Additive Pulse Modelocking," J. Opt. Soc. Am. B,<br />

vol. 6, pp. 1736-1745, 1989<br />

Resonant passive <strong>modelocking</strong> (RPM)<br />

U. <strong>Keller</strong>, W. H. Knox, and H. Roskos, "Coupled-Cavity Resonant <strong>Passive</strong> Modelocked<br />

Ti:Sapphire Laser," Optics Lett., vol. 15, pp. 1377-1379, 1990<br />

H. A. Haus, U. <strong>Keller</strong>, and W. H. Knox, "Theory of Coupled-Cavity Modelocking with<br />

a Resonant Nonlinearity," J. Opt. Soc. Am. B, vol. 8, pp. 1252-1258, 1991

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!