17.10.2014 Views

SESAM modelocked solid-state lasers Lecture 2 ... - the Keller Group

SESAM modelocked solid-state lasers Lecture 2 ... - the Keller Group

SESAM modelocked solid-state lasers Lecture 2 ... - the Keller Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SESAM</strong> technology – ultrafast <strong>lasers</strong> for industrial application<br />

<strong>SESAM</strong> <strong>modelocked</strong> <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong><br />

<strong>Lecture</strong> 2<br />

<strong>SESAM</strong><br />

Ursula <strong>Keller</strong><br />

U. <strong>Keller</strong> et al. Opt. Lett. 17, 505, 1992
<br />

IEEE JSTQE 2, 435, 1996"<br />

Progress in Optics 46, 1-115, 2004!<br />

Nature 424, 831, 2003"<br />

Gain!<br />

<strong>SESAM</strong> solved Q-switching problem<br />

for diode-pumped <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong><br />

Output
<br />

coupler!<br />

ETH Zurich, Physics Department, Switzerland<br />

www.ulp.ethz.ch<br />

Ultrafast Laser<br />

Physics<br />

Tutorial, Saturday 2. March 2013, 16:00 – 19:30<br />

Ultrafast Optics 2013<br />

Davos, Switzerland, March 2-8, 2013<br />

ETH Zurich<br />

<strong>SESAM</strong>
<br />

SEmiconductor Saturable Absorber Mirror
<br />

"<br />

self-starting, stable, and " reliable modelocking of<br />

diode-pumped ultrafast " <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong><br />

Semiconductor saturable absorber<br />

<strong>SESAM</strong> Parameters:<br />

Saturation Fluence, Modulation Depth, Recovery Time ...<br />

100<br />

F sat, A<br />

Saturation fluence<br />

Reflectivity (%)<br />

95<br />

ΔR ns<br />

Non-saturable losses<br />

ΔR<br />

Modulation depth<br />

Pump-probe signal<br />

100-fs excitation pulse<br />

4-ps excitation pulse<br />

90<br />

0 50 100 150 200 250 300<br />

Incident pulse fluence F p ( µJ/cm 2 )<br />

-10<br />

-5<br />

0 5 10 15 20<br />

Pump-probe delay (ps)<br />

25<br />

30<br />

Guidelines how to measure <strong>the</strong>se parameters:"<br />

M. Haiml, R. Grange, U. <strong>Keller</strong>, Appl. Phys. B 79, 331, 2004"<br />

and with improved accuracy: D. J. H. Maas, et al., Optics Express 16, 7571, 2008"<br />

1


andgap energy E g (eV)<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

GaP<br />

AlGaAs<br />

GaAs-based <strong>SESAM</strong>s<br />

GaAs<br />

AlAs<br />

InP<br />

InGaAs<br />

0.4 Lattice matched to GaAs"<br />

High refractive index contrast for DBR"<br />

InGaAs strained on GaAs"<br />

0.0<br />

5.4 5.5 5.6 5.7 5.8 5.9<br />

lattice constant a 0 (Å)<br />

AlInGaAs<br />

750 nm<br />

6.0<br />

1 µm<br />

1.3 µm<br />

1.5 µm<br />

InAs<br />

6.1<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

1.0<br />

1.3<br />

1.5<br />

3.0<br />

7.0<br />

wavelength λ (µm)<br />

InP-based <strong>SESAM</strong>s<br />

Lattice matched to InP"<br />

Small refractive index contrast for DBR"<br />

GaInNAs-based <strong>SESAM</strong>s<br />

Thank you to Stanford, Bell Labs and ETH Zurich<br />

[In] = 36.5 % "<br />

! [N] = 2 %"<br />

GaNAs"<br />

InGaAs!<br />

GaInNAs better lattice matched on<br />

GaAs"<br />

Opt. Lett. 27, 2124, 2002 & Appl. Phys. Lett. 84, 4002, 2004"<br />

Stanford University<br />

Ph.D. student<br />

1985-1989<br />

laser physics<br />

ultrafast measurement<br />

techniques<br />

microwave measurement<br />

tools<br />

Bell Labs, Holmdel<br />

MTS<br />

1989-1993<br />

+ access to <strong>state</strong>-of-<strong>the</strong>-art<br />

semiconductor materials (MBE)<br />

ETH Zurich<br />

tenured Professor in Physics<br />

since 1993<br />

+ resources to be fully<br />

empowered<br />

Enabled interdisciplinary approach with <strong>the</strong> combination of<br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong>, semiconductor physics, and microwave<br />

measurement techniques.<br />

2


20 years of <strong>SESAM</strong> – looking back<br />

20 years of <strong>SESAM</strong><br />

Appl. Phys. B 100, 15-28, 2010<br />

How did it all happen?<br />

This is <strong>the</strong> paper to read ...<br />

20 years of ultrafast <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong>: invited paper<br />

• Why was it assumed that diode-pumped <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong><br />

cannot be passively <strong>modelocked</strong>?<br />

• How was <strong>the</strong> <strong>SESAM</strong> invented?<br />

• State-of-<strong>the</strong>-art performance and future outlook.<br />

First <strong>SESAM</strong> (first design called A-FPSA)<br />

April 1, 1992 (submitted Nov. 26, 1991)<br />

!<br />

Ultrashort pulse generation with modelocking<br />

A. J. De Maria, D. A. Stetser, H. Heynau<br />

Appl. Phys. Lett. 8, 174, 1966<br />

200 ns/div"<br />

Q-switching problem<br />

in passively <strong>modelocked</strong><br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong>:<br />

Active Modelocking<br />

Nd:glass
<br />

first passively <strong>modelocked</strong> laser
<br />

Q-switched <strong>modelocked</strong>!<br />

50 ns/div"<br />

- active modelocking for<br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong><br />

- dye <strong>lasers</strong> solved <strong>the</strong> problem<br />

"<br />

1960 1970 1980 1990 2000
<br />

Year"<br />

Flashlamp-pumped
<br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong> !<br />

acousto-optic loss modulator<br />

needs RF power and water cooling<br />

3


Innovation: before and after<br />

4-Niveau-System<br />

Ti 3+ :Saphir Laser<br />

How did I invent <strong>the</strong> <strong>SESAM</strong>?<br />

acousto-optic modelocker<br />

needs RF power and water cooling<br />

<strong>SESAM</strong> modelocker<br />

Ti:Saphir Laser<br />

1982<br />

Peter Moulton<br />

MIT Lincoln Lab<br />

Two experiments that should not have worked ...<br />

“Magic Modelocking”<br />

Postdeadline Paper CLEO 1990<br />

Nr. CPDP10<br />

“<strong>modelocked</strong> Ti:sapphire laser without<br />

an absorber inside <strong>the</strong> cavity”<br />

... should not work!<br />

Published result later in:<br />

D. E. Spence, P. N. Kean, W. Sibbett,<br />

Optics Lett. 16, 42, 1991<br />

Explained modelocking as a “coupled<br />

cavity modelocking effect” between<br />

two transverse modes<br />

“CPM Ti:sapphire laser”<br />

Postdeadline Paper Ultrafast<br />

Phenomena 1990, Nr. PD11<br />

Y. Ishida, N. Sarukura, H. Nakano<br />

“used a dye saturable absorber inside<br />

<strong>the</strong> CPM Ti:sapphire laser”<br />

... should not work!<br />

loss<br />

gain<br />

pulse<br />

time<br />

?<br />

Both of <strong>the</strong>m explained later by KLM by <strong>Keller</strong> et al.<br />

Optics Lett. 16, 1022, 1991 IEEE JQE 28, 2123, 1992<br />

loss<br />

gain<br />

pulse<br />

time<br />

loss<br />

gain<br />

pulse<br />

First Demonstration: D. E. Spence, P. N. Kean, W. Sibbett, Optics Lett. 16, 42, 1991<br />

Explanation: U. <strong>Keller</strong> et al., Optics Lett. 16, 1022, 1991<br />

•<br />

Kerr Lens Modelocking (KLM)<br />

Advantages of KLM<br />

§ very fast thus shortest pulses<br />

§ very broadband thus broader tunability<br />

Disadvantages of KLM<br />

§ not self-starting<br />

§ critical cavity adjustments<br />

(operated close to <strong>the</strong> stability limit)<br />

§ saturable absorber coupled to cavity<br />

design (limited application)<br />

time<br />

4


Soliton Laser by Linn Mollenauer<br />

Why did <strong>the</strong> Sibbett group explain <strong>the</strong>ir results as a<br />

“coupled modelocking effect”?<br />

1984<br />

Remember <strong>the</strong> mind set at that time was:<br />

Passive modelocking of <strong>solid</strong>-<strong>state</strong> laser does not work!<br />

Coupled cavity<br />

... but <strong>the</strong>re was <strong>the</strong> soliton laser from Linn Mollenauer<br />

fiber with negative dispersion (GDD < 0)<br />

soliton pulse compression in coupled cavity with shortens<br />

pulse in main cavity<br />

1989<br />

Coupled Cavity Modelocking by Wilson Sibbett<br />

Coupled Cavity Modelocking by “Blow & Wood”<br />

1988<br />

Coupled cavity<br />

Coupled cavity modelocking (CCM)<br />

fiber with positive dispersion (GDD > 0)<br />

Dispersive pulse broadening in coupled cavity! How should that shorten pulse in main cavity?<br />

Explanation with APM (additive pulse modelocking):<br />

E. P. Ippen, H. A. Haus, L. Y. Liu, J. Opt. Soc. Am. B 6, 1736, 1989<br />

Pulse is broadened yes, ... but SPM makes an intensity dependent phase shift, which<br />

leads to constructive interference at <strong>the</strong> peak and destructive inteference in <strong>the</strong> wings with <strong>the</strong><br />

pulse from <strong>the</strong> main cavity. This gives a pulse shortening effect of <strong>the</strong> coupled cavity.<br />

Coupled cavity<br />

“any nonlinear element in <strong>the</strong> coupled cavity should shorten <strong>the</strong> pulse”<br />

<strong>the</strong>oretical prediction with numerical modeling ... physical insight was missing<br />

5


1990<br />

Coupled Cavity Modelocking by Ursula <strong>Keller</strong><br />

1990<br />

Coupled Cavity Modelocking by Ursula <strong>Keller</strong><br />

τ p<br />

Resonant passive modelocking (RPM)<br />

L L + δ L δ L<br />

Resonant passive modelocking (RPM)<br />

GaAs 95 Å<br />

75x<br />

GaAl x As 1-x 45 Å, x=0.3<br />

AlAs/GaAlAs 800 nm mirror<br />

semiconductor saturable absorber (“borrowed from my office neighbour Keith Goosen”)<br />

pulse compression in coupled cavity which shortens pulse in main cavity<br />

Surprise:<br />

• no active cavity length stabilization<br />

was necessary<br />

• modelocking was stable<br />

even with large cavity length detuning<br />

U. <strong>Keller</strong> et al., Optics Lett. 15, 1377, 1990<br />

δ L<br />

δ L<br />

Coupled Cavity Modelocking by Ursula <strong>Keller</strong><br />

Invention of <strong>the</strong> first <strong>SESAM</strong> device: A-FPSA<br />

Coupled cavity acts like a nonlinear Fabry Perot (FP)<br />

Antiresonant Fabry-Perot Saturable<br />

Absorber (A-FPSA)
<br />

Example: Opt. Lett. 18, 217, 1993"<br />

R top<br />

absorber<br />

RPM = amplitude (resonant) nonlinearity<br />

operated at maximum FP reflectivity<br />

requires no cavity length stabilization<br />

APM = phase nonlinearity<br />

operated not at maximum FP reflectivity<br />

requires cavity length stabilization<br />

U. <strong>Keller</strong> et al., Optics Lett. 17, 505, 1992<br />

R bottom<br />

6


Scaling A-FPSA towards a single QW <strong>SESAM</strong><br />

20 years of <strong>SESAM</strong><br />

1995<br />

Adjustable parameter: top reflector<br />

1996<br />

Single 15 nm GaAs quantum well embedded inside a Bragg mirror<br />

L. R. Brovelli et al., Electron. Lett., vol. 31, 287, 1995<br />

Introduction of <strong>the</strong> ackronym: <strong>SESAM</strong><br />

Invited review article<br />

September 1996, IEEE JSTQE<br />

Moving from Ti:sapphire to diode-pumped ss-laser<br />

Moving from Ti:sapphire to diode-pumped ss-laser<br />

was not trivial .... why?<br />

Ti:sapphire laser<br />

@ 800 nm<br />

Opt. Lett. 15, 1377, 1990<br />

1991<br />

RPM <strong>modelocked</strong> Nd:YLF<br />

bandgap energy E g (eV)<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

5.4<br />

GaP<br />

AlGaAs<br />

5.5<br />

GaAs<br />

5.6<br />

AlAs<br />

5.7<br />

InGaAs<br />

5.8<br />

InP<br />

5.9<br />

AlInGaAs<br />

750 nm<br />

6.0<br />

1 µm<br />

1.0<br />

1.3 µm<br />

1.5 µm<br />

InAs<br />

6.1<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

1.3<br />

1.5<br />

3.0<br />

7.0<br />

wavelength λ (µm)<br />

GaAs 95 Å<br />

75x<br />

GaAl x As 1-x 45 Å, x=0.3<br />

AlAs/GaAlAs 800 nm mirror<br />

Nd:YLF laser<br />

@ 1.064 µm<br />

IEEE JQE 28, 1710, 1992<br />

1992<br />

A-FPSA <strong>modelocked</strong> Nd:YLF<br />

Nd:YLF laser pumped with<br />

Ti:sapphire laser<br />

1993<br />

“mailed A-FPSA to California”<br />

lattice constant a 0 (Å)<br />

LT = low temperature<br />

MBE growth<br />

A-PFSA <strong>modelocked</strong><br />

diode-pumped Nd:YLF and<br />

Nd:YAG laser<br />

7


It also works to modelock fibers ...<br />

LT grown <strong>SESAM</strong>s to reduce absorber recovery time<br />

1993<br />

“carried an A-FPSA to TU Vienna”<br />

Adjustable parameter:<br />

absorber recovery time<br />

More on LT MBE growth and ion implantation to<br />

reduce recovery time of <strong>SESAM</strong>s:<br />

Appl. Phys. Lett., vol. 75, pp. 1437-1439, 1999<br />

Appl. Phys. Lett., vol. 74, pp. 1993-1995, 1999<br />

Appl. Phys. Lett., vol. 74, 3134-3136, 1999<br />

Appl. Phys. Lett., vol. 74, pp. 1269-1271, 1999<br />

Physica B: Condensed Matter, vol. 273-274, pp. 733-736, 1999<br />

Stable pulses even with a “long” net gain window<br />

Stable pulses even with a “long” net gain window<br />

loss<br />

gain<br />

loss<br />

Why is <strong>the</strong> pulse stable<br />

with a long net gain window?<br />

gain<br />

R. Paschotta, U. <strong>Keller</strong>, Appl. Phys. B 73, 653, 2001<br />

absorber delays pulse!<br />

loss<br />

Fully saturated absorber:"<br />

leading edge of pulse"<br />

negligible loss for"<br />

has significant loss from "<br />

trailing edge of pulse"<br />

<strong>the</strong> saturable absorber"<br />

pulse<br />

time<br />

Kerr lens modelocking (KLM)<br />

Fast saturable absorber<br />

D. E. Spence, P. N. Kean, W. Sibbett<br />

Opt. Lett. 16, 42, 1991<br />

pulse<br />

time<br />

Soliton modelocking<br />

“not so fast” saturable absorber<br />

F. X. Kärtner, U. <strong>Keller</strong>,<br />

Opt. Lett. 20, 16, 1995<br />

time<br />

Dominant stabilization process with a relatively long net-gain window:!<br />

Picosecond domain: absorber delays pulse"<br />

The pulse is constantly moving backward and can swallow any noise 
<br />

growing behind itself."<br />

Femtosecond domain: dispersion in soliton modelocking"<br />

8


Laser pulse with pulse envelope<br />

Soliton modelocking: GDD negative, n 2 > 0<br />

E( t) = A( t)e iω 0t<br />

Pulse envelope A(t)<br />

<strong>Group</strong><br />

Delay Velocity<br />

Dispersion<br />

Self-<br />

Phase-<br />

Modulation<br />

Gain<br />

Slow<br />

Absorber<br />

Outputcoupler<br />

~<br />

E(ω)<br />

Δω 0<br />

Electric field E(t)<br />

E( t) = 1<br />

2π<br />

∫<br />

E ( ω )e iωt dω<br />

Master equation:<br />

Opt. Lett 20, 16, 1995 and IEEE JSTQE 2, 540, 1996<br />

A out ( T ,t) = e −q(t ) A in ( T ,t)<br />

A out ( T ,t) = ⎡⎣ 1 − q( t)<br />

⎤⎦ A in ( T ,t)<br />

⇒ ΔA( T ,t) = −q( t) A( T ,t)<br />

0<br />

0<br />

A(Δω)<br />

~<br />

Δω<br />

ω 0<br />

E( t) = 1 E ( ω 0<br />

+ Δω )e i ( ω 0 + Δω )t dΔω<br />

2π<br />

∫ = 1<br />

ω<br />

A ( Δω ) = E ( ω 0<br />

+ Δω )<br />

2π eiω 0t<br />

∫<br />

A ( Δω )e iΔωt dΔω<br />

T R<br />

∂<br />

∂T A T ,t<br />

⎛ ⎝<br />

⎜<br />

( ) = iD ∂ 2<br />

( ) 2<br />

− iδ A T ,t<br />

2<br />

∂t<br />

⎞<br />

⎠<br />

⎟ A T ,t<br />

⎛<br />

⎝<br />

⎜<br />

( ) + g − l + D g<br />

A ( T ,t ) = ⎛<br />

A sech ⎛ t ⎞ ⎞<br />

⎝<br />

⎜ 0 ⎝<br />

⎜<br />

τ ⎠<br />

⎟<br />

⎠<br />

⎟ exp ⎡<br />

iφ T ⎤<br />

⎢ 0<br />

⎣ T<br />

⎥ + continuum τ = 4 D<br />

R ⎦<br />

δ ⋅ F p,L<br />

∂ 2<br />

∂t − q( t)<br />

⎞<br />

2 ⎠<br />

⎟ A T ,t<br />

( ) = 0<br />

!<br />

Ultrashort pulse generation with modelocking<br />

A. J. De Maria, D. A. Stetser, H. Heynau<br />

Appl. Phys. Lett. 8, 174, 1966<br />

Nd:glass
<br />

first passively <strong>modelocked</strong> laser
<br />

Q-switched <strong>modelocked</strong>!<br />

200 ns/div"<br />

50 ns/div"<br />

Q-switching problem<br />

in passively <strong>modelocked</strong><br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong>:<br />

- active modelocking for<br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong><br />

- dye <strong>lasers</strong> solved <strong>the</strong> problem<br />

"<br />

1960 1970 1980 1990 2000
<br />

Year"<br />

Flashlamp-pumped
<br />

<strong>solid</strong>-<strong>state</strong> <strong>lasers</strong> !<br />

9


<strong>SESAM</strong> Parameters:<br />

Saturation Fluence, Modulation Depth, Loss ...<br />

100<br />

F sat, A<br />

Saturation fluence<br />

Reflectivity (%)<br />

95<br />

ΔR ns<br />

Non-saturable losses<br />

ΔR<br />

Modulation depth<br />

Q-switched mode locking is avoided if...<br />

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. <strong>Keller</strong>,<br />

JOSA B 16, 46 (1999)<br />

E P 2 > E sat,L<br />

E sat,A<br />

ΔR<br />

Q-switched mode locking<br />

QML<br />

= A eff, A<br />

F sat,A<br />

ΔR<br />

QML noise<br />

QML<br />

90<br />

0 50 100 150 200 250 300<br />

Incident pulse fluence F p ( µJ/cm 2 )<br />

Guidelines how to measure <strong>the</strong>se parameters:"<br />

M. Haiml, R. Grange, U. <strong>Keller</strong>, Appl. Phys. B 79, 331, 2004"<br />

0<br />

10 20 30 40<br />

Time (multiples of round trip time)<br />

cw mode locking<br />

cw ML<br />

cw ML<br />

with improved accuracy: D. J. H. Maas, et al., Optics Express 16, 7571, 2008"<br />

0 10 20 30 40<br />

Time (multiples of round trip time)<br />

Appl. Phys. B 58, 347, 1994<br />

<strong>SESAM</strong>s to reduce Q-switching instabilities<br />

<strong>SESAM</strong> design<br />

2005<br />

1) <strong>SESAM</strong>s with low saturation fluence:<br />

antiresonant<br />

resonant<br />

E-<strong>SESAM</strong><br />

SiO 2<br />

4<br />

4<br />

0.4<br />

400<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

200<br />

0<br />

-200<br />

0.3<br />

0.2<br />

0.1<br />

Air<br />

-400<br />

0<br />

0<br />

0.0<br />

5600 6000 6400 6800<br />

1280 1320 1360<br />

4<br />

4<br />

4<br />

1000<br />

3<br />

3<br />

500<br />

3<br />

2<br />

2<br />

0<br />

2<br />

1<br />

1 -500<br />

1<br />

Air<br />

2<br />

2<br />

0<br />

2<br />

-1000<br />

0<br />

0<br />

5600 6000 6400 6800<br />

1280 1320 1360<br />

0<br />

4<br />

4<br />

4<br />

400<br />

3<br />

3<br />

200<br />

3<br />

Air<br />

1<br />

1 -200<br />

1<br />

0<br />

0<br />

-400<br />

5600 6000 6400 6800<br />

1280 1320 1360<br />

0<br />

Distance from substrate (nm)<br />

Wavelength (nm)<br />

Refractive index<br />

Refractive index<br />

Refractive index<br />

Standing wave pattern<br />

GDD and field enhanc. factor<br />

GaAs<br />

AlAs<br />

GaAs<br />

AlAs<br />

GaAs<br />

AlAs<br />

GaInNAs absorber<br />

Field enhancement |E n | 2<br />

Field enhancement |E n | 2<br />

Field enhancement |E n | 2<br />

<strong>Group</strong> delay dispersion (fs 2 )<br />

GDD (fs 2 )<br />

GDD (fs 2 )<br />

Field enhancement factor ξ<br />

Field enhancement factor ξ Field enhancement factor ξ<br />

10


Anti-resonant high-finesse <strong>SESAM</strong> (first <strong>SESAM</strong> design)<br />

Optics Lett., vol. 17, 505, 1992<br />

IEEE JSTQE, vol. 2, 435, 1996<br />

Anti-resonant low-finesse <strong>SESAM</strong><br />

Anti-resonant Fabry-Perot<br />

ϕ rt<br />

= ϕ b<br />

+ ϕ t<br />

+ 2knd = ( 2m + 1)π<br />

Anti-resonant Fabry-Perot<br />

ϕ rt<br />

= ϕ b<br />

+ ϕ t<br />

+ 2knd = ( 2m + 1)π<br />

ϕ b<br />

= π<br />

ϕ t<br />

= 0<br />

d = m λ<br />

2n<br />

ϕ b<br />

= π<br />

ϕ t<br />

= 0<br />

d = m λ<br />

2n , m = 1<br />

IEEE JSTQE, vol. 2, 435, 1996<br />

Anti-resonant low-finesse <strong>SESAM</strong><br />

High- versus low-finesse anti-resonant <strong>SESAM</strong><br />

final high-finesse<br />

anti-resonant <strong>SESAM</strong><br />

R top = 96%<br />

bottom Bragg mirror<br />

R bottom ≈ 100%<br />

Anti-resonant Fabry-Perot<br />

ϕ rt<br />

= ϕ b<br />

+ ϕ t<br />

+ 2knd = ( 2m + 1)π<br />

optical pulse<br />

spectrum<br />

<strong>SESAM</strong> without R top<br />

AR-coated<br />

high-finesse <strong>SESAM</strong> design:<br />

AlGaAs/AlAs Al x Ga 1-x As SiO 2 /TiO 2<br />

x = 0.09<br />

saturable<br />

absorber<br />

ϕ b<br />

= 0<br />

ϕ t<br />

= 0<br />

d = λ<br />

4n<br />

Absorber embedded into a Bragg reflector<br />

(quarter-wave stack of alternating high and<br />

low index material)<br />

Interferometric<br />

autocorrelation (IAC)<br />

<strong>SESAM</strong> <strong>modelocked</strong> Ti:sapphire laser<br />

I. D. Jung et al, Opt. Lett. 20, 1559, 1995<br />

11


High- versus low-finesse anti-resonant <strong>SESAM</strong><br />

High- versus low-finesse anti-resonant <strong>SESAM</strong><br />

final low-finesse<br />

anti-resonant <strong>SESAM</strong><br />

bottom Bragg mirror<br />

R bottom ≈ 100%<br />

low-finesse <strong>SESAM</strong> design:<br />

AlGaAs/AlAs GaAs SA AlO 2<br />

d <br />

nd = λ 2<br />

<strong>SESAM</strong> <strong>modelocked</strong> Ti:sapphire laser<br />

I. D. Jung et al, Opt. Lett. 20, 1559, 1995<br />

<strong>SESAM</strong> <strong>modelocked</strong> Ti:sapphire laser: I. D. Jung et al, Opt. Lett. 20, 1559, 1995<br />

Ultrabroadband <strong>SESAM</strong>s<br />

Semiconductor AlGaAs/AlAs Bragg mirror replaced by silver mirror:<br />

Ultrabroadband <strong>SESAM</strong><br />

25 pairs<br />

Al 0.17 Ga 0.83 As/AlAs<br />

4 pairs<br />

ZnTe/BaF 2<br />

4 pairs<br />

Al 0.8 Ga 0.2 As/CaF 2<br />

R. Fluck et al., Optics Lett. 21, 743, 1996<br />

S. Schön et al., Appl. Phys. Lett. 77, 782, 2000<br />

12


Ultrabroadband <strong>SESAM</strong><br />

<strong>SESAM</strong>s to reduce Q-switching instabilities<br />

n<br />

n o ●<br />

n e ▲<br />

2005<br />

1) <strong>SESAM</strong>s with low saturation fluence:<br />

2) <strong>SESAM</strong>s with inverse saturable absorption:<br />

S. Schön et al., Appl. Phys. Lett. 77, 782, 2000<br />

Inverse saturable absorption (ISA)<br />

Consequences for <strong>the</strong> QML Threshold<br />

<strong>SESAM</strong> reflectivity for a pulse fluence F p<br />

<strong>the</strong> reflectivity decreases<br />

at higher pulse energies<br />

<strong>the</strong> roll-over =<br />

inverse saturable absorption<br />

R ISA<br />

(F p<br />

) = R P<br />

(F p<br />

)<br />

• F 2 is <strong>the</strong> inverse slope<br />

of <strong>the</strong> roll over<br />

− F p<br />

F 2<br />

• The smaller F 2 , <strong>the</strong><br />

stronger is <strong>the</strong> roll-over<br />

No inverse sat. absorption<br />

E P<br />

> E sat,L<br />

ΔR<br />

S<br />

C. Hönninger, R. Paschotta, F. Morier-Genoud,<br />

M. Moser, and U. <strong>Keller</strong><br />

J. Opt. Soc. Am. B 16, 46 (1999)<br />

E P Intracavity pulse energy<br />

E sat,L Gain saturation energy<br />

S = E P /E sat,A Saturation Parameter<br />

ΔR ⎛<br />

E P<br />

> E sat,L<br />

S 1 − S 2 ⎞<br />

⎜ 2 ⎟<br />

⎝ S 0<br />

⎠<br />

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler,<br />

L. Krainer, O. Ostinelli, M. Golling, U. <strong>Keller</strong><br />

Appl. Phys. B 80, 151 (2005)<br />

S 0<br />

=<br />

F 2 ΔR<br />

F sat<br />

• Less demands on <strong>the</strong> mode size in <strong>the</strong> gain medium<br />

• More flexibility for cavity design<br />

• Easier to suppress Q-switched mode locking<br />

With inverse sat. absorption<br />

Saturation parameter at<br />

maximum reflectivity<br />

13


All-optical 100-GHz pulse generation at 1.5 µm<br />

Autocorrelation<br />

Optical spectrum<br />

<strong>SESAM</strong> <strong>modelocked</strong> Er-Yb:glass (ERGO) laser<br />

enabled world-record optical communication results<br />

Time-Bandwidth Products, Inc. makes such <strong>lasers</strong> commercially available<br />

ERGO laser, http://www.time-bandwidth.com<br />

Photo of actual setup<br />

<strong>SESAM</strong> <strong>modelocked</strong> Er-Yb:glass laser<br />

Pulse repetition rate: 101 GHz<br />

Max. output-power: 35 mW<br />

Optical bandwidth: 2.6 nm<br />

Pulse width: 1.6 ps (1.7x TBP)<br />

A. E. H. Oehler et al., Opt. Express 16, 21930, 2008<br />

Resonant <strong>SESAM</strong>: both SAM and negative GDD<br />

Resonant <strong>SESAM</strong>: both SAM and negative GDD<br />

Position of saturable absorber (SA):<br />

(a) close to a node (lower loss)<br />

(b) at peak of standing wave: strong<br />

absorption dip at resonance<br />

D. Kopf et al, Opt. Lett. 21, 486, 1996<br />

D. Kopf et al, Opt. Lett. 21, 486, 1996<br />

14


Resonant <strong>SESAM</strong>: both SAM and negative GDD<br />

<strong>SESAM</strong> without damage (even at >100 kW)<br />

2012<br />

Position of saturable absorber (SA):<br />

(a) close to a node (lower loss)<br />

(b) at peak of standing wave: strong<br />

absorption dip at resonance<br />

D. Kopf et al, Opt. Lett. 21, 486, 1996<br />

High average power <strong>lasers</strong>: <strong>SESAM</strong> ML TDL<br />

TDL<br />

A. Giesen, et al., Appl. Phys. B 58, 365 (1994)<br />

Moving from ss-<strong>lasers</strong> to semiconductor <strong>lasers</strong><br />

Vertical external cavity surface emitting laser (VECSEL)<br />

Modelocked integrated external-cavity surface emitting laser (MIXSEL)<br />

Appl. Phys. B, vol. 88, Nr. 4, pp. 493-497, 2007<br />

Modelocked VECSEL<br />

C. J. Saraceno et al., >270 W (!)<br />

Opt. Express 20, 23535, 2012<br />

First time >10 µJ pulse energy from a <strong>SESAM</strong> <strong>modelocked</strong> Yb:YAG thin disk laser (TDL)<br />

Opt. Express 16, 6397, 2008 and CLEO Europe June 2007<br />

26 µJ with a multipass gain cavity and larger output coupling of 70% (Trumpf/Konstanz)<br />

Opt. Express 16, 20530, 2008<br />

Important Milestones:<br />

!<br />

MIXSEL<br />

MIXSEL with 6.4 W average output power: Opt. Express 18, 27582, 2010<br />

femtosecond VECSEL with > 1 W average output power: Opt. Express 19, 8108, 2011<br />

15


More info on <strong>the</strong> web ...<br />

• Web page of Prof. Ursula <strong>Keller</strong> at ETH Zurich: http://www.ulp.ethz.ch<br />

• All papers are available to download as PDFs:<br />

http://www.ulp.ethz.ch/publications/paper<br />

• <strong>SESAM</strong> milestones: http://www.ulp.ethz.ch/research/Sesam<br />

• Ultrafast <strong>solid</strong>-<strong>state</strong> laser: get started with <strong>the</strong> book chapter ...<br />

http://www.ulp.ethz.ch/research/UltrafastSolidStateLasers<br />

• VECSEL and MIXSEL: http://www.ulp.ethz.ch/research/VecselMixsel<br />

• Frequency combs: http://www.ulp.ethz.ch/research/FrequencyComb<br />

• Attoscience, Attoclock, Attoline:<br />

• http://www.ulp.ethz.ch/research/Attosecondscience<br />

• http://www.ulp.ethz.ch/research/Attoline<br />

• http://www.ulp.ethz.ch/research/Attoclock<br />

• Viewgraphs to graduate lecture course: Ultrafast Laser Physics<br />

http://www.ulp.ethz.ch/education/ultrafastlaserphysics/viewgraphs<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!