17.10.2014 Views

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

106 <strong>2.1</strong>.6 Mode-locking techniques [Ref. p. 134<br />

and<br />

∂ 2<br />

{<br />

∂2 1<br />

A (t) =<br />

∂t2 ∂t 2 2π<br />

∫<br />

}<br />

à (ω)e iΔωt dω = 1 ∫<br />

2π<br />

à (ω) [ −Δω 2] e iΔωt dω. (<strong>2.1</strong>.31)<br />

For <strong>the</strong> change in <strong>the</strong> pulse envelope ΔA = A out − A in after <strong>the</strong> gain medium we <strong>the</strong>n obtain:<br />

∂<br />

ΔA ≈<br />

[g 2 ]<br />

+ D g<br />

∂t 2 A, D g ≡ g Ωg<br />

2<br />

, (<strong>2.1</strong>.32)<br />

where D g is <strong>the</strong> gain dispersion.<br />

<strong>2.1</strong>.6.2.2 Loss modulator<br />

A loss modulator inside a laser cavity is typically an acousto-optic modulator and produces a<br />

sinusoidal loss modulation given by a time-dependent loss coefficient:<br />

l (t) =M (1 − cos ω m t) ≈ M s t 2 , M s ≡ Mω2 m<br />

, (<strong>2.1</strong>.33)<br />

2<br />

where M s is <strong>the</strong> curvature of <strong>the</strong> loss modulation, 2M is <strong>the</strong> peak-to-peak modulation depth and<br />

ω m <strong>the</strong> modulation frequency which corresponds to <strong>the</strong> axial mode spacing in fundamental modelocking.<br />

In fundamental mode-locking we only have one pulse per cavity round trip. The change<br />

in <strong>the</strong> pulse envelope is <strong>the</strong>n given by<br />

A out (t) =e −l(t) A in (t) ≈ [1 − l (t)] A in (t) ⇒ ΔA ≈−M s t 2 A. (<strong>2.1</strong>.34)<br />

<strong>2.1</strong>.6.2.3 Fast saturable absorber<br />

In case of an ideal fast saturable absorber we assume that <strong>the</strong> loss recovers instantaneously and<br />

<strong>the</strong>refore shows <strong>the</strong> same time dependence as <strong>the</strong> pulse envelope, (<strong>2.1</strong>.17) and (<strong>2.1</strong>.18):<br />

q (t) =<br />

q 0<br />

q 0<br />

≈ q 0 − γ A P (t) , γ A ≡ . (<strong>2.1</strong>.35)<br />

1+I A (t)/I sat,A I sat,A A A<br />

The change in <strong>the</strong> pulse envelope is <strong>the</strong>n given by<br />

A out (t) =e −q(t) A in (t) ≈ [1 − q (t)] A in (t) ⇒ ΔA ≈ γ A |A| 2 A. (<strong>2.1</strong>.36)<br />

<strong>2.1</strong>.6.2.4 <strong>Group</strong> velocity dispersion (GVD)<br />

Thewavenumberk n (ω) in a dispersive material depends on <strong>the</strong> frequency and can be approximately<br />

written as:<br />

k n (ω) ≈ k n (ω 0 )+k nΔ ′ ω + 1 2 k′′ nΔ ω 2 + ... , (<strong>2.1</strong>.37)<br />

where Δ ω = ω − ω 0 , k n ′ = ∂k ∣<br />

n<br />

∂ω ∣ and k n ′′ = ∂2 k n ∣∣∣ω=ω0<br />

ω=ω0<br />

∂ω 2 . In <strong>the</strong> frequency domain <strong>the</strong> pulse<br />

envelope in a dispersive medium after a propagation distance of z is given by<br />

à (z,ω) =e −i[kn(ω)−kn(ω0)]z à (0,ω) ≈{1 − i[k n (ω) − k n (ω 0 )] z} à (0,ω) , (<strong>2.1</strong>.38)<br />

Landolt-Börnstein<br />

New Series VIII/1B1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!