17.10.2014 Views

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ref. p. 134] <strong>2.1</strong> <strong>Ultrafast</strong> <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong> 103<br />

Table <strong>2.1</strong>.10. Linearized operators that model <strong>the</strong> change in <strong>the</strong> pulse envelope A (t) for each element in <strong>the</strong> laser cavity and <strong>the</strong>ir defining equations.<br />

The pulse envelope is normalized such that |A (z, t)| 2 is <strong>the</strong> pulse power P (z, t) (<strong>2.1</strong>.24). kn: wave vector in <strong>the</strong> dispersive media, i.e. kn = kn = n2π/λ,<br />

where λ is <strong>the</strong> vacuum wavelength. z: <strong>the</strong> relevant propagation distance for negative dispersion or SPM, respectively. c: vacuum light velocity. ω: frequency<br />

in radians/second.<br />

Laser cavity element Eq. Linearized operator New constants Constants<br />

[<br />

Gain (<strong>2.1</strong>.32) ΔA ≈ g + Dg<br />

]<br />

∂ 2<br />

A<br />

∂t 2 Dg ≡ g Ω g<br />

2<br />

Dg: gain dispersion (<strong>2.1</strong>.32)<br />

g: saturated amplitude gain coefficient<br />

Ωg: HWHM of gain bandwidth in radians/second<br />

Δνg: FWHM of gain bandwidth, i.e. Δνg = Ωg/π<br />

Loss modulator (<strong>2.1</strong>.34) ΔA ≈−Mst 2 A Ms ≡ Mω2 m<br />

2<br />

ωm: loss modulation frequency in radians/second<br />

2M: peak-to-peak modulation depth for amplitude loss coefficient<br />

Constant loss ΔA ≈−lA l: amplitude loss coefficient<br />

Constant phase shift ΔA ≈ iψA ψ: phase shift<br />

Fast saturable absorber (<strong>2.1</strong>.36) ΔA ≈ γA |A| 2 A γA ≡<br />

q0<br />

Isat,AAA<br />

γA: absorber coefficient (<strong>2.1</strong>.18) and (<strong>2.1</strong>.35)<br />

q0: maximum saturable amplitude loss coefficient<br />

Isat,A: saturation intensity<br />

AA: laser mode area in saturable absorber<br />

Dispersion: 2nd order (<strong>2.1</strong>.41) ΔA ≈ iD ∂2<br />

∂t A D ≡ 1 2 2 k′′ nz D: dispersion parameter (half of <strong>the</strong> total group delay dispersion per<br />

cavity round trip – Table <strong>2.1</strong>.7) (<strong>2.1</strong>.40)<br />

k n ′′ = d2 kn<br />

dω 2<br />

SPM (<strong>2.1</strong>.47) ΔA ≈−iδL |A| 2 A δL ≡ kn2z<br />

AL<br />

δL: SPM coefficient (<strong>2.1</strong>.44)<br />

n2: nonlinear refractive index<br />

AL: laser mode area inside laser material<br />

(Note: Here we assume that <strong>the</strong> dominant SPM occurs in <strong>the</strong> laser<br />

material. Then z is equal to 2 times <strong>the</strong> length of <strong>the</strong> laser crystal in<br />

a standing-wave cavity.)<br />

Landolt-Börnstein<br />

New Series VIII/1B1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!