17.10.2014 Views

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ref. p. 134] <strong>2.1</strong> <strong>Ultrafast</strong> <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong> 97<br />

Table <strong>2.1</strong>.9. Dispersion compensation, its defining equations and figures. c: light velocity in vacuum, λ:<br />

wavelength in vacuum, λ 0: center wavelength of pulse spectrum, ω: frequency in radians/second.<br />

Quantity<br />

Gires–Tournois<br />

Interferometer (GTI)<br />

(Fig. <strong>2.1</strong>.16a)<br />

Dispersion: 2nd order<br />

Defining equation<br />

d: thickness of Fabry–Perot<br />

n: refractive index of material inside Fabry–Perot (airspaced n =1)<br />

(Note: Material dispersion is neglected.)<br />

t 0 = 2nd : round-trip time of <strong>the</strong> Fabry–Perot<br />

c<br />

R t: intensity reflectivity of top reflector of Fabry–Perot<br />

(Bottom reflector is assumed to have a 100%-reflectivity.)<br />

d 2 φ<br />

dω 2 = −2t2 0 (1 − R t) √ R t sin ωt 0<br />

(<br />

1+Rt − 2 √ R t cos ωt 0<br />

) 2<br />

Four-grating compressor<br />

(Fig. <strong>2.1</strong>.16b)<br />

Dispersion: 2nd order<br />

L g: grating pair spacing<br />

Λ: grating period<br />

θ i: angle of incidence at grating<br />

[ ( ) ]<br />

d 2 2 −3/2<br />

φ<br />

dω = − λ3 L g λ<br />

1 −<br />

2 π c 2 Λ 2 Λ − sin θi<br />

Dispersion: 3rd order<br />

Four-prism compressor<br />

(Fig. <strong>2.1</strong>.16c)<br />

d 3 φ<br />

dω = − d2 φ 6 π λ<br />

3 dω 2 c<br />

1+ λ Λ sin θi − sin2 θ i<br />

( ) 2<br />

λ<br />

1 −<br />

Λ − sin θi<br />

n: refractive index of prisms<br />

θ B: angle of incidence of prism is at Brewster angle<br />

θ B = arctan [n (λ 0)]<br />

α = π − 2θ B : apex angle of prism<br />

θ 2 (λ) = arcsin<br />

[<br />

n (λ)sin<br />

(<br />

π − 2θ B − arcsin<br />

L: apex-to-apex prism distance<br />

h: beam insertion into second prism<br />

)]<br />

sin θB<br />

n (λ)<br />

sin β = h L<br />

cos θ 2<br />

cos (α/2)<br />

Dispersion: 2nd order<br />

Dispersion: 3rd order<br />

d 2 φ<br />

dω =<br />

λ3 d 2 P<br />

2 2 π c 2 dλ 2<br />

[ (<br />

d 2 P<br />

dλ =2 ∂ 2 n ∂θ2<br />

2 ∂λ 2 ∂n<br />

≈ 4<br />

) ( )( ∂ 2 θ 2 ∂n<br />

+<br />

∂n 2 ∂λ<br />

) ] 2<br />

[ (<br />

∂ 2 n<br />

∂λ + 2n − 1 )( ∂n<br />

2 n 3 ∂λ<br />

(<br />

d 3 φ<br />

dω = −λ4 3 d2 P<br />

3 4 π 2 c 3 dλ 2<br />

d 3 P<br />

dλ 3<br />

+ λ d3 P<br />

dλ 3 )<br />

≈ 4<br />

d3 n<br />

dn<br />

L sin β − 24<br />

dλ3 dλ<br />

d 2 n<br />

dλ L cos β<br />

2<br />

) 2<br />

]<br />

( ) 2 ∂θ2 ∂n<br />

L sin β − 2<br />

L cos β<br />

∂n ∂λ<br />

( ) 2 ∂n<br />

L cos β<br />

∂λ<br />

L sin β − 8<br />

Landolt-Börnstein<br />

New Series VIII/1B1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!