17.10.2014 Views

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ref. p. 134] <strong>2.1</strong> <strong>Ultrafast</strong> <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong> 95<br />

Table <strong>2.1</strong>.8. Examples of material dispersions calculated from <strong>the</strong> Sellmeier equations given in Table <strong>2.1</strong>.6<br />

and <strong>the</strong> equations given in Table <strong>2.1</strong>.7.<br />

Material<br />

Refractive index n<br />

at a center wavelength of 800 nm<br />

Propagation constant k n<br />

at a center wavelength of 800 nm<br />

Fused quartz n (0.8 μm) = 1.45332<br />

∂n<br />

∂λ∣ = −0.017 1<br />

800 nm<br />

μm<br />

∣<br />

∂ 2 n ∣∣∣800 1<br />

=0.04<br />

∂λ 2 nm<br />

μm 2<br />

∣<br />

∂ 3 n ∣∣∣800 1<br />

= −0.24<br />

∂λ 3 nm<br />

μm 3<br />

∂k n<br />

∂ω<br />

∣ =4.84 × 10 −9<br />

800 nm<br />

s ns<br />

=4.84<br />

m m<br />

∣<br />

∂ 2 k n ∣∣∣800<br />

=3.61 × 10 −26 s 2 fs2<br />

=36.1<br />

∂ω 2 nm<br />

m mm<br />

∣<br />

∂ 3 k n ∣∣∣800<br />

=2.74 × 10 −41 s 3 fs3<br />

=27.4<br />

∂ω 3 nm<br />

m mm<br />

SF10 glass n (0.8 μm) = 1.71125<br />

∂n<br />

∂λ∣ = −0.0496 1<br />

800 nm<br />

μm<br />

∣<br />

∂ 2 n ∣∣∣800 1<br />

=0.176<br />

∂λ 2 nm<br />

μm 2<br />

∣<br />

∂ 3 n ∣∣∣800 1<br />

= −0.997<br />

∂λ 3 nm<br />

μm 3<br />

∂k n<br />

∂ω<br />

∣ =5.70 × 10 −9<br />

800 nm<br />

s ns<br />

=5.70<br />

m m<br />

∣<br />

∂ 2 k n ∣∣∣800<br />

=1.59 × 10 −25 s 2 fs2<br />

= 159<br />

∂ω 2 nm<br />

m mm<br />

∣<br />

∂ 3 k n ∣∣∣800<br />

=1.04 × 10 −40 s 3 fs3<br />

= 104<br />

∂ω 3 nm<br />

m mm<br />

Sapphire n (0.8 μm) = 1.76019<br />

∂n<br />

∂λ∣ = −0.0268 1<br />

800 nm<br />

μm<br />

∣<br />

∂ 2 n ∣∣∣800 1<br />

=0.064<br />

∂λ 2 nm<br />

μm 2<br />

∣<br />

∂ 3 n ∣∣∣800 1<br />

= −0.377<br />

∂λ 3 nm<br />

μm 3<br />

∂k n<br />

∂ω<br />

∣ =5.87 × 10 −9<br />

800 nm<br />

s ns<br />

=5.87<br />

m m<br />

∣<br />

∂ 2 k n ∣∣∣800<br />

=5.80 × 10 −26 s 2 fs2<br />

=58<br />

∂ω 2 nm<br />

m mm<br />

∣<br />

∂ 3 k n ∣∣∣800<br />

=4.21 × 10 −41 s 3 fs3<br />

=4<strong>2.1</strong><br />

∂ω 3 nm<br />

m mm<br />

can be exploited. Usually, one requires sources of negative GDD, and in addition appropriate higherorder<br />

dispersion for shorter pulses. The most important techniques for dispersion compensation<br />

are discussed in <strong>the</strong> following subsections. Different optical elements that introduce wavelengthdependent<br />

refraction (i.e. prism pairs, Sect. <strong>2.1</strong>.5.2.3) or wavelength-dependent diffraction (i.e.<br />

grating pairs, Sect. <strong>2.1</strong>.5.2.2) can be used to introduce an additional wavelength dependence to <strong>the</strong><br />

round-trip phase and thus contribute to <strong>the</strong> overall dispersion. A wavelength-dependent round-trip<br />

phase can also be introduced with GTIs (Sect. <strong>2.1</strong>.5.<strong>2.1</strong>) and chirped mirrors (Sect. <strong>2.1</strong>.5.2.4).<br />

The challenge in ultrashort pulse generation is dispersion compensation over a large bandwidth<br />

to compensate for <strong>the</strong> dispersive pulse broadening that is occurring in <strong>the</strong> gain material and o<strong>the</strong>r<br />

elements inside <strong>the</strong> laser cavity. Dispersion compensation is important because for example, a 10-fs<br />

(1-fs) Gaussian pulse at <strong>the</strong> center wavelength of 800 nm is broadened to 100 fs (1 ps) after only<br />

1 cm of fused quartz due to second-order dispersion. This follows from (<strong>2.1</strong>.21) for <strong>the</strong> regime of<br />

strong pulse broadening and Tables <strong>2.1</strong>.6–<strong>2.1</strong>.8. In addition, in femtosecond <strong>lasers</strong> <strong>the</strong> pulses are<br />

ideally soliton pulses for which a constant negative dispersion over <strong>the</strong> full spectral width of <strong>the</strong><br />

pulse balances <strong>the</strong> chirp of <strong>the</strong> self-phase modulation. The necessary negative dispersion required<br />

for a certain pulse duration follows from (<strong>2.1</strong>.74). It is required that all higher-order dispersion<br />

terms are negligibly small.<br />

Landolt-Börnstein<br />

New Series VIII/1B1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!