17.10.2014 Views

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ref. p. 134] <strong>2.1</strong> <strong>Ultrafast</strong> <strong>solid</strong>-<strong>state</strong> <strong>lasers</strong> 133<br />

ΔR modulation depth of a saturable absorber mirror (Fig. <strong>2.1</strong>.9 and Table <strong>2.1</strong>.5)<br />

ΔR ns<br />

nonsaturable reflection loss of a saturable absorber mirror (Fig. <strong>2.1</strong>.9 and Table<br />

<strong>2.1</strong>.5)<br />

ΔT<br />

modulation depth of saturable absorber in transmission<br />

ΔT ns<br />

nonsaturable transmission loss of saturable absorber<br />

Δλ g<br />

FWHM gain bandwidth<br />

Δν g<br />

FWHM gain bandwidth, i.e. Δν g<br />

= Δλ g<br />

Δν p<br />

FWHM of pulse intensity spectrum<br />

Δϕ GPO group phase offset ((<strong>2.1</strong>.97) and (<strong>2.1</strong>.98))<br />

δ L SPM coefficient (<strong>2.1</strong>.44)<br />

δτ temporal delay between two beams (<strong>2.1</strong>.86)<br />

θ<br />

ν 0<br />

λ 0<br />

divergence angle of a pump source (i.e. <strong>the</strong> beam radius increases approximately<br />

linearly with propagation distance, defining a cone with half-angle θ)<br />

θ B Brewster angle (Table <strong>2.1</strong>.9)<br />

θ G divergence angle of a Gaussian beam, i.e. θ G = λ/(π W 0,G ) (<strong>2.1</strong>.3)<br />

θ i angle of incidence (Table <strong>2.1</strong>.9)<br />

Λ grating period (Table <strong>2.1</strong>.9)<br />

λ<br />

vacuum wavelength of light<br />

λ 0<br />

center vacuum wavelength<br />

λ eff effective wavelength (<strong>2.1</strong>.4)<br />

λ n<br />

wavelength in a dispersive medium with refractive index n, i.e. λ n = λ/n<br />

ν<br />

frequency<br />

ν pump<br />

pump photon frequency<br />

σ A<br />

absorber cross section<br />

σ L<br />

gain cross section<br />

σL<br />

abs<br />

absorption cross section of <strong>the</strong> three-level gain medium<br />

τ 0 initial transform-limited pulse duration (<strong>2.1</strong>.20)<br />

τ A recovery time of saturable absorber (Table <strong>2.1</strong>.5)<br />

τ Au<br />

FWHM of intensity autocorrelation pulse<br />

τ c<br />

photon cavity lifetime<br />

τ L<br />

upper-<strong>state</strong> lifetime of laser gain material<br />

τ p<br />

FWHM intensity pulse duration<br />

τ p,min<br />

minimal τ p<br />

Φ(ω) frequency-dependent phase shift (Sect. <strong>2.1</strong>.5.1)<br />

Φ 0 phase shift at center angular frequency ω 0<br />

ϕ 0 (t) absolute phase of pulse (<strong>2.1</strong>.96)<br />

φ nl nonlinear phase shift per cavity round trip (<strong>2.1</strong>.73)<br />

φ nl (z) nonlinear phase shift of a pulse with peak intensity I 0 during propagation<br />

through a Kerr medium along <strong>the</strong> z-axis, i.e. φ nl (z) =kn 2 I 0 z (<strong>2.1</strong>.73)<br />

φ s<br />

phase shift of <strong>the</strong> soliton per cavity round trip<br />

φ s (z) phase shift of <strong>the</strong> soliton during propagation along <strong>the</strong> z-axis (<strong>2.1</strong>.73)<br />

ψ phase shift (Table <strong>2.1</strong>.10)<br />

Ω g<br />

Half-Width-Half-Maximum (HWHM) gain bandwidth of laser in radians/second,<br />

i.e. Ω g = π Δν g<br />

ω<br />

radian frequency<br />

ω 0<br />

center radian frequency<br />

ω c carrier radian frequency (<strong>2.1</strong>.96)<br />

ω CEO carrier envelope offset (CEO) frequency in radians/second (<strong>2.1</strong>.99)<br />

ω m<br />

modulation frequency in radians/second<br />

Landolt-Börnstein<br />

New Series VIII/1B1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!