17.10.2014 Views

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

2.1 Ultrafast solid-state lasers - ETH - the Keller Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

132 <strong>2.1</strong>.10 Glossary [Ref. p. 134<br />

L g length of laser gain material or grating pair spacing (Table <strong>2.1</strong>.9)<br />

l<br />

total saturated amplitude loss coefficient (Table <strong>2.1</strong>.10). l includes <strong>the</strong> output<br />

coupler, all <strong>the</strong> residual cavity losses and <strong>the</strong> unsaturated loss of <strong>the</strong> saturable<br />

absorber.<br />

l out<br />

amplitude loss coefficient of output coupler<br />

l s<br />

amplitude loss coefficient of soliton due to gain filtering and absorber saturation<br />

(<strong>2.1</strong>.75)<br />

M modulation depth of loss modulator (<strong>2.1</strong>.33)<br />

M 1 , M 2 , M 3 , . . . different mirrors in laser cavity<br />

M 2 M 2 factor defining <strong>the</strong> laser beam quality (<strong>2.1</strong>.3)<br />

Mfast<br />

2 M 2 factor in <strong>the</strong> “fast” axis, perpendicular to <strong>the</strong> pn-junction of <strong>the</strong> diode laser<br />

Mslow<br />

2 M 2 factor in <strong>the</strong> “slow” axis, parallel to <strong>the</strong> pn-junction of <strong>the</strong> diode laser<br />

M s curvature of loss modulation ((<strong>2.1</strong>.33) and Table <strong>2.1</strong>.10)<br />

n<br />

refractive index of a dispersive medium<br />

n 2 nonlinear refractive index (Fig. <strong>2.1</strong>.13, (<strong>2.1</strong>.42))<br />

P<br />

power<br />

P (z,t) pulse power (<strong>2.1</strong>.24)<br />

P abs<br />

absorbed pump power<br />

P av,out<br />

average output power<br />

q saturable amplitude loss coefficient (i.e. nonsaturable losses not included) (<strong>2.1</strong>.7)<br />

q 0<br />

unsaturated amplitude loss coefficient or maximal saturable amplitude loss coefficient<br />

(<strong>2.1</strong>.6)<br />

q p<br />

total absorber loss coefficient which results from <strong>the</strong> fact that part of <strong>the</strong> excitation<br />

pulse needs to be absorbed to saturate <strong>the</strong> absorber ((<strong>2.1</strong>.11) and (<strong>2.1</strong>.15))<br />

q s<br />

residual saturable absorber amplitude loss coefficient for a fully saturated ideal<br />

fast absorber with soliton pulses<br />

R(F p,A ) measured nonlinear reflectivity of a SESAM (Fig. <strong>2.1</strong>.9)<br />

R(t) impulse response of a saturable absorber mirror (Sect. <strong>2.1</strong>.4.2)<br />

R ISA measured nonlinear reflectivity with inverse saturable absorption (ISA) (<strong>2.1</strong>.81)<br />

R t top intensity reflectivity (Table <strong>2.1</strong>.9)<br />

R tot total net reflectivity (<strong>2.1</strong>.9)<br />

S(ω, τ) spectral interference of a pulse with a frequency-shifted replica (<strong>2.1</strong>.90)<br />

T time that develops on a time scale of <strong>the</strong> order of T R (<strong>2.1</strong>.23)<br />

T g group delay (Table <strong>2.1</strong>.7)<br />

T out<br />

intensity transmission of <strong>the</strong> laser output coupler<br />

T R<br />

cavity round-trip time<br />

t fast time of <strong>the</strong> order of <strong>the</strong> pulse duration (<strong>2.1</strong>.23)<br />

t 0 round-trip time of Fabry–Perot (Table <strong>2.1</strong>.9)<br />

t D time shift (<strong>2.1</strong>.59)<br />

V p<br />

pump volume<br />

v g group velocity (Table <strong>2.1</strong>.7)<br />

v p phase velocity (Table <strong>2.1</strong>.7)<br />

W 0<br />

beam waist<br />

W 0,G<br />

beam waist of a Gaussian beam<br />

W 0,opt optimized beam waist for efficient diode pumping (<strong>2.1</strong>.5)<br />

z<br />

pulse propagation distance<br />

z 0 Rayleigh range of a Gaussian beam, i.e. z 0 = π W0 2 /λ<br />

α apex angle of prism (Table <strong>2.1</strong>.9)<br />

β angle in prism compressor (Fig. <strong>2.1</strong>.16c and Table <strong>2.1</strong>.9)<br />

γ A absorber coefficient ((<strong>2.1</strong>.18), (<strong>2.1</strong>.35) and Table <strong>2.1</strong>.10)<br />

ΔA<br />

change in <strong>the</strong> pulse envelope<br />

Landolt-Börnstein<br />

New Series VIII/1B1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!