17.10.2014 Views

Nonlinear pulse propagation - the Keller Group

Nonlinear pulse propagation - the Keller Group

Nonlinear pulse propagation - the Keller Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ultrafast Laser Physics <br />

Ursula <strong>Keller</strong> / Lukas Gallmann<br />

ETH Zurich, Physics Department, Switzerland<br />

www.ulp.ethz.ch<br />

Chapter 4: <strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong><br />

Ultrafast Laser<br />

Physics<br />

ETH Zurich


Kerr effect and self-phase modulation (SPM)<br />

⎡ cm<br />

( ) = n + n 2<br />

I 2<br />

n 2 ⎢<br />

n I<br />

⎣<br />

W<br />

⎤<br />

⎥<br />

⎦<br />

= 4.19 × n 2<br />

10−3<br />

[ esu]<br />

n<br />

Material Refractive index n n 2 [ esu] n 2<br />

cm 2 / W<br />

Sapphire (Al 2 O 3 ) 1.76 @ 850 nm 1.25 × 10 −13 [89Ada] 3 ×10 −16<br />

Fused quartz 1.45 @ 1.06 m 0.85 ×10 −13 [89Ada] 2.46 ×10 −16<br />

Glass (Schott LG-<br />

760)<br />

1.5 @ 1.06 m 1.04 × 10 −13 [93Aza] 2.9 × 10 −16<br />

YAG (Y 3 Al 5 O 12 ) 1.82 @ 1.064 m 3.47 × 10 −13 [93Aza] 6.2 × 10 −16<br />

YLF (LiYF 4 )<br />

n e<br />

= 1.47 @ 1.047<br />

m<br />

⎡⎣<br />

1.72 × 10 −16 [93Aza]<br />

⎤ ⎦<br />

Typical order of magnitude for <strong>the</strong> nonlinear index coefficient: n 2 ≈ 10 –16 cm 2 /W<br />

Self-phase modulation (SPM):<br />

( ) = −kn( I ) L K<br />

= −k n + n 2<br />

I ( t)<br />

φ t<br />

⎡⎣<br />

⎤⎦ L K<br />

SPM coefficient:<br />

δ ≡ kn 2<br />

L K<br />

φ 2<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

ULP, Chap. 4, p. 1


Kerr effect and self-phase modulation (SPM)<br />

n 2<br />

> 0<br />

I(t)<br />

( )<br />

I t<br />

φ 2<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

leading edge<br />

SPM: red<br />

Pulsfront<br />

ω ( 2 t)<br />

ω 0<br />

Gaussian Pulse<br />

Zeitabhängige Intensität<br />

trailing Pulsflanke edge<br />

SPM: blue<br />

( t)<br />

t<br />

Spectral broadening<br />

Verbreiterung des Spektrums<br />

t<br />

δ ≡ kn 2<br />

L K<br />

ω 0<br />

ω 2<br />

t<br />

( ) = dφ 2 ( t)<br />

dt<br />

= −δ dI ( t)<br />

dt<br />

Spectral broadening of a transform-limited <strong>pulse</strong>:<br />

“red before blue”<br />

ULP, Chap. 4, p. 2


Number of oscillations in SPM-broadened spectrum<br />

⎛<br />

φ 2,max<br />

= kn 2<br />

I p<br />

L K<br />

≈ M − 1 ⎞<br />

⎝<br />

⎜<br />

2⎠<br />

⎟ π<br />

Theory: Parameter<br />

φ 2,max<br />

Experiment: Gaussian <strong>pulse</strong> in 99 m<br />

fiber.<br />

R. H. Stolen, C. Lin, Phys. Rev. A, 17, 1448, 1978<br />

ULP, Chap. 4, p. 3


SPM<br />

• Instantaneous change of refractive index:<br />

Δ n( t) = n I( t)<br />

2<br />

• Consequences for a sech 2 <strong>pulse</strong> (without dispersion):<br />

• Small phase changes: weak spectral broadening;<br />

approximately parabolic phase in frequency domain<br />

(can be compensated by constant GDD!)<br />

• Large phase changes:<br />

complicated spectral<br />

broadening<br />

(complete compression<br />

is difficult)<br />

4<br />

2<br />

0<br />

phase (rad)<br />

intensity (a. u.)<br />

-2<br />

-4<br />

-400 -200 0 200 400<br />

frequency offset (GHz)


Pure SPM in <strong>the</strong> Wigner picture<br />

Initially 10 fs long Gaussian <strong>pulse</strong> at 800 nm, SPM (n 2 >0) only<br />

n( I ) = n + n 2<br />

I<br />

• Temporal <strong>pulse</strong> shape remains unchanged<br />

• Spectrum broadens<br />

• Oscillatory spectral features due to interference in frequency domain


Comparison with effect of TOD<br />

Everything calculated for an initially 10-fs long Gaussian <strong>pulse</strong><br />

After 1000 fs 3 of TOD:<br />

ϕ(ω ) = 1 6 ⋅1000 fs3 ⋅( ω − ω 0 ) 3<br />

• “Beating of simultaneous frequencies”<br />

causes post-(pre-)<strong>pulse</strong>s<br />

• Interference in time domain


Comparison of SPM and GDD<br />

Everything calculated for an initially 10-fs long Gaussian <strong>pulse</strong><br />

φ 2<br />

After SPM (n 2 >0):<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

After 100 fs 2 of GDD:<br />

ϕ(ω ) = 1 2 ⋅100 fs2 ⋅( ω − ω 0 ) 2<br />

• “Red” before “blue”<br />

• Chirp is (mostly) linear in center<br />

⇒ Negative GDD can compensate linear chirp in center of SPM broadened <strong>pulse</strong>


Fiber grating <strong>pulse</strong> compressor<br />

ULP, Chap. 4, p. 4


World-record <strong>pulse</strong> duration in 1987<br />

6 fs FWHM<br />

Fiber-grating-prism-<strong>pulse</strong> compressor<br />

for <strong>the</strong> compression of 50 fs to 6 fs at 8 kHz<br />

center wavelength 620 nm<br />

SPM broadened spectrum: quartz fiber with core diameter<br />

of ≈ 4 µm and a length of 0.9 cm, peak intensity 1-2 x 10 12 W/cm 2<br />

Measured interferometric autocorrelation<br />

ULP, Chap. 4, p. 5


World-record <strong>pulse</strong> duration in 1999<br />

ULP, Chap. 4, p. 5


World-record <strong>pulse</strong> duration in 1999<br />

6 fs FWHM<br />

(1987)<br />

ULP, Chap. 4, p. 5


Compressed <strong>pulse</strong>s from a thin-disk laser<br />

ASSP 2005<br />

Incident on fiber<br />

After fiber<br />

P avg = 60 W<br />

P avg = 42 W<br />

τ p = 760 fs<br />

launch efficiency:<br />

τ p = 24 fs<br />

I peak = 1.2 TW/cm 2 70%<br />

P rej = 10 W (PBS)<br />

After compression<br />

P avg = 32 W<br />

ULP, Chap. 4, p. 6


Compressed <strong>pulse</strong>s from a thin-disk laser<br />

large mode area fiber<br />

Incident on fiber<br />

P avg = 60 W<br />

E p ≈ 1 µJ<br />

τ p = 760 fs<br />

I peak = 1.2 TW/cm 2<br />

After compression<br />

P avg = 32 W<br />

E p = 0.56 µJ<br />

τ p = 24 fs<br />

P peak = 16 MW<br />

A eff ≈ 200 µm 2 (mode area)<br />

d ≈ 2.7 µm (hole Ø)<br />

Λ ≈ 11 µm (spacing)<br />

but fiber damage after 10-20 minutes<br />

T. Südmeyer, et al., Opt. Lett. 28, 1951 (2003) and E. Innerhofer, TuA3, ASSP 2004!<br />

ORC Southampton<br />

!


Compressed <strong>pulse</strong>s from a thin-disk laser<br />

optical spectrum (not symmetric - o<strong>the</strong>r nonlinearities, self-steepening)<br />

Compression output<br />

P avg = 32 W f rep = 57 MHz<br />

P peak = 16 MW τ p = 24 fs<br />

E p = 0.56 µJ<br />

• 73% of energy in central <strong>pulse</strong><br />

• Fourier limit: 20 fs<br />

• fiber damage after ≈ 15 minutes<br />

autocorrelation<br />

retrieved <strong>pulse</strong><br />

ASSP 2005<br />

ULP, Chap. 4, p. 6


<strong>Nonlinear</strong> <strong>pulse</strong> compression<br />

• Approach: SPM in a fiber for spectral broadening, grating or 
<br />

prisms for dispersion compensation"<br />

• Established technique, but used for much lower power"<br />

• High power in fiber requires large mode area with single-mode 
<br />

operation"<br />

Microstructured fiber with
<br />

large mode area!<br />

Used fiber: # "<br />

effektive mode area ≈ 205 µm 2!<br />

#<br />

K. Furusawa, J. C. Baggett, T. M. Monro, 
<br />

and D. J. Richardson, ORC Southampton"<br />

100 µm!


<strong>Nonlinear</strong> Compression<br />

Principle 1. Generation of additional spectral bandwidth (SPM)<br />

2. Compression with prisms, gratings or chirped mirrors<br />

Soliton <strong>pulse</strong><br />

compression in PBGF<br />

+ Self compression<br />

- Large third order<br />

dispersion<br />

for silica<br />

n 2 ≈ 2.7·10 -20 m 2 /W<br />

SPM in glass (e.g. large<br />

mode area fiber)<br />

+ High nonlinearity,<br />

- Damage of <strong>the</strong> fiber, self<br />

focusing<br />

D.Ouzounov et al.,Opt..Exp.13,16 1951(2003)<br />

T. Südmeyer, et al., Opt. Lett. 28, 1951 (2003)<br />

for xenon<br />

n 2 ≈ 8.1·10 -23 m 2 /W<br />

SPM in gas filled hollow-core photonic crystal fiber (HC-PCF)<br />

+ High damage threshold, flexible (type of gas, pressure)<br />

+/- Low nonlinearity (long fiber, freedom of adjustment)<br />

Guiding Compression of > 10 of µJ 1.9 1.2 and µJ 30 /1100 860 fs demonstrated fs (0.9 (1.9 MW) <strong>pulse</strong>s (> 310 (13 (7.3 MW)<br />

W) to<br />

0.7 1.1 µJ / 250 48 fs <strong>pulse</strong>s (7.7 (4.2 W)<br />

O. H. Heckl, et al., Appl. Phys. B 97, 369-373 (2009).<br />

O. H. Heckl, et al., Opt. Exp., sub-50fs, 97, 2010MW (2011) <strong>pulse</strong>s at MHz repetition rate<br />

F. Emaury et al., ALT 2012


15 fs, 16 nJ<br />

Ti:Sa<br />

Fiber compressor for 5.5 fs <strong>pulse</strong>s<br />

SPM broadening in a microstructure fiber (MF), length 5 mm<br />

Ti:sapphire laser with prism pair and DCMs: f rep = 19 MHz (for higher <strong>pulse</strong> energy)<br />

AS<br />

SLM<br />

MF<br />

OC<br />

AS DCMs<br />

0.2nJ<br />

SPIDER<br />

Intensity (a. u.)<br />

1.0<br />

0.5<br />

0.0<br />

500<br />

750<br />

Wavelength (nm)<br />

Microstructure fiber (MF):<br />

2.6 µm core diameter<br />

5 mm long<br />

zero GDD at 940 nm<br />

0<br />

-200<br />

-400<br />

-600<br />

1000<br />

Dispersion (ps/nm/km)<br />

SM<br />

G<br />

G<br />

SM<br />

B. Schenkel et al., JOSA B 22, 687, 2005


Broadband <strong>pulse</strong> shaper with SLM<br />

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)<br />

spatial light modulator (640 pixel liquid crystal, each pixel ≈100 µm wide, 3 µm gap)<br />

f = 300 mm<br />

knife-edge<br />

f = 300 mm<br />

SLM<br />

640 pixels<br />

300 l/mm grating 300 l/mm grating<br />

Possible bandwidth through Spatial Light Modulator: 
<br />

400 - 1050 nm!


Intensity (a. u.)<br />

1.0<br />

0.5<br />

5.5 fs<br />

0.0<br />

-40 -20 0 20 40<br />

Time (fs)<br />

Fiber compressor for 5.5 fs <strong>pulse</strong>s<br />

Power density (a. u.)<br />

1.0<br />

0.5<br />

0.0<br />

500<br />

750<br />

Wavelength (nm)<br />

1000<br />

4<br />

0<br />

-4<br />

Spectral phase (rad)<br />

Intensity (a. u.)<br />

1.0<br />

0.5<br />

5.5 fs<br />

0.0<br />

-40 -20 0 20 40<br />

Time (fs)<br />

Interferogram<br />

1.0<br />

0.5<br />

0.0<br />

320<br />

370<br />

420<br />

Wavelength (nm)<br />

B. Schenkel et al., JOSA B 22, 687, 2005<br />

5.5 fs, 0.2 nJ!<br />

• Good fringe visibility: 
<br />

reliable SPIDER measurement "<br />

• Microstructure fiber 2.6-µm core
<br />

diameter, 5 mm long, zero GDD
<br />

at 940 nm"


Dual stage hollow fiber compressor for 3.8 fs<br />

25 fs, 0.5 mJ<br />

Ti:Sa Amp<br />

100 µJ<br />

Shaper<br />

continuum generation<br />

15 µJ<br />

SPIDER<br />

B. Schenkel et al.: Opt. Lett. 28, 1987 (2003)"


Dual stage hollow fiber compressor for 3.8 fs<br />

Interferogram<br />

1.0<br />

0.5<br />

0.0<br />

340<br />

400<br />

Wavelength (nm)<br />

460<br />

Spectral Power Density<br />

1.0<br />

0.5<br />

0.0<br />

500<br />

750<br />

Wavelength (nm)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

1000<br />

Spectral Phase (rad)<br />

2π phase shift!<br />

1.0<br />

→ pre- and post-<strong>pulse</strong>s!<br />

3.8 fs, 15 µJ!<br />

B. Schenkel et al.: Opt. Lett. 28, 1987 (2003)"<br />

Intensity<br />

0.5<br />

0.0<br />

3.8 fs<br />

-40 -20 0 20 40<br />

Time (fs)


Optical <strong>pulse</strong> cleaner<br />

Optical <strong>pulse</strong> cleaner based on nonlinear birefringence<br />

Optics Letters, vol. 17, pp. 136-138, 1992<br />

ULP, Chap. 4, p. 9-10


Self-focusing<br />

Kerr medium<br />

length L K<br />

( ) = I p<br />

exp −2 x2 + y 2<br />

I x,y<br />

⎛<br />

⎝<br />

⎜<br />

w 2<br />

⎞<br />

⎠<br />

⎟<br />

⎛<br />

≈ I p<br />

1 − 2 x2 + y 2 ⎞<br />

⎝<br />

⎜<br />

w 2<br />

⎠<br />

⎟<br />

↓ ( x 2 + y 2<br />

)


B-integral<br />

B ≡ 2π λ<br />

L<br />

∫<br />

0<br />

n 2<br />

I ( z)dz<br />

To prevent material damage: B should be smaller than 3 to 5<br />

ULP, Chap. 4, p. 10


Critical power for beam collapse<br />

P cr<br />

≡ 3.72λ 0 2 / 8π n 0<br />

n 2<br />

L c<br />

L c<br />

=<br />

P in<br />

/ P cr<br />

0.376L DF<br />

⎡( ) 1 2 − 0.852<br />

⎣<br />

⎤<br />

⎦ 2 − 0.0219<br />

L DF<br />

= π n w 2<br />

0 0<br />

λ 0<br />

Rayleigh length<br />

Argon at 800 nm (atmospheric pressure):<br />

n 0 = 1.0, n 2 = 3 10 –19 cm 2 /W, P cr = 3.2 GW<br />

Fused quartz at 1.06 µm:<br />

n 0 = 1.45, n 2 = 2.46 10 –16 cm 2 /W, P cr = 3.8 MW<br />

ULP, Chap. 4, p. 14


Filamentation<br />

ULP, Chap. 4, p. 14


Filamentation<br />

Filamentation of mJ-level, 30-fs <strong>pulse</strong>s at 800 nm in Ar<br />

During <strong>propagation</strong> SPM continues to broaden<br />

spectrum of <strong>pulse</strong> ⇒ white light


Fundamental Soliton Pulses<br />

• Basic idea: nonlinear phase change from Kerr effect is<br />

compensated by dispersive phase change,<br />

apart from a constant phase shift.<br />

• Conditions (for constant GDD):<br />

• Negative (anomalous) GDD, if n 2 > 0<br />

• Unchirped sech 2 <strong>pulse</strong> shape, fulfilling <strong>the</strong> condition<br />

k n<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′<br />

δ e p<br />

kn 2<br />

e p<br />

• Remarkable stability of soliton <strong>pulse</strong>s:<br />

particle character in collision<br />

<strong>pulse</strong> automatically “finds“ <strong>the</strong> exact<br />

required shape<br />

(may shed some energy into a background <strong>pulse</strong>)


<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong><br />

Linear <strong>pulse</strong> <strong>propagation</strong>:<br />

GDD and no SPM<br />

k n<br />

′′ ≠ 0<br />

n 2<br />

= 0<br />

<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong>:<br />

no GDD and SPM<br />

k n<br />

′′ = 0<br />

n 2<br />

≠ 0<br />

ULP, Chap. 4, p. 18


<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong><br />

<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong>:<br />

GDD > 0 and SPM > 0<br />

k n<br />

′′ > 0<br />

n 2<br />

> 0<br />

<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong>:<br />

Soliton <strong>pulse</strong>s<br />

GDD < 0 and SPM > 0<br />

k n<br />

′′ < 0<br />

n 2<br />

> 0<br />

ULP, Chap. 4, p. 19


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Slowly varying envelope approximation:<br />

( ) = e −i k n ω 0 +Δω<br />

A L d<br />

,Δω<br />

( )−k n ω 0<br />

( )<br />

⎡⎣ ⎤ ⎦ L d A(0,Δω )<br />

k n<br />

( ω ) ≅ k n ( ω 0 ) + k n<br />

′ Δω + 1 2 k′′<br />

nΔω 2<br />

k n<br />

′ = ∂k n<br />

k n<br />

′′ = ∂ 2 k n<br />

∂ω ω0<br />

∂ω 2 ω 0<br />

( ) = exp −i ′<br />

A Ld ,Δω<br />

⎧<br />

⎨<br />

⎩<br />

⎛<br />

k n<br />

Δω + 1 2 k′′<br />

nΔω 2<br />

⎝<br />

⎜<br />

⎞<br />

⎠<br />

⎟ L d<br />

⎫<br />

⎬<br />

⎭<br />

A(0,Δω )<br />

Dispersion first order:<br />

Linearized operator in <strong>the</strong> time domain<br />

k n<br />

′ Δω L d<br />


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Slowly varying envelope approximation:<br />

( ) = e −i k n ω 0 +Δω<br />

A L d<br />

,Δω<br />

( )−k n ω 0<br />

( )<br />

⎡⎣ ⎤ ⎦ L d A(0,Δω )<br />

k n<br />

( ω ) ≅ k n ( ω 0 ) + k n<br />

′ Δω + 1 2 k′′<br />

nΔω 2<br />

k n<br />

′ = ∂k n<br />

k n<br />

′′ = ∂ 2 k n<br />

∂ω ω0<br />

∂ω 2 ω 0<br />

( ) = exp −i ′<br />

A Ld ,Δω<br />

⎧<br />

⎨<br />

⎩<br />

⎛<br />

k n<br />

Δω + 1 2 k′′<br />

nΔω 2<br />

⎝<br />

⎜<br />

⎞<br />

⎠<br />

⎟ L d<br />

⎫<br />

⎬<br />

⎭<br />

A(0,Δω )<br />

Dispersion second order:<br />

Linearized operator in <strong>the</strong> time domain<br />

F −1<br />

{ Δω 2 A ( z,Δω ) } = − ∂ 2<br />

∂t A z,t 2<br />

Dispersion parameter D<br />

k n<br />

Δω 2 L d<br />


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

A L d<br />

,t<br />

⎛<br />

⎝<br />

⎜<br />

( ) ≅ 1 − ′<br />

k n<br />

L d<br />

∂<br />

∂t<br />

⎞<br />

⎠<br />

⎟ A 0,t<br />

( ) , for ′<br />

k n<br />

Δω L d<br />


E ( L K<br />

,t) = A 0,t<br />

δ ≡ kn 2<br />

L K<br />

SPM operator<br />

( )exp ⎡⎣ iω 0<br />

t + iφ ( t)<br />

⎤⎦ = A( 0,t)exp<br />

⎡ iω t − ik 0 n<br />

ω<br />

⎣<br />

0<br />

A( L K<br />

,t) = e −iδ A 2 A( 0,t)e −ik n ω 0<br />

( )L K δ A 2


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

( ) ≅ 1 − ′<br />

A L d<br />

,t<br />

⎛<br />

⎝<br />

⎜<br />

k n<br />

L d<br />

∂<br />

∂t<br />

⎞<br />

⎠<br />

⎟ A 0,t<br />

( ) , for ′<br />

k n<br />

Δω L d<br />


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

Solution: a fundamental soliton<br />

A s ( z, t′<br />

) = A 0<br />

sech<br />

τ p<br />

= 1.7627 ⋅τ<br />

Δν p<br />

τ p<br />

= 0.3148<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

⎛<br />

⎝<br />

⎜<br />

t′ ⎞<br />

τ ⎠<br />

⎟ e −iφ 0<br />

φ 0<br />

= φ 2 max<br />

2<br />

φ 2 max<br />

= kn 2<br />

I p<br />

z , I p<br />

= A 0<br />

2<br />

The <strong>pulse</strong> as a whole experiences a homogeneous<br />

phase shift (not like SPM alone!)<br />

ULP, Chap. 4, p. 20


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: a fundamental soliton<br />

A s ( z, t′<br />

) = A 0<br />

sech<br />

τ p<br />

= 1.7627 ⋅τ<br />

⎛<br />

⎝<br />

⎜<br />

t′ ⎞<br />

τ ⎠<br />

⎟ e −iφ 0<br />

k n<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′<br />

δ e p<br />

kn 2<br />

e p<br />

∝ 1 e p<br />

Δν p<br />

τ p<br />

= 0.3148<br />

φ 0<br />

= φ 2 max<br />

2<br />

φ 2 max<br />

= kn 2<br />

I p<br />

z , I p<br />

= A 0<br />

2<br />

The <strong>pulse</strong> as a whole experiences a homogeneous<br />

phase shift (not like SPM alone!)<br />

ULP, Chap. 4, p. 21


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: a fundamental soliton<br />

A s ( z, t′<br />

) = A 0<br />

sech<br />

τ p<br />

= 1.7627 ⋅τ<br />

Δν p<br />

τ p<br />

= 0.3148<br />

⎛<br />

⎝<br />

⎜<br />

t′ ⎞<br />

τ ⎠<br />

⎟ e −iφ 0<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′ ∝ 1 δ e p<br />

kn 2<br />

e p<br />

e p<br />

Balance between negative GDD and<br />

positive SPM:<br />

φ 0<br />

= D τ 2<br />

= 1 2 δ I p<br />

= δ e p<br />

4τ<br />

k n<br />

= kn 2<br />

e p<br />

4τ<br />

z<br />

D ≡ 1 2 k′′<br />

L n d<br />

δ ≡ kn 2<br />

L K<br />

φ 0<br />

= φ 2 max<br />

2<br />

φ 2 max<br />

= kn 2<br />

I p<br />

z , I p<br />

= A 0<br />

2<br />

( )<br />

( ) 2 d ′<br />

e p<br />

= E p<br />

2<br />

= I z, t′<br />

A eff<br />

∫ d t ′ = ∫ A s<br />

z, t′<br />

t = 2 A 0<br />

τ<br />

The <strong>pulse</strong> as a whole experiences a homogeneous<br />

phase shift (not like SPM alone!)<br />

ULP, Chap. 4, p. 21


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: a fundamental soliton<br />

k n<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′<br />

δ e p<br />

kn 2<br />

e p<br />

∝ 1 e p<br />

τ p<br />

∝ 1 e p<br />

τ p<br />

∝ k n<br />

′′<br />

⎛<br />

Soliton area = ∫ A 0<br />

sech t ⎞<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟ dt = π A 0<br />

τ<br />

“Solitons have constant area”<br />

ULP, Chap. 4, p. 22


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

Solution: a fundamental soliton<br />

( ) − ikn A( z, t′<br />

) 2<br />

2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

ULP, Chap. 4, p. 22


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

Solution: a fundamental soliton<br />

( ) − ikn A( z, t′<br />

) 2<br />

2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

ULP, Chap. 4, p. 24


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: higher order soliton (example: second order)<br />

Soliton Period φ 0 ( z = z 0 ) = π 4<br />

⇒ z 0<br />

= π 2<br />

τ 2<br />

k n<br />

′′<br />

ULP, Chap. 4, p. 23


Higher-Order Soliton Pulses<br />

• Inject a <strong>pulse</strong> with N 2 –times <strong>the</strong> fundamental soliton energy:<br />

periodically evolving higher-order soliton <strong>pulse</strong> (N is an integer).<br />

t′ ⎞<br />

• Initial condition:<br />

N = 2 for second-order soliton<br />

A( 0, t′<br />

) = N A 0<br />

sech<br />

⎛<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟<br />

• Soliton period:<br />

φ 0 ( z = z 0 ) = π 4<br />

⇒ z 0<br />

= π 2<br />

τ 2<br />

′′ k n<br />

becomes short for short <strong>pulse</strong>s and strong dispersion<br />

• At certain locations, significantly shorter (but not sech 2 -shaped) <strong>pulse</strong>s<br />

occur<br />

important for <strong>pulse</strong> compression<br />

• Note: soliton period is an important parameter<br />

also for fundamental solitons:<br />

length scale on which <strong>the</strong> interaction is significant<br />

(periodic perturbation)


Optical communication with repeaters<br />

ULP, Chap. 4, p. 25


Optical communication with solitons<br />

ULP, Chap. 4, p. 26


Optical communication with solitons<br />

−Δω 0<br />

Δω<br />

ULP, Chap. 4, p. 27


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

NSE + periodic perturbation<br />

period z a<br />

Important for modelocked lasers:<br />

periodic perturbation per round-trip through output coupler, gain crystal …<br />

ULP, Chap. 4, p. 27-31


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

( ) = A 0<br />

sech<br />

A s<br />

z, t′<br />

NSE + periodic perturbation<br />

period z a<br />

Assuming small perturbation: Ansatz<br />

Solution without perturbation<br />

Soliton <strong>pulse</strong>:<br />

( ) = A s ( z, t′<br />

) + u ( z, t′<br />

)<br />

A z, t′<br />

u z, t′<br />

⎛ t′ ⎞<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟ e −iφ 0<br />

( )


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

NSE + periodic perturbation<br />

period z a<br />

Periodic perturbation has no resonance effects:<br />

u ( z,ω )


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

NSE + periodic perturbation<br />

period z a<br />

Periodic perturbation has no resonance effects:<br />

u ( z,ω )


Delayed <strong>Nonlinear</strong> Response<br />

• Intensity-dependent phase change is not always instantaneous:<br />

• Electronic contribution (usually dominating): response time<br />


Delayed Raman Response<br />

Optical phonons have high frequencies (e.g. around<br />

13 THz for silica), only weakly dependent on wave<br />

vector:<br />

w optical phonons!<br />

range of interest"<br />

acoustical phonons!<br />

Consequence: phase matching possible for<br />

forward and backward direction:<br />

k p "<br />

k p "<br />

k s "<br />

k"<br />

k s "<br />

k phonon "<br />

k phonon "


Raman Gain Spectrum of Silica<br />

g R<br />

(Δω)<br />

Raman gain (a. u.)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

gain spectrum
<br />

1000-nm pump"<br />

0.0<br />

1000<br />

1040<br />

1080<br />

1120<br />

wavelength (nm)<br />

• Maximum gain at ≈40-50 nm wavelength offset<br />

(depends on pump wavelength)<br />

• Gain rises ≈linearly for small offsets<br />

• Influence of composition of <strong>the</strong> fiber core (Ge, P etc.)


Intra-Pulse Raman Scattering<br />

Principle:<br />

J. P. Gordon, Opt. Lett. 11 (10), 662 (1986)"<br />

• Energy transfer within <strong>the</strong> <strong>pulse</strong> spectrum:<br />

⇒ center wavelength drifts<br />

towards longer values<br />

• Soliton interaction preserves <strong>the</strong> <strong>pulse</strong> shape<br />

l <br />

Note: Raman gain is small for small frequency offsets<br />

⇒ effect is significant only for femtosecond (soliton) <strong>pulse</strong>s<br />

shift per meter: roughly prop. to (1/τ ) 4 "<br />

Examples:<br />

• Wavelength shift from 1.56 µm to 1.78 µm:<br />

N. Nishizawa et al., IEEE Photon. Technol. Lett. 11 (3), 325 (1999)<br />

• Wavelength shift from 1.06 µm to 1.33 µm (in holey fiber):<br />

J. H. V. Price et al., JOSA B 19 (6), 1286 (2002)


Raman Response of Silica<br />

R. H. Stolen et al., JOSA B 6 (6), 1159 (1989)"<br />

4<br />

3<br />

2<br />

Response function"<br />

1<br />

0<br />

-1<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

delay time τ (fs)<br />

Damped oscillation with ≈13 THz:<br />

strong contribution, if two optical waves<br />

with ≈13 THz frequency difference beat


∂A( z, t′<br />

)<br />

∂z<br />

− i 2 k′′<br />

n<br />

⎡<br />

= −iγ ⎢ A z, t′<br />

⎣⎢<br />

( )<br />

Generalized NSE<br />

second and third-order dispersion<br />

( )<br />

∂ 2 A z, t′<br />

− 1 ∂ t′<br />

2 6 k′′′<br />

∂ 3 A z, t′<br />

n<br />

∂ t′<br />

3<br />

( ) 2 A( z, t′<br />

) − i<br />

ω 0<br />

∂<br />

∂ t′<br />

( A( z, t ′) 2 A( z, t ′)) − T R<br />

A z, t′<br />

( ) ∂ A( z, t′<br />

)<br />

∂ t′<br />

SPM self-steepening Raman<br />

T R sets slope of<br />

Raman gain<br />

intensity dependence<br />

of phase velocity<br />

intensity dependence<br />

of group velocity<br />

γ = n 2ω 0<br />

cA eff<br />

2<br />

⎤<br />

⎥<br />

⎦⎥<br />

shock formation<br />

self-frequency shift<br />

Raman and self-steepening lead to asymmetry in SPM broadened spectra


Self-steepening and SPM (without GDD and Raman)<br />

Example: 50 fs, center wavelength 800 nm, fiber core diameter 1.7 µm and<br />

n 2<br />

= 2.5 ⋅10 −20 m 2 / W<br />

s = 1<br />

ω 0<br />

τ = T<br />

2πτ = 0.01<br />

Self-steeping means that group velocity is intensity dependent:<br />

peaks moves at a lower speed than <strong>the</strong> wings<br />

40<br />

16<br />

Power [kW]<br />

30<br />

20<br />

10<br />

Energy/Wavelength [pJ/nm]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-80 -60 -40 -20 0 20 40 60 80<br />

Time [fs]<br />

0<br />

0.4<br />

0.5<br />

0.6<br />

0.7 0.8<br />

Wavelength [um]<br />

0.9<br />

1.0<br />

1.1<br />

Input: Gaussian <strong>pulse</strong> at z = 0<br />

z = 3 mm (dashed) z = 6 mm<br />

z = 6 mm (solid)<br />

asymmetry in SPM broadened spectrum


Self-steepening, SPM and GDD>0 (no Raman)<br />

Power [kW]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Example: 50 fs, center wavelength 800 nm, fiber core diameter 1.7 µm and<br />

GDD 3.5 fs 2 /100 µm<br />

s = 1<br />

n 2<br />

= 2.5 ⋅10 −20 m 2 / W<br />

ω 0<br />

τ = T<br />

2πτ = 0.01<br />

z = 6 mm<br />

-80 -60 -40 -20 0 20 40 60 80<br />

Time [fs]<br />

Energy/Wavelength [pJ/nm]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4<br />

0.5<br />

0.6 0.7 0.8 0.9<br />

Wavelength [um]<br />

1.0<br />

1.1<br />

Power [kW]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-200 -100 0 100 200<br />

Time [fs]<br />

Energy/Wavelength [pJ/nm]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.6<br />

0.7 0.8 0.9<br />

Wavelength [um]<br />

1.0<br />

z = 12 mm<br />

Power [kW]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Energy/Wavelength [pJ/nm]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-200<br />

0<br />

Time [fs]<br />

200<br />

0.6<br />

0.7 0.8 0.9<br />

Wavelength [um]<br />

1.0


Assuming: two-level system<br />

Saturable gain and absorber<br />

Dichte der Atome<br />

Fläche A<br />

Dicke Δz<br />

Einfallende<br />

Lichtintensität<br />

Wirkungsquerschnitt σ<br />

( ) ≡ N V σ α 0 = N 0<br />

g z<br />

g =<br />

g 0<br />

1+ I I sat ,L<br />

V σ<br />

σ A<br />

= σ L<br />

= σ<br />

α<br />

α = 0<br />

1+ I I sat ,A<br />

I sat ,L<br />

= hν<br />

στ L<br />

I sat ,A<br />

= hν<br />

στ A


Semiconductor saturable absorber<br />

Appl. Phys. B 73, 653, 2001"


<strong>Nonlinear</strong> transmission of cw beam<br />

Assume homogeneous two-level absorption saturation:<br />

dI ( z)<br />

dz<br />

= −2α ( I ) I ( z) = −<br />

2α 0<br />

1 + I z<br />

( )<br />

I sat<br />

I ( z)<br />

1<br />

I<br />

⎛<br />

⎝<br />

⎜<br />

1 + I<br />

I sat<br />

⎞<br />

⎠<br />

⎟ dI = − 2α 0<br />

dz<br />

T ≡ I out<br />

I in<br />

I in<br />

I sat<br />

lnT + I in<br />

( T − 1) = −2α 0<br />

d<br />

I sat<br />

I in<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!