17.10.2014 Views

Spider Silk Expression in Alfalfa

Spider Silk Expression in Alfalfa

Spider Silk Expression in Alfalfa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Spider</strong> <strong>Silk</strong> <strong>Expression</strong> <strong>in</strong><br />

<strong>Alfalfa</strong><br />

Monica Rowan with Dr. Randy Lewis & Dr. Holly<br />

Ste<strong>in</strong>kraus- Molecular Biology, Dr. Rob<strong>in</strong> Groose- Plant<br />

Sciences<br />

Molecular Biology and Plant Sciences<br />

University of Wyom<strong>in</strong>g<br />

www.riverdeep.net/.../09/090301_spider.jhtml


<strong>Silk</strong> <strong>in</strong> spiders


Why <strong>Spider</strong> <strong>Silk</strong>?<br />

Comparisons of Mechanical<br />

Properties of <strong>Spider</strong> <strong>Silk</strong><br />

Material Strength (Nm -2) Elasticity (%) Energy to Break (Jkg -1)<br />

Dragl<strong>in</strong>e <strong>Silk</strong> 4 x 10^9 35 4 x 10^5<br />

KEVLAR 4 x 10^9 5 3 x 10^4<br />

Rubber 1 x 10^6 600 8 x 10^4<br />

Tendon 1 x 10^9 5 5 x 10^3__________<br />

• Data derived from Gosl<strong>in</strong>e, J.M.; Dennv, M.W.; Demont, M.E. Nature 1984,<br />

309,551


What can silk be used for?<br />

‣ New textiles<br />

‣ Improved shield<strong>in</strong>g material that<br />

could take the place of Kevlar <strong>in</strong><br />

bulletproof vests.<br />

‣ Composite materials for build<strong>in</strong>g and<br />

aerospace applications<br />

‣ F<strong>in</strong>e sutures, artificial tendons and<br />

ligaments


Why Plant <strong>Expression</strong>?<br />

‣Low cost (10-50 fold<br />

less than <strong>in</strong> E. coli).<br />

‣Easy to scale up.<br />

‣Agricultural<br />

advances provide<br />

for rapid harvest<strong>in</strong>g<br />

and process<strong>in</strong>g.<br />

http://www.wapa.gov/es/pubs/esb/1999/99Oct/at_cl<strong>in</strong>ton.htm


Plant <strong>Expression</strong> of <strong>Silk</strong><br />

• Genetic Eng<strong>in</strong>eer<strong>in</strong>g of<br />

plants is well<br />

established<br />

• Adaptation as largescale<br />

bioreactors for<br />

commercially valuable<br />

molecules<br />

• Production of spider<br />

silk has been h<strong>in</strong>dered<br />

because of lack of a<br />

suitable large scale<br />

production system<br />

Tobacco<br />

Arabidopsis<br />

Potato<br />

<strong>Alfalfa</strong>


<strong>Alfalfa</strong> (Medicago sativa L.)<br />

‣ Perennial crop,<br />

adaptable<br />

‣ Open to transformation<br />

‣ High prote<strong>in</strong> content<br />

- Up to 24% of dry weight<br />

is prote<strong>in</strong><br />

- If expressed at 1-2% of<br />

TSP, yield of 218 kg of<br />

silk prote<strong>in</strong>/acre/year<br />

- 2.5–12g/kg leaf tissue<br />

‣ High MW prote<strong>in</strong>s<br />

http://www.ars.usda.gov/images/docs/3172_3356/<strong>Alfalfa</strong>%20Flower.jpg


Comparison of various expression systems<br />

for the production of recomb<strong>in</strong>ant silk prote<strong>in</strong><br />

under optimized conditions.<br />

<strong>Expression</strong><br />

System<br />

Prote<strong>in</strong><br />

Concentration<br />

Total Prote<strong>in</strong><br />

Yield<br />

Production<br />

Time<br />

Bacteria 100mg/L; 30,000L<br />

fermentor<br />

3kg/run<br />

2-4 months<br />

Goats<br />

15g/L; 8L/day; with<br />

a lactation of 150 d<br />

18kg/goat/year<br />

1-2 years<br />

<strong>Alfalfa</strong><br />

1% of total soluble<br />

prote<strong>in</strong>, 10T/acre<br />

assum<strong>in</strong>g 5<br />

cutt<strong>in</strong>gs/year<br />

218kg/acre/year<br />

4-5 years


Project Objectives<br />

1) Insert a synthetic gene for<br />

spider silk <strong>in</strong>to the alfalfa<br />

genome.<br />

2) Analyze resultant plants to<br />

determ<strong>in</strong>e gene copy number<br />

and prote<strong>in</strong> expression level.<br />

3) Design an effective protocol<br />

to purify spider silk prote<strong>in</strong>s<br />

from alfalfa.<br />

4) Cross plants express<strong>in</strong>g silk<br />

with a Wyom<strong>in</strong>g adapted<br />

cultivar.


Orig<strong>in</strong>al silk constructs<br />

‣Synthetic constructs based on N. clavipes sequence.<br />

‣E. coli codon bias<br />

‣MaSp 1 -> 16 repeats of 99 bp, each encod<strong>in</strong>g:<br />

GGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAA<br />

GGX = 3 10 helix = elasticity (GA)n/(A)n = beta sheet = strength


Transformation of alfalfa<br />

Selective + hormones: formation of calli<br />

‣ A. tumefaciens: LBA4404<br />

‣ <strong>Alfalfa</strong>: Regen S27<br />

‣Transformed ~120 leaves/clone<br />

‣Explants moved to soil: 30/clone<br />

•kan<br />

•ticar<br />

•k<strong>in</strong>et<strong>in</strong><br />

•2,4-D<br />

Selective – hormones: encourages root and shoot development


Parent Generation<br />

‣MaSp1 + C #7 X WisFal<br />

‣Analysis of F1 progeny<br />

– Southern (DNA level)<br />

– Western (Prote<strong>in</strong> level)


F1 Southern Blot analysis<br />

‣Digested alfalfa genomic DNA with the restriction enzyme NdeI.<br />

‣Hybridized with a radioactively-labeled homologous probe.<br />

‣ Exam<strong>in</strong>ed images for the presence of a 2.3kb-hybridiz<strong>in</strong>g fragment,<br />

which <strong>in</strong>dicated the silk gene was <strong>in</strong>corporated <strong>in</strong>to the plant genome.


Extraction of TSP’s from<br />

MaSp1+C-transformed alfalfa<br />

‣ Ground leaves <strong>in</strong> liquid<br />

N 2<br />

‣ Prepared crude extract<br />

‣ Heat-treated soluble<br />

extract; 90 o C, 10’<br />

‣ Pelleted precipitated<br />

prote<strong>in</strong>s<br />

‣ Exam<strong>in</strong>ed by SDS-<br />

PAGE


Western Blot Analyses<br />

MW<br />

G1<br />

G3<br />

B3<br />

O1<br />

WT<br />

M4 (+)<br />

75<br />

50<br />

61kD <strong>Spider</strong> <strong>Silk</strong><br />

Prote<strong>in</strong> Band<br />

AB α M 4 (MaSp1)


Summary of Southern/Western<br />

results<br />

‣105 F1 plants analyzed<br />

- 74 positive on DNA level<br />

- 4 positive on the prote<strong>in</strong> expression<br />

level<br />

‣Consequently only 4% of the F1 plants<br />

tested are express<strong>in</strong>g the silk prote<strong>in</strong>.


WHY such low numbers?<br />

‣Gene Silenc<strong>in</strong>g<br />

– Multiple transgene copies<br />

– Methylation of promoter region<br />

‣Prote<strong>in</strong> <strong>in</strong>stability….prote<strong>in</strong> itself<br />

– No subcellular target<strong>in</strong>g


Improvements<br />

‣ Change codon usage (<strong>in</strong>crease yield):<br />

- orig<strong>in</strong>al constructs -> E. coli codon bias<br />

- designed new constructs -> alfalfa codon bias<br />

‣ Change vector (ER retention signal):<br />

- orig<strong>in</strong>al constructs -> pIBT110<br />

- use new vector -> pCB301-KDEL


New b<strong>in</strong>ary vector<br />

‣ pCB301-kan-CaMv-leb4sig-100xELP-cmyc-KDEL<br />

100xELP<br />

100xELP<br />

(VPGXX) 100<br />

KDEL<br />

LB<br />

nptIII (kanR)<br />

cmyc tag<br />

legum<strong>in</strong><br />

signal peptide<br />

Met<br />

CaMv 35S<br />

promoter<br />

DraIII<br />

BamHI<br />

XbaI<br />

pCB301-kan 100 ELP<br />

8359 bp<br />

neo (kanR)<br />

RB


Future Work<br />

‣Collaboration with Medicago (Canada)<br />

- New vectors<br />

‣Transient Assay Development<br />

‣Transformed leaves with new constructs<br />

and analyze resultant plants.


Acknowledgements<br />

Randy Lewis, Ph.D.<br />

Holly Ste<strong>in</strong>kraus, Ph.D.<br />

Rob<strong>in</strong> Groose, Ph.D.<br />

Entire Lewis Lab<br />

NSF EPSCoR for the opportunity


Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!