IDIADA - Advanced Targets Setting for VDExpo2012 - Ukintpress ...

IDIADA - Advanced Targets Setting for VDExpo2012 - Ukintpress ... IDIADA - Advanced Targets Setting for VDExpo2012 - Ukintpress ...

ukintpress.conferences.com
from ukintpress.conferences.com More from this publisher

<strong>IDIADA</strong> Chassis Development<br />

<strong>Advanced</strong> Target <strong>Setting</strong><br />

Jonathan Webb, Guido Tosolin,


Introduction<br />

2011: Metric Based Development<br />

Establish objective relationship between driver’s feeling and dynamic response<br />

Form relationships to subjective “Driver Orientated” parameters<br />

Permits tuning work to be done more “objectively”<br />

Guarantees tuning consistency and protects brand image<br />

Define tuning range of components based on system level target<br />

Permit simulation to give an insight into driver experience<br />

2012: <strong>Advanced</strong> Target <strong>Setting</strong><br />

How to drive target setting in cascade from full vehicle level to component level<br />

In systematic way<br />

Focussing on driver’s feel<br />

Page 2


Introduction<br />

Background<br />

[rad]<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

[m/s 2 0<br />

] 0 1 2 3 4 5 6 7 8 9 10<br />

[rad]<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

[m/s 2 ]<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

[deg/s /deg]<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

[Hz]<br />

Passenger vehicles are complex systems whose dynamic per<strong>for</strong>mance is related with the<br />

specification of the single components, as well as with the synergic integration of all the<br />

subsystems (suspensions, steering, tyres, etc).<br />

How to objectively quantify the influence of each component specifications on full<br />

vehicle targets?<br />

And how to make sure these characteristics have the desired impact on the<br />

perception of the driver?<br />

Page 3


Introduction<br />

<strong>Advanced</strong> Target <strong>Setting</strong><br />

<strong>Advanced</strong> Target <strong>Setting</strong> is a two-steps multi-disciplinary approach aimed at establishing a<br />

qualitative and quantitative link between components specifications and full vehicle targets.<br />

Step one consists of setting objective targets at full vehicle level based on<br />

objective/subjective correlation metrics, in order to ensure targets are actually aimed at<br />

improving drivers’ perception.<br />

In step two, simulation model and design of experiment techniques are used to delineate<br />

how the full vehicle targets are linked in cascade with system level targets and design<br />

variables.<br />

Page 4


Design Process overview<br />

Subjective feel<br />

Objective/Subjective<br />

Correlation<br />

?<br />

v=180 km/h, 0.4 Hz<br />

2.5<br />

2<br />

Measurement<br />

C.OC.DC.3 Modulation<br />

Simulation<br />

1.5<br />

1<br />

1<br />

2<br />

0.5<br />

3<br />

0<br />

4<br />

-0.5<br />

5<br />

-1<br />

6<br />

-1.5<br />

1.33 → 7<br />

-2<br />

8<br />

-2.5<br />

0.91 → 9<br />

-15 -10 -5 0 5 10 15<br />

SWA [deg]<br />

10<br />

Lateral acceleration [m/s 2 ]<br />

Simulation Metrics<br />

Objective per<strong>for</strong>mance<br />

(Full Vehicle Level)<br />

Full Vehicle<br />

Modelling<br />

Model Validation<br />

Design of Experiments<br />

Objective per<strong>for</strong>mance<br />

(System Level)<br />

System Modelling<br />

Suspension design<br />

Page 5


Design Process overview<br />

Subjective feel<br />

Objective/Subjective<br />

Correlation<br />

?<br />

v=180 km/h, 0.4 Hz<br />

2.5<br />

2<br />

Measurement<br />

C.OC.DC.3 Modulation<br />

Simulation<br />

1.5<br />

1<br />

1<br />

2<br />

0.5<br />

3<br />

0<br />

4<br />

-0.5<br />

5<br />

-1<br />

6<br />

-1.5<br />

1.33 → 7<br />

-2<br />

8<br />

-2.5<br />

0.91 → 9<br />

-15 -10 -5 0 5 10 15<br />

SWA [deg]<br />

10<br />

Lateral acceleration [m/s 2 ]<br />

Simulation Metrics<br />

Objective per<strong>for</strong>mance<br />

(Full Vehicle Level)<br />

Full Vehicle<br />

Modelling<br />

Model Validation<br />

Design of Experiments<br />

Objective per<strong>for</strong>mance<br />

(System Level)<br />

System Modelling<br />

Suspension design<br />

Page 6


Subjective/Objective correlation: metric development<br />

What is a metric?<br />

A metric is defined as an established mathematical relationship between a subjective<br />

evaluation and objective test parameter<br />

What is the reason?<br />

The motivation behind this is to permit a structured target system to be put in place <strong>for</strong><br />

vehicle and system<br />

Such that vehicle development can be controlled precisely and results are not<br />

dependent on individual teams<br />

Can be applied to:<br />

Steering<br />

Ride<br />

Handling<br />

Although primarily established and developed <strong>for</strong> Vehicle Level parameters, can be<br />

cascaded down to System Level<br />

Page 7


Subjective/Objective correlation: metric development<br />

User level<br />

Sporty,<br />

Fun to drive,<br />

Easy<br />

Expert driver level<br />

Linear, Neutral,<br />

Progressive,<br />

Balanced, …<br />

Objective Test Driver<br />

Understeer<br />

Gradient, Yaw<br />

overshoot, Roll<br />

damping, …<br />

Correlation Matrix &<br />

Driver Metrics<br />

Frequency Response 0.3g<br />

x x x x<br />

100 km/h Difference DeltaT gain SS - @ 1Hz (Nm/º)<br />

YawR delay @ 1Hz (s) x x x<br />

YawR vs DeltaT gain (º/s/Nm)<br />

Difference F-R Slip Peak delays @ 1Hz (s) x<br />

Ay delay @ 1Hz (s)<br />

x<br />

Step Steer 0.6g<br />

x x x x x x x<br />

100 km/h Ratio Ay response time1/2 (-) x x x<br />

Ratio YawR response time1/2 (-)<br />

x<br />

YawR response Peak variance with Ay (º/s)<br />

x<br />

100 km/h, 0.6g Ratio YawR Peak/OS (-) x<br />

Ay OS (m/s2)<br />

x<br />

YawR Peak delay (s) x x<br />

Difference F-R Slip Peak delays (s)<br />

x<br />

Ratio F/R Slip Peaks (-)<br />

x<br />

Phase Front / Rear<br />

Progressiveness<br />

Yaw Response<br />

Yaw Damping<br />

Response Level & Delay<br />

Trajectory tracing @ High speed<br />

Balance Front / Rear<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Frequency response test: ay-yawR<br />

GAIN<br />

Hyundai JM<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

Delay (sec)<br />

-0.4<br />

180<br />

120<br />

60<br />

0<br />

-60<br />

-120<br />

Delay (deg)<br />

-180<br />

1<br />

0.5<br />

Coherence<br />

0.5 1 1.5 2 2.5 3 0<br />

0.5 1 1.5 2 2.5 3<br />

ay-yawR<br />

Frequency [Hz]<br />

Roll-steer, Roll<br />

stiffness, Lateral<br />

compliance, …<br />

Suspension Engineer<br />

Suspension<br />

Development<br />

Page 8


Metrics validation and continuous improvement<br />

For a complete validation of the objective/subjective metrics it is necessary to<br />

extend the correlation process to a large number of vehicles<br />

Vehicle 3<br />

Subjective<br />

rating<br />

The foundation of these<br />

metrics is key in being<br />

able to use objective test<br />

data to draw a relation to<br />

driver subjective feedback<br />

Vehicle 2<br />

Vehicle 1<br />

Vehicle 1<br />

Vehicle 3<br />

Objective<br />

parameter<br />

<strong>IDIADA</strong> is developing and<br />

using metrics with a<br />

variety of manufacturers<br />

as a means to establish<br />

chassis development<br />

principles<br />

Vehicle 2<br />

Page 9


Metrics validation and continuous improvement<br />

Regression can have different aspects, depending on the nature of the metric<br />

Building up databases <strong>for</strong> metrics improves understanding of the relative<br />

character/feel of different vehicles<br />

Page 10


Design Process overview<br />

Subjective feel<br />

Objective/Subjective<br />

Correlation<br />

?<br />

v=180 km/h, 0.4 Hz<br />

2.5<br />

2<br />

Measurement<br />

C.OC.DC.3 Modulation<br />

Simulation<br />

1.5<br />

1<br />

1<br />

2<br />

0.5<br />

3<br />

0<br />

4<br />

-0.5<br />

5<br />

-1<br />

6<br />

-1.5<br />

1.33 → 7<br />

-2<br />

8<br />

-2.5<br />

0.91 → 9<br />

-15 -10 -5 0 5 10 15<br />

SWA [deg]<br />

10<br />

Lateral acceleration [m/s 2 ]<br />

Simulation Metrics<br />

Objective per<strong>for</strong>mance<br />

(Full Vehicle Level)<br />

Full Vehicle<br />

Modelling<br />

Model Validation<br />

Design of Experiments<br />

Objective per<strong>for</strong>mance<br />

(System Level)<br />

System Modelling<br />

Suspension design<br />

Page 11


Design of Experiments (DOE)<br />

DOE in the virtual development process:<br />

In the virtual development process, it allows to create a link between the suspension<br />

per<strong>for</strong>mance objectives (Design Objectives) and the suspension Design Parameters (such as<br />

hardpoints position, bushings, etc).<br />

Subjective feeling<br />

There<strong>for</strong>e it is possible to understand which design<br />

features impact on suspension per<strong>for</strong>mance.<br />

Then, suspension per<strong>for</strong>mance impacts on the vehicle<br />

response, which is finally linked to the subjective<br />

feeling of the driver (objective/subjective metrics).<br />

Objective measure<br />

25<br />

20<br />

15<br />

10<br />

5<br />

GAIN<br />

Frequency response test: ay-yawR<br />

Hyundai JM<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

Delay (sec)<br />

-0.4<br />

180<br />

120<br />

60<br />

0<br />

-60<br />

-120<br />

Delay (deg)<br />

-180<br />

1<br />

0<br />

0.5<br />

Coherence<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

0.5 1 1.5 2 2.5 3<br />

ay-yawR<br />

Frequency [Hz]<br />

Suspension per<strong>for</strong>mance Design of Experiments Suspension design<br />

Page 12


Design of Experiments (DOE)<br />

Phase 1:<br />

Definition of design parameters<br />

(factors) and of design<br />

objectives (responses)<br />

0.5<br />

[deg/s /deg]<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

1 1.5 2 2.5 3<br />

[Hz]<br />

Phase 2:<br />

Simulation of parameters effect<br />

and evaluation of design<br />

objectives within ADAMS/insight<br />

simulation environment<br />

Phase 3:<br />

Analysis of results with inhouse<br />

processing tools<br />

(response surfaces, bar<br />

diagrams, etc)<br />

Page 13


Design of Experiments (DOE)<br />

To ensure the high quality of the analysis the process is per<strong>for</strong>med in two steps:<br />

Step 1: DOE Screening<br />

Two-level analysis<br />

High number of factors included<br />

Selection of the most important factors to be included in step 2<br />

Step 2: DOE Response surface (RSM)<br />

Executed with a selection of factors<br />

High number of runs<br />

Check of fitness statistics (goodness of fit, residuals, etc)<br />

Data refinement (remove outliers, etc)<br />

Page 14


Design of Experiments (DOE)<br />

The output of the RSM method is processed with an in-house tool which is able to:<br />

generate 2D and 3D diagrams where relative importance of each factor <strong>for</strong> each objective is defined<br />

per<strong>for</strong>m real-time what-if analysis with:<br />

Real-time update of the target book<br />

Real-time update of the most significant suspension diagrams<br />

per<strong>for</strong>m multi-objective optimization studies (<strong>IDIADA</strong> routine with Matlab Optimization Toolbox)<br />

Page 15


Design of Experiments (DOE)<br />

Tolerance (± mm)<br />

0.4<br />

static_scrub_radius [ 21.8 mm ]<br />

lca_outer_z<br />

1.2%<br />

static_caster_trail [ 19.1 mm ] 0.4%<br />

bump_steer [ -4.3 deg/m ] 13.5%<br />

bump_camber [ -3.99 deg/m ] 9.1%<br />

bump_caster [ -1.8 deg/m ] 0.1%<br />

bump_wc_y [ -10.5 mm/m ] 12.1%<br />

bump_wc_x [ -10.9 mm/m ] 8.6%<br />

roll_steer [ -0.06 deg/deg ] 14.3%<br />

roll_camber [ -0.065 deg/deg ] 8.3%<br />

toe_compl_brake [ 0.04 deg/kN ] 0.9%<br />

Page 16


- - - - Linearisation<br />

Design optimization<br />

The optimization has to be a human-driven process that evolves in several loops: at each step<br />

the tool supports decision making of the vehicle dynamics engineer, who is able to control the<br />

evolution of the process by:<br />

setting the scale of priorities <strong>for</strong> the design objectives (responses)<br />

assign target values <strong>for</strong> each design objective<br />

setting the design parameters (factors) that have to be involved in the optimization loop<br />

For the success of the optimization, the target setting is of crucial importance.<br />

Target setting process needs to be strongly based on the objective/subjective correlation work.<br />

This ensures that the optimization process has a direct link with driver’s feel.<br />

Subjective feel<br />

Evaluation of design<br />

objectives (responses)<br />

Optimization<br />

loops<br />

Selection of design<br />

parameters (factors)<br />

RIGHT<br />

LEFT<br />

Front<br />

REF<br />

Rear<br />

Slip angle [º]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

Lateral acceleration [m/s²]<br />

Objective/Subjective<br />

Correlation<br />

Sensitivity Analysis<br />

C.OC.DC.3<br />

Modulation<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

1.33 → 7<br />

8<br />

0.91 → 9<br />

10


Design optimization<br />

Examples of typical factors and responses that are included in the optimization process<br />

Design Parameters<br />

(FACTORS)<br />

Design Objectives<br />

(RESPONSES)<br />

Bushing characteristics<br />

Hardpoints<br />

Dampers<br />

…<br />

Toe variation in roll<br />

Camber variation in roll<br />

Ackermann variation<br />

…<br />

Understeer gradient<br />

Yaw rate gain<br />

Lateral acceleration gain<br />

Weave deadbands<br />

…<br />

System level<br />

Full vehicle<br />

level<br />

5<br />

4.5<br />

0.5<br />

4<br />

0.45<br />

3.5<br />

0.4<br />

3<br />

0.35<br />

[deg]<br />

2.5<br />

2<br />

1.5<br />

[deg/s /deg]<br />

0.3<br />

0.25<br />

0.2<br />

1<br />

0.15<br />

0.5<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

[m/s2]<br />

0.1<br />

0.05<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

[Hz]<br />

Page 18


Conclusions<br />

<strong>Advanced</strong> Target <strong>Setting</strong> allows to set coherent targets at various levels<br />

Joint use of objective/subjective metrics and of experimental design is able to<br />

generate consistent links between full vehicle level targets, system level targets<br />

and design variables in a robust and systematic way<br />

<strong>Advanced</strong> target setting relies on good consolidated repository of metrics as<br />

well as on well validated vehicle model<br />

The tools involved in the process are commercial software (e.g. MBS simulation<br />

packages) and also in-house tools.<br />

Page 19


<strong>IDIADA</strong> Fahrzeugtechnik GmbH<br />

T +49 (0) 841 8 85 38 0 (Ingolstadt)<br />

T +49 (0) 893 0 90 56 0 (München)<br />

e-mail: idiada_germany@idiada.com<br />

CTAG <strong>IDIADA</strong> Safety Technology SL<br />

T +34 986 900 300<br />

e-mail: ctag_idiada@idiada.com<br />

<strong>IDIADA</strong> CZ a. s.<br />

T +420 493 654 811<br />

e-mail: info@idiada.cz<br />

For further in<strong>for</strong>mation:<br />

Jonathan Webb<br />

Product Manager, Chassis Development<br />

L’Albornar – PO Box 20<br />

E-43710 Santa Oliva (Tarragona) Spain<br />

T +34 977 166 000<br />

F +34 977 166 007<br />

e-mail: idiada@idiada.com<br />

www.idiada.com<br />

<strong>IDIADA</strong> Automotive Technology Services (Shanghai) Co., Ltd.<br />

T +86 (21) 6210 0894<br />

e-mail: idiada_china@idiada.com<br />

<strong>IDIADA</strong> Automotive Technology India Pvt. Ltd.<br />

T +91 12 44201156<br />

e-mail: idiada_india@idiada.com<br />

Applus+ <strong>IDIADA</strong> France<br />

T +33 (0) 1 41 14 60 85<br />

e-mail: idiada_france@idiada.com<br />

Applus+ <strong>IDIADA</strong> Italy<br />

T +39 011 3997 764<br />

e-mail: idiada_italia@idiada.com<br />

Applus+ <strong>IDIADA</strong> Madrid<br />

T +34 915 095 795<br />

e-mail: idiada_madrid@idiada.com<br />

Applus+ <strong>IDIADA</strong> Poland<br />

T +48 61 6226 905<br />

e-mail: idiada_poland@idiada.com<br />

Applus+ <strong>IDIADA</strong> UK<br />

T +44 (0) 7 979 691 631<br />

e-mail: idiada_uk@idiada.com<br />

Applus+ <strong>IDIADA</strong> Japan<br />

T +81 (0) 3 5979 2286<br />

e-mail: idiada_japan@idiada.com<br />

Applus+ <strong>IDIADA</strong> Korea<br />

T +82 31 478 1821<br />

e-mail: idiada_korea@idiada.com<br />

Applus+ <strong>IDIADA</strong> Malaysia<br />

T +603 2140 2266<br />

e-mail: idiada_malaysia@idiada.com<br />

Applus+ <strong>IDIADA</strong> Taiwan<br />

T +886 4 7810702<br />

e-mail: idiada_taiwan@idiada.com<br />

Applus+ <strong>IDIADA</strong> Brazil<br />

T +55 11 75489956<br />

e-mail: idiada_brasil@idiada.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!