Next generation PVD coatings for tools and components

Next generation PVD coatings for tools and components Next generation PVD coatings for tools and components

ukintpress.conferences.com
from ukintpress.conferences.com More from this publisher

<strong>Next</strong> <strong>generation</strong> <strong>PVD</strong> <strong>coatings</strong> <strong>for</strong> <strong>tools</strong> <strong>and</strong> <strong>components</strong><br />

Dr. auf dem Brinke | June 2010


Our <strong>tools</strong><br />

Classification of Key Surface Treatments<br />

1,200<br />

Substrate temperature (°C)<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

IONIT OX<br />

Plasma<br />

Nitriding<br />

Ion<br />

Implant.<br />

Chemical Vapor<br />

Deposition (CVD)<br />

Physical Vapor<br />

Deposition (<strong>PVD</strong>)<br />

Thermal Spray<br />

Electroplating<br />

Welding<br />

(PTA)<br />

0<br />

-10 -1 0 0.1 1 10<br />

100<br />

1,000 10,000 100,000<br />

Coating thickness (µm)<br />

Graph <strong>for</strong> illustration purposes only, not scientifically exhaustive<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 2


Driving High Technology<br />

The effect of <strong>PVD</strong> <strong>coatings</strong> – excellence of per<strong>for</strong>mance<br />

Effective mass: MAXIT ® <strong>coatings</strong><br />

Without coating<br />

We need <strong>for</strong><br />

100. 000 holes<br />

1.000 drills -<br />

equals 60 kg<br />

With coating<br />

We need <strong>for</strong><br />

100. 000 holes<br />

250 drills -<br />

equals 15 kg + 7,5 g<br />

<strong>PVD</strong>-hard coating: 7,5 g TiN<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 3


Driving high technology<br />

Introduction<br />

Dry cutting<br />

High speed cutting<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 4


Driving High Technology<br />

Engine – Surface Treatments<br />

Gear wheels<br />

Rocker arms<br />

Guide pins<br />

Rail guides<br />

Sprockets<br />

Injection pump<br />

covers<br />

Injectors<br />

Camshafts<br />

Tappets<br />

Valve springs<br />

Valves<br />

Valve seats<br />

Piston rings<br />

Pistons<br />

Bearings<br />

Crankshafts<br />

- Nitriding<br />

- Nitriding + Oxidation<br />

- <strong>PVD</strong><br />

Engine Expo 2010 auf dem Brinke June 2010| slide 5


Driving High Technology<br />

excellence in coating architecture <strong>and</strong> design<br />

metallic<br />

hard materials<br />

covalent<br />

bindings<br />

C<br />

SiC<br />

+ hardness<br />

+ HT-properties<br />

- adhesion<br />

covalent<br />

hard materials<br />

WC<br />

TiB 2<br />

TiC TiAlN<br />

TiN<br />

CrN<br />

BN<br />

AlN<br />

Si 3 N 4<br />

Al 2 O 3<br />

ZrO 2<br />

ionic<br />

hard materials<br />

metallic<br />

bindings<br />

+ toughness<br />

+ adhesion<br />

- hardness<br />

all-round properties<br />

heteropolar<br />

bindings<br />

+ chemical resistance<br />

+ less chemical interaction<br />

- brittleness<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 6


Driving High Technology<br />

excellence in coating architecture <strong>and</strong> design<br />

Schematic illustration of various possibilities to design advanced high<br />

per<strong>for</strong>mance <strong>coatings</strong><br />

(Al,Ti)N<br />

a-C, BN<br />

(Al,Ti)N<br />

CrN – CrCN – CrC - a-C:H<br />

(Al,Ti)CN<br />

(Al,Ti)N<br />

CrN mod<br />

micro-alloyed<br />

M power<br />

M tec<br />

oder<br />

AlTiN Saturn<br />

substrate<br />

substrate<br />

substrate substrate substrate substrate<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 7


Driving High Technology<br />

<strong>PVD</strong> ARC Technology<br />

Vacuum measurement<br />

<strong>and</strong> control system<br />

Process gas<br />

Vacuum<br />

pump set<br />

Power<br />

supplies<br />

Circular<br />

Evaporators<br />

Coating<br />

chamber<br />

Arc evaporators e.g. AlTi<br />

Window<br />

segmented targets<br />

BIAS Power supply<br />

(substrate)<br />

Infraredtemperaturemeasurement<br />

Substrate holder<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 8


How does it work?<br />

low friction <strong>and</strong> anti sticking <strong>coatings</strong> MAXIT ® W-C:H<br />

Deposition Working principle process<br />

schematic view<br />

Counterpart<br />

Chromium<br />

W-C<br />

Chromium<br />

S N<br />

W-C<br />

W-C<br />

S<br />

Multilayer Structure<br />

Chromium<br />

Low friction<br />

+<br />

Argon<br />

Plasma<br />

N<br />

S<br />

W-C<br />

Substrate<br />

W-C<br />

W-C<br />

+<br />

Substrate<br />

W-C<br />

High Vacuum<br />

Deposition Chamber<br />

Substrate<br />

S<br />

Separation of substrate<br />

<strong>and</strong> counterpart by a<br />

chemical inert coating<br />

W-C:H<br />

+ C 2<br />

H 2<br />

bond layer Chromium<br />

~ 1 - 10 µm<br />

W-C<br />

reduction of the roughness<br />

Coating trans<strong>for</strong>mation<br />

Chromium<br />

Substrate<br />

200 o C<br />

Magnetron Sputtering<br />

Substrate<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 9


Application W-C:H - Coating of gears<br />

uncoated<br />

1500 N/mm 2<br />

1.35 x 10 6 cycles<br />

20% grey spots<br />

gear MAXIT ® W-C:H coated<br />

counter-gear uncoated<br />

1900 N/mm 2<br />

5.4 x 10 7 cycles<br />

W-C:H coated gears give an efficient protection<br />

against grey spotting <strong>and</strong> also pitting. weight reduction<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 10


Application – clutch actuator pistons<br />

low friction coating W-C:H <strong>for</strong> noise <strong>and</strong> vibration free clutch operation<br />

extremely thin walled app. 0.5 mm<br />

<br />

<br />

<strong>for</strong> <strong>components</strong> with high tribological<br />

stress<br />

gear, bearing <strong>and</strong> hydraulic<br />

<strong>components</strong><br />

deposition temperature: 150 – 250 °C<br />

color:<br />

grey-black<br />

coating morphology: multi-layer<br />

thickness: 1 - 5 µm<br />

hardness HK0.05: 1000 - 1300<br />

friction against 100Cr6: 0.15 - 0.30 dry<br />

running<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 11


Coating design<br />

from bond layer to function<br />

Tailored <strong>coatings</strong><br />

function layer a-C:H<br />

W-C:H<br />

bond system Cr - CrN<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 12


Application Tappet on Nitrided Camshaft<br />

advantages:<br />

improving fuel efficiency<br />

improving engine power (+3-4%)<br />

improving dry-running properties<br />

minimum oil lubrication in field test<br />

reduction of weight <strong>and</strong> size of<br />

engine<br />

W:C-H-mod<br />

Thickness<br />

3.0 ± 0.5 µm<br />

Hardness<br />

1750 ± 150 HV<br />

Friction coeff. µ<br />

Elastic modulus<br />

0.15<br />

200 GPa<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 13


Diesel injection pistons (heavy oil)<br />

advantages:<br />

improving fuel efficiency<br />

less maintenance<br />

improving dry-running properties<br />

cavitation resistance by<br />

trampoline effect (elasticity of<br />

coating)<br />

properties<br />

hardness [HV]<br />

TiN<br />

ca. 2500<br />

Hardchrom<br />

e<br />

800 - 1100<br />

<strong>coatings</strong><br />

Me-C:H<br />

ca. 1200<br />

MAXIT ® W-C:H mod<br />

ca. 1750<br />

Dry friction coeff. µ<br />

0,65 ± 0,05<br />

0,6 - 0,65<br />

0,20 ± 0,05<br />

0,15 ± 0,05<br />

Abrasion resistance<br />

++<br />

+<br />

++<br />

+ +<br />

Cavitation resistance<br />

++<br />

– / +<br />

+ +<br />

+ ++<br />

Running-in behavior<br />

–<br />

– / +<br />

++<br />

+++<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 14


Combination treatment of nitriding <strong>and</strong> <strong>PVD</strong><br />

Support <strong>for</strong> hard <strong>PVD</strong> layer – no eggshell effect<br />

[N]<br />

65<br />

1.2344 CrN 1.2344 PN + CrN<br />

[N]<br />

65<br />

70<br />

70<br />

Kraft<br />

75<br />

Kraft<br />

75<br />

80<br />

indentation depth: 33 µm indentation depth: 6,5 µm<br />

indication of coating failure<br />

80<br />

High scratch resistance at the surface also <strong>for</strong> “soft” materials<br />

(smaller 40 HRC) caused by nitriding <strong>and</strong> coating<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 15


Influence of polishing on surface roughness<br />

divided or integrated combination process<br />

[R z ]<br />

3,5<br />

3,0<br />

2,5<br />

Roughness<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

polished PN polished CrN polished<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 16


metal <strong>for</strong>ming – combi treatment<br />

800<br />

GGG 60<br />

Härte (HV 0,5)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

induktiv gehärtet und ionitriert<br />

nur plasmanitriert<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7<br />

Tiefe (mm)<br />

3-4 times longer lifetime<br />

rework possible<br />

combi treatment PN + <strong>PVD</strong><br />

Engine Expo 2010 auf dem Brinke June 2010| slide 17


Driving High Technology<br />

Elastomer processing<br />

Calender roll Ø 180 x 850 mm<br />

CrN-mod. coated<br />

Threads<br />

• deposits<br />

• adhesion<br />

Polish + CrN-mod coating<br />

Prevention of deposits<br />

Reduced adhesion<br />

Die plate / CrN-mod. coated<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 18


Driving High Technology<br />

Polymer Processing – Boosting Per<strong>for</strong>mance<br />

Where can <strong>PVD</strong> <strong>coatings</strong> boost the per<strong>for</strong>mance?<br />

Wear protection by high hardness<br />

Reduction of penetration by f.e. glass fibers using combination<br />

processes of nitriding plus <strong>PVD</strong><br />

Reduction of deposits by chemical unreactive <strong>coatings</strong><br />

Reduction of sticking tendency by non-reactive <strong>coatings</strong><br />

Reduction of friction by low friction <strong>coatings</strong> on f.e. ejector pins<br />

Endurable surface quality<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 19


Driving high technology<br />

The innovative APA evaporator technology<br />

x 100<br />

hard coating deposited by a<br />

classic circular evaporator<br />

comparable hard coating deposited<br />

by an evaporator with extended<br />

magnetic filed – APA –<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 20


Driving High Technology<br />

Sophisticated coating designs<br />

Dem<strong>and</strong>s on <strong>coatings</strong> <strong>for</strong> modern precision <strong>tools</strong><br />

• Hot hardness combined with sufficient toughness<br />

• Thermal shock resistance<br />

• Oxidation resistance<br />

• Minimum chemical/physical interaction with work piece material to reduce<br />

sticking <strong>and</strong> tribooxidation<br />

Possible combination:<br />

Nanocrystalline morphology<br />

→ optimum hardness - toughness<br />

nanocomposites<br />

Nanostructured multilayers<br />

→ increase of fracture toughness<br />

amorphous<br />

Matrix<br />

nanograins<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 21


Driving high technology<br />

Coating optimization by "micro alloying"<br />

Nano-composite states: alloying - phases<br />

doped <strong>coatings</strong><br />

CrN plus some<br />

atoms e.g. Si<br />

"micro alloyed"<br />

grain boundary<br />

segregation<br />

e.g. AlTiNC/C<br />

two or more phases<br />

hcp AlN + fcc AlTiN<br />

hcp (CrTi) 2 N + fcc TiCrN<br />

starting at 17 at% Cr<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 22


Driving high technology<br />

Micro alloyed <strong>coatings</strong>: How does it work?<br />

<br />

a significant amount of 0.1 – 3 at% of an additional element<br />

<br />

The element is incorporated into the crystal leading to higher stability,<br />

higher oxidation resistance, etc.<br />

<br />

The element is accumulated at the grain boundaries leading to an<br />

amorphisation <strong>and</strong> thus <strong>for</strong>cing the <strong>for</strong>mation of a nano-composite.<br />

<br />

Influencing the nucleation towards smaller grain sizes <strong>and</strong> thus <strong>for</strong>ming<br />

nano-crystalline structures, e.g. nano-columns<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 23


Driving high technology<br />

MAC: M power (TiSiXN)<br />

M power from the METAPLAS machining Series<br />

micro alloyed<br />

MeSiXN based nano-composite<br />

hardness 42 +/- 3 GPa, load 10mN<br />

optimized structure of<br />

AlTiN<br />

hardness 29 +/- 2 GPa , load 10 mN<br />

x30000<br />

1µm<br />

FIB prep<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 24


Driving high technology<br />

Cutting test M power<br />

Dry rough milling of X210Cr12, 200 HB annealed<br />

v c = 150 m/min, f = 0.15 mm/tooth, a p x a e = 3 x 10mm<br />

0.4<br />

0.35<br />

Flank wear Vbmax (mm)<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

TiSiN<br />

M power<br />

0.05<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Cutting length (m)<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 25


Driving high technology<br />

Multilayer structure design: tailored M power<br />

3000 nm<br />

AlTiN<br />

TiSiXN<br />

100 nm<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 26


Driving high technology<br />

Cutting test M powerNano<br />

120<br />

V c<br />

(m/min):<br />

finishing, material: 1.2767 (52-54 HRC)<br />

≈250<br />

100<br />

V f<br />

(mm/min): 2200<br />

n (min -1 ): 13500<br />

A1<br />

B1<br />

VB (!m)<br />

80<br />

60<br />

40<br />

f z<br />

(mm/Zahn): 0,086<br />

a p<br />

(mm): 0,1<br />

a e<br />

(mm): 0,1<br />

C1<br />

20<br />

Mpower<br />

0<br />

20 40 60 80 100 120 140 180 240 300 360 420<br />

time (min)<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 27


Driving high technology<br />

Hard machining<br />

Hard milling, smoothing, Material 1.2379 60-62 HRC<br />

250%<br />

200%<br />

150%<br />

100%<br />

50%<br />

0%<br />

AlTiN mod Mpower multi Mpower nano<br />

dry, v c = 115m/min, f z = 0,05mm, a p = 0,1, a e = 0,2<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 28


Driving high technology<br />

MAC: F fusion<br />

TiC (U.T.T.E CVD) : 3,000 shots<br />

CrN : 1,000 shots<br />

M power<br />

: 1,000 shots<br />

No coating : never tried<br />

The F fusion<br />

coated tool is still working, 7,200 shots as <strong>for</strong> today<br />

- cold pressing : working temperature is around 200°C (not 600°C!)<br />

- sheet material: high tensile steel (SAPH400: JIS), thickness of 2-3mm<br />

- pressing <strong>for</strong>ce : 3,000 ton.<br />

- the tested die is <strong>for</strong> a part of the most critical area.<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 29


Driving high technology<br />

HIPAC: a new evolution of HPPMS<br />

HIPAC<br />

HIPAC During results HIPAC in (High a highly Ionization ionized Plasma metal <strong>and</strong> <strong>for</strong> Advanced gas plasma<br />

<strong>and</strong> allows Coatings), control the over gases<br />

+<br />

the are deposition preionized process<br />

HIPAC coating blind hole L:D 2:1<br />

HPPMS St<strong>and</strong>ard L:D 1:2 AEGD (Arc Enhanced Glow Discharge)<br />

power is applied to the magnetron in pulses of<br />

a few tens of µs at a low frequency (< 2 kHz)<br />

peak target current ~ 1000 A (at 800 V),<br />

i.e. 1 MW<br />

plasma density ~10 19 m -3<br />

ionization of the sputtered material:<br />

up to 90 % <strong>for</strong> Ti <strong>and</strong> Al<br />

800 V<br />

1000 A<br />

magnetically designed arc evaporator<br />

electrical circuit that functions as an ion source<br />

<strong>for</strong> the sputtering gas<br />

gas ionization up to 100 %<br />

is used <strong>for</strong> clean-etching of the substrate<br />

<strong>and</strong>/or high-flux-low-energy bombardment of<br />

the substrate surface during growth<br />

anode<br />

HIPAC magnetron<br />

+ +<br />

- +- 0<br />

+ - -<br />

+<br />

+ + - -<br />

+ + 0 0<br />

+<br />

+ -<br />

- + + + + + +<br />

0 -<br />

+ - -<br />

0<br />

+ -<br />

+ +<br />

+ - -<br />

- + +<br />

-<br />

- -<br />

- pulsed bias+<br />

+ +<br />

+ + +<br />

- -<br />

-<br />

-<br />

+ -<br />

-<br />

-<br />

-<br />

+<br />

+ - - 0 +<br />

+ + + +<br />

0 0<br />

- - -<br />

+<br />

+ +<br />

- + + -<br />

-<br />

+ +<br />

0 -<br />

0<br />

+<br />

HIPAC magnetron<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 30


Driving High Technology<br />

Hybrid processes (AIP & HIPAC)<br />

Smooth <strong>and</strong> dense sputtered insulating top coat<br />

HIPAC: insulating nano crystalline top layer<br />

Arc: crystalline (Al,Ti)N<br />

glass like<br />

nano composite<br />

2µm 1µm<br />

fine columnar<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 31


Driving high technology<br />

Conclusions<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<strong>PVD</strong> <strong>coatings</strong> ensure high quality in component production<br />

New developments open up economic machining of new materials<br />

Lower coating temperatures allow even direct coating of plastics<br />

Overcoming line-of-sight coating using HIPAC<br />

New options <strong>for</strong> component design using <strong>PVD</strong> <strong>coatings</strong><br />

DLC <strong>coatings</strong> represent a group of their own <strong>and</strong> can be adapted to<br />

existing <strong>components</strong> lowering friction losses <strong>and</strong> raising lifetime<br />

Combination of ionitriding <strong>and</strong> <strong>PVD</strong> can help substituting expensive<br />

materials <strong>and</strong> protect aftermarket<br />

Combination treatment can make <strong>PVD</strong> <strong>coatings</strong> af<strong>for</strong>dable <strong>for</strong> mass<br />

production<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 32


Any Questions?<br />

Thank you <strong>for</strong> your attention !<br />

Engine Expo 2010 auf dem Brinke June 2010| slide 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!