02.11.2012 Views

A New Architecture of Wireless Mesh Networks Based IEEE 802.11s ...

A New Architecture of Wireless Mesh Networks Based IEEE 802.11s ...

A New Architecture of Wireless Mesh Networks Based IEEE 802.11s ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

This full text paper was peer reviewed at the direction <strong>of</strong> <strong>IEEE</strong> Communications Society subject matter experts for publication in the <strong>IEEE</strong> ICC 2011 proceedings<br />

A new architecture <strong>of</strong> wireless mesh networks<br />

based <strong>IEEE</strong> <strong>802.11s</strong> directional antennas<br />

Jalel Ben-Othman<br />

Laboratoire CNRS-Prism<br />

University <strong>of</strong> Versailles<br />

jbo@prism.uvsq.fr<br />

Lynda Mokdad<br />

Laboratoire LACL<br />

University <strong>of</strong> Paris 12<br />

Lynda.mokdad@univ-paris12.fr<br />

Abstract—This paper tackle the problem <strong>of</strong> coverage in <strong>IEEE</strong><br />

802.11 using mesh mode. Instead <strong>of</strong> omnidirectional coverage,<br />

we propose to use directional coverage. The use <strong>of</strong> directional<br />

antenna have two main advantages. The first is to increase the<br />

performance <strong>of</strong> QoS <strong>of</strong> considered services. The second is that<br />

using directional antenna allows to improve the spatial reuse<br />

<strong>of</strong> the wireless channel, which allows nodes to communicate<br />

simultaneously without interference, and potentially establish<br />

links between nodes far away from each other, and the number <strong>of</strong><br />

routing hops can be fewer than that <strong>of</strong> omnidirectional antennas.<br />

We also propose an new amendment to reduce the routing<br />

overhead related to the use <strong>of</strong> multiple interfaces. We have<br />

evaluated the performance <strong>of</strong> the proposed architecture and we<br />

show with numerical results that the use <strong>of</strong> directional coverage<br />

outperform the omnidirectional coverage.<br />

I. INTRODUCTION<br />

Today <strong>IEEE</strong> 802.11 is the most widely used standard in<br />

WLAN. Since the first deployment several amendments have<br />

been developed to adapt this standard for different use as the<br />

<strong>IEEE</strong> <strong>802.11s</strong> for mesh networks. The <strong>Wireless</strong> <strong>Mesh</strong> <strong>Networks</strong><br />

(WMN) are designed to communicate between nodes<br />

using the air interface organized in mesh topology. In this<br />

network the <strong>Mesh</strong> Point (MP) nodes communicate directly<br />

by the meduim <strong>of</strong> transmission radio with their neighbors<br />

through a multihop routing protocol. The extension <strong>of</strong> <strong>IEEE</strong><br />

802.11 MAC standard has been done by defining new wireless<br />

configuration that manage the topology, the quality <strong>of</strong> radio<br />

link and the routing protocols to increase the effective coverage<br />

area. In this Draft, the DS <strong>of</strong> an AP can be replaced with<br />

wireless links or multi-hop paths between multiple APs.<br />

In <strong>IEEE</strong> <strong>802.11s</strong>, the network nodes are divided into two<br />

classes : The nodes that support mesh services and those who<br />

do not support see figure 1.<br />

• <strong>Mesh</strong> points (MPs): Are entities that support mesh<br />

services (such as path selection and forwarding ...etc),<br />

i.e. they participate in the formation and operation <strong>of</strong> the<br />

mesh network.<br />

• <strong>Mesh</strong> Access Point : The configuration <strong>of</strong> an MP that is<br />

collocated with an Access Point is referred to as a <strong>Mesh</strong><br />

Access Point (MAP).<br />

• <strong>Mesh</strong> portals (MPPs): Interface the network to other<br />

<strong>IEEE</strong> 802 LAN segments.<br />

• Stations : do not participate in mesh functionalities.<br />

978-1-61284-231-8/11/$26.00 ©2011 <strong>IEEE</strong><br />

Mohamed Ould Cheikh<br />

Laboratoire LAMSADE<br />

University <strong>of</strong> Paris-dauphine<br />

ouldcheikh@lamsade.dauphine.fr<br />

Figure 1. <strong>Mesh</strong> containing MPs, MAPs, MPP, and STAs[1].<br />

Using wireless link between nodes in WMN conduct to<br />

the deployment <strong>of</strong> more access point due to the limitation<br />

<strong>of</strong> the <strong>IEEE</strong> 802.11 technology radio coverage. The use <strong>of</strong><br />

directional antennas increases the radio coverage and thus can<br />

decrease the number <strong>of</strong> AP. This study tackle this last point by<br />

proposing a directional coverage in a deployment <strong>of</strong> a WMN<br />

based on <strong>IEEE</strong> <strong>802.11s</strong>. We want to take the advantage <strong>of</strong><br />

directional antennas while keeping the compatibility <strong>of</strong> the<br />

<strong>IEEE</strong> 802.11 standard. The rest <strong>of</strong> this paper is organised<br />

as flowing : after a presentation <strong>of</strong> the related work in the<br />

section II, the proposed architecture is presented in section<br />

III. In this section we start by describing the mechanism used<br />

to reduce the routing overhead, then we present the directional<br />

antenna modeland implementation on NS3 simulator. In this<br />

section we discuss the influence <strong>of</strong> the coverage angle size<br />

<strong>of</strong> each sector on the network performance as well. This<br />

architecture has been evaluated by simulations under NS3,<br />

the description <strong>of</strong> implementations and numerical results are<br />

detailed in section IV. Finally, we summarize the main<br />

contribution <strong>of</strong> this paper and we give the perspectives <strong>of</strong> this<br />

study in section V.


This full text paper was peer reviewed at the direction <strong>of</strong> <strong>IEEE</strong> Communications Society subject matter experts for publication in the <strong>IEEE</strong> ICC 2011 proceedings<br />

II. RELATED WORK<br />

Directionnal Antennas (DA) have received increasing interest<br />

in recent years, especially in the context <strong>of</strong> an ad hoc<br />

network, due to their better performance. By using DA in<br />

<strong>IEEE</strong> <strong>802.11s</strong> backbone, the nodes can communicate simultaneously<br />

without interference, and potentially establish links<br />

between nodes far away from each other, and the number <strong>of</strong><br />

routing hops can be fewer. However, the existing <strong>IEEE</strong> 802.11<br />

(mesh) standards does not gain with the implementation <strong>of</strong> DA<br />

and poses additional technical challenges such as deafness<br />

and hidden- and exposed terminal problems arisen due to<br />

directional transmissions[5]. Deafness is caused when a node,<br />

C, attempts to initiate dialog with a node, A, while A is<br />

engaged in communication with another node [6], as shown<br />

in figure 2.<br />

Figure 2. A scenario illustrating the problem <strong>of</strong> deafness [6].<br />

Most work on directional antennas (they are <strong>of</strong>ten in the<br />

context <strong>of</strong> ad hoc network) propose to change the MAC<br />

layer, to take advantage <strong>of</strong> these benefits and to solve the<br />

deafness and hidden- and exposed terminal problems. In<br />

DMAC (Directionnal MAC) [7] all frames are transmitted<br />

directionally except for the CTS (Clear To Send). In MMAC<br />

(Multi-hop RTS MAC) [7] the authors proposes the multi-hop<br />

RTS (Request To Send) to take advantage <strong>of</strong> the higher gain<br />

obtained by directional antennas. In [6], the authors propose<br />

ToneDMAC to solve the problem <strong>of</strong> deafness. However, most<br />

<strong>of</strong> these works are not compatible with the 802.11 standard<br />

(problem <strong>of</strong> the interoperability and evolution). To the best <strong>of</strong><br />

our knowledge no work has been done on using directional<br />

antenas in <strong>IEEE</strong> <strong>802.11s</strong>.<br />

In this paper, we propose a new deployment <strong>of</strong> <strong>IEEE</strong><br />

<strong>802.11s</strong> that take the advantage <strong>of</strong> directional antennas while<br />

keeping the compatibility <strong>of</strong> the <strong>IEEE</strong> <strong>802.11s</strong>tandard.<br />

III. OUR PROPOSAL<br />

In our proposal, we use a sectorial antenna, which consists<br />

<strong>of</strong> multiple fixed beam antennas aimed in different directions,<br />

each covering a different sector <strong>of</strong> space, all <strong>of</strong> them together<br />

giving full 2π coverage. A fixed beam antenna is the traditional<br />

directional antenna which is pre-fixed in particular<br />

direction ( has a fixed gain pr<strong>of</strong>ile with a primary lobe pointing<br />

in a single direction). Steering the beam is only possible by<br />

physically changing the orientation <strong>of</strong> the antenna[10]. Using<br />

this configuration allows to solve the deafness problem.<br />

The main purpose <strong>of</strong> our proposal is to take the advantage<br />

<strong>of</strong> directional antennas while keeping the compatibility <strong>of</strong> the<br />

<strong>IEEE</strong> 802.11 MAC and to reduce the routing overhead. In the<br />

flowing we describe the mechanism that we propose to reduce<br />

the routing overhead, then we present the directionnal antenna<br />

model and their implementation in NS3 simulator that we use<br />

for the simulations.<br />

A. Sector-HWMP<br />

The mechanism defined in the following is valid for the two<br />

modes (Proactive tree building mode and On demand mode).<br />

In this mechanism, if a source MP A needs to find a path to<br />

a destination MP B :<br />

• if node A knows the position <strong>of</strong> node B, the PREQ is<br />

transmitted only by the fixed beam antenna that the MP<br />

B is inside <strong>of</strong> their three-dimensional radiation beam.<br />

• Otherwise, the PREQ is broadcasted by all beam antennas.<br />

In our proposal, each node has a table where it keeps the<br />

list <strong>of</strong> others nodes positions. The PREQ and PREP messages<br />

format are modified to carry the sender potision. Before an<br />

MP sends PREQ or reply with PREP , it puts its potision.<br />

When an MP receives a PREQ or PREP, it updates its<br />

positions table by adding the new entries ( new positions, if<br />

exists).<br />

The PREQ element is used for discovering a path to one<br />

or more destinations. Whenever an MP have to send or have<br />

to forward a PREQ to a set <strong>of</strong> destinations, it checks if it<br />

exists an entry in the positions table for each destination. The<br />

PREQ which will be sent by the interface i must contain<br />

only the subset <strong>of</strong> destinations address <strong>of</strong> the MPs that are<br />

inside <strong>of</strong> their three-dimensional radiation beam. By this way<br />

we reduce the overhead : Some interfaces my have a subset<br />

empty (No PREQ have to send on these interfaces or the<br />

size <strong>of</strong> PREQ is reduced) and the number <strong>of</strong> intermediates<br />

MP are reduced. To determines if a MP destination is inside<br />

<strong>of</strong> the three-dimensional radiation beam <strong>of</strong> the beam antenna<br />

<strong>of</strong> the interface i, the MP uses the algorithm described in<br />

[9]. The subset <strong>of</strong> destinations address that not exist in<br />

positions table <strong>of</strong> the MP (Sender, intermediate ) will be<br />

set in each preq broadcasted(see figure 3). When three<br />

consecutive attempts fail at path discovery towards a given


This full text paper was peer reviewed at the direction <strong>of</strong> <strong>IEEE</strong> Communications Society subject matter experts for publication in the <strong>IEEE</strong> ICC 2011 proceedings<br />

(set <strong>of</strong>) destination(s), this subset <strong>of</strong> destinations address will<br />

be set in each broadcasted preq.<br />

Figure 3. Figure illustrating Sctor-HWMP.<br />

In Figure 3, we assume that the source MP has three fixed<br />

beam antennas aimed in different directions, each covering an<br />

angle <strong>of</strong> 120 degrees. In this figure, if a MP source knows the<br />

position <strong>of</strong> the MP destination then, the destination address<br />

<strong>of</strong> this MP will be set only in the PREQ copy that must be<br />

transmited the antenna 1. Otherwise, this address must be<br />

added in all PREQ broadcasted by 1,2 and 3.<br />

1) sectorization issues : In this section we discuss the<br />

influence <strong>of</strong> the coverage angle size <strong>of</strong> each sector on the<br />

network performance.<br />

Figure 4. Figure illustrating sectorization issues on the network performance.<br />

B. Directionnal antenna model<br />

A directional antenna is defined as: ”having the property <strong>of</strong><br />

radiating or receiving electromagnetic waves more effectively<br />

in some directions than in others” [3]. In practice, when one<br />

wants to describe how a particular antenna works, some basic<br />

characteristics common to all types <strong>of</strong> antennas, are given:<br />

Impedance, radiation pattern, Polarization and Gain.<br />

In wireless network simulations, we are interested only<br />

to determines when and with what reception power a signal<br />

arrives at a receiver. The signal strength is used to determine<br />

whether the frame is transmitted successfully. There is several<br />

propagation models to predict the power received signal (Free<br />

Space, Two Ray Ground, Shadowing,....etc ).<br />

Free Space model is used to simulate path loss <strong>of</strong> wireless<br />

communication when line-<strong>of</strong>-sight path exists between transmitter<br />

and receiver. Two Ray Ground model is used when<br />

line-<strong>of</strong>-sight path exists and reflection <strong>of</strong> ground is considered.<br />

Shadowing model simulates shadow effect <strong>of</strong> obstructions<br />

between the transmitter and receiver.<br />

For example, the free-space attenuation can be computed<br />

using Friis modernized equation :<br />

where :<br />

PRx = PTx∗GRx∗GTx∗λ2<br />

(4∗π∗d) 2 ∗L<br />

• PRx,PTx are reception and transmission power in watt;<br />

• GRx,GTx are reception and transmission gain;<br />

• L is a general dimensionless system loss coefficient;<br />

• λ is the wavelength;<br />

• and d is the distance in meters between sender and<br />

receiver.<br />

Most <strong>of</strong> the current implementations <strong>of</strong> the <strong>IEEE</strong> 802.11<br />

physical models (802.11a/b/g...etc.) in a packet-based network<br />

simulators uses only omnidirectional antennas models (<br />

GRx =1and GTx =1). These implementations use an object<br />

(wifichannel in NS3, <strong>Wireless</strong>Channel in NS2) to models the<br />

radio signal transmission. This object keeps a list <strong>of</strong> all nodes<br />

, or the list <strong>of</strong> their physical components on this channel ( all<br />

the nodes participate in the simulation). It works just like a<br />

physical media : receives packets from nodes and assigns them<br />

to all possible destination and following the reception power,<br />

the receiving node decides whether the packet is correct or<br />

not.<br />

In directional antenna models, the electromagnetic waves<br />

is mainly radiated in some directions and consequently the<br />

reception and transmission gains are calculated differently.<br />

Also, the received packets by the wifichannel object do not<br />

assigned to all nodes in the simulation but only to the receivers<br />

inside the three-dimensional radiation beam.<br />

The gain <strong>of</strong> an antenna (in a given direction) is defined as<br />

”the ratio <strong>of</strong> the intensity, in a given direction, to the radiation<br />

intensity that would be obtained if the power accepted by the<br />

antenna were radiated isotropically (the power accepted (input)<br />

by the antenna divided by 4π)” [4].<br />

Gain =4π U(θ,φ)<br />

Pin<br />

Since all <strong>of</strong> the accepted (input) power is not radiated<br />

(because <strong>of</strong> losses),the total radiated power (Prad) is related<br />

to the total input power (Pin )by:<br />

Prad = ecdPin<br />

where ecd, is the radiation efficiency <strong>of</strong> the antenna.<br />

Gain = ecd[4π U(θ,φ)<br />

Prad ]<br />

The maximum value <strong>of</strong> the gain can be expressed according<br />

to the beam solid angle :<br />

U(θ, φ) =B0F (θ, φ)<br />

Prad = ◦ ��<br />

Ω<br />

Gainmax = ecd<br />

U(θ, φ)dΩ =B0<br />

Gainmax = ecd 4π<br />

ΩA<br />

� 2π<br />

0<br />

� π<br />

F (θ, φ)sinθdθdφ<br />

0<br />

� 4π<br />

2π � π<br />

[ F (θ,φ)sinθdθdφ]/F (θ,φ)|max<br />

0 0


This full text paper was peer reviewed at the direction <strong>of</strong> <strong>IEEE</strong> Communications Society subject matter experts for publication in the <strong>IEEE</strong> ICC 2011 proceedings<br />

Table I<br />

SIMULATION PARAMETERS<br />

Parameters Value<br />

CBR (DataRate (Mb/s)) 1<br />

CBR (PacketSize ) 1000<br />

MPEG 4 based on a stream trace file (See [11,12])<br />

PHY OFDM 5 GHz<br />

Channel 20MHz<br />

txPower 16.0206 dBm<br />

txGain 6.0206 dB<br />

rxGain 6.0206 dBm<br />

EnergyDetectionThreshold -96.0 dBm<br />

propagation loss model log-distance<br />

DataMode wifia-6mbs<br />

Simulation time 250 (seconds)<br />

Number <strong>of</strong> nodes 25<br />

Where ΩA is the beam solid angle.<br />

For our simulations, we consider an antenna formed by a<br />

cone (The beam width <strong>of</strong> this antenna is 2ϕ and ecd =1) with<br />

spherical cap model , which is a mathematical approximation<br />

for simplicity, the solid angle :<br />

ΩA =2π(1 − cos ϕ)<br />

The gain can be expressed as :<br />

4π<br />

GRx = GTx = ecd[<br />

2π(1−cos ϕ) ]<br />

2<br />

GRx = GTx =[ (1−cos ϕ) ]<br />

To check if a receiver is inside the three-dimensional<br />

radiation beam <strong>of</strong> the antenna, we use the algorithms defined<br />

in [9].<br />

The figure 5 shows an UML diagram illustrating directionnal<br />

antenna implementation. In this figure we show only the<br />

part <strong>of</strong> <strong>IEEE</strong> 802.11 models provided in ns-3 that we have<br />

changed.<br />

IV. SIMULATION RESULTS<br />

We present and discuss in this section our simulation results<br />

for the performance study <strong>of</strong> our multipath routing protocol.<br />

We used NS3 for our simulations. The simulations are<br />

executed using the parameters <strong>of</strong> Table I .<br />

Figure 6 represents the reception power according to the<br />

distance and the antenna gain. For these simulations we used<br />

two different type <strong>of</strong> antennas. The firs is directional with<br />

120 degrees <strong>of</strong> beamwidth while the second is omnidirectional.<br />

The numerical results are based on the log propagation model.<br />

The figure shows for omnidirectional antenna the link between<br />

two nodes is efficient for a distance less than 170m. For a<br />

directional antenna the distance between two nodes is efficient<br />

up to 370 m. These results confirm that using directional<br />

antenna can improve the distance between nodes.<br />

In Figure 7 and 8 we have plotted the throughput and the<br />

end-to-end delay according to the distance respectively. The<br />

considered traffic is composed by two different sources one<br />

CBR and a multimedia traffic. We can notice from the both<br />

figures that better performances are for a distance less than<br />

220m.<br />

Figure 6. Directional Vs Omnidirectional antenna<br />

Figure 7. global throughput<br />

Figure 8. PDR<br />

V. CONCLUSION<br />

<strong>IEEE</strong> <strong>802.11s</strong> is the amendment <strong>of</strong> <strong>IEEE</strong> 802.11 that enable<br />

the mesh mode. The current deployment is made using<br />

omnidirectional antenna. Recently, the directional antenna<br />

has received intensive research due to its variety <strong>of</strong> potential


This full text paper was peer reviewed at the direction <strong>of</strong> <strong>IEEE</strong> Communications Society subject matter experts for publication in the <strong>IEEE</strong> ICC 2011 proceedings<br />

��������������������<br />

������<br />

������<br />

������������������<br />

������������������<br />

���������������<br />

���������������������������������������������������������������������������������������������������������������������������������������������������<br />

��������<br />

�������<br />

������������������������������������������������������������������������������������������������������<br />

������������������������������������������<br />

��������������������������������������������<br />

������������������������������������������<br />

���������������������������������<br />

����������������������������������������������������������������������������������������������<br />

������������������<br />

������������������<br />

�������������������<br />

�����������<br />

����������������������������������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������������������������������������������<br />

������������������������������������������������<br />

�������������������������������������������������<br />

�������<br />

�����������������������<br />

����������������������������������������<br />

����������������������������������������<br />

�������������������������������������������������������������������������������������������������<br />

�������<br />

����������������������������������������<br />

����������������������������������������<br />

�������������������������������������������������������������������������������������������������<br />

benefits for wireless communication systems. It is expected to<br />

provide significant improvements. In this study we propose a<br />

new improvements <strong>of</strong> HWMP protocol (Sector-HWMP) that<br />

take into account the using <strong>of</strong> directional antennas. These<br />

improvements are intend to reduce the routing overhead related<br />

to the use <strong>of</strong> multiple interfaces, and to take the advantage <strong>of</strong><br />

directional antenna. In order to evaluate the performance <strong>of</strong><br />

our proposal, we have made an antenna directionnal antenna<br />

model. We show the benefits <strong>of</strong> directional antennas through<br />

simulation under NS3. Numerical results show that the<br />

distance between nodes is increased and we show that the<br />

global QoS is increased as well. We intend to extend this<br />

architecture by taking into account the MAC layer in the<br />

routing process in order to increase number <strong>of</strong> radios in each<br />

sector.<br />

REFERENCES<br />

[1] <strong>IEEE</strong> <strong>802.11s</strong>. (2007). Draft STANDARD for Information Technology-<br />

Telecommunications and information exchange between systems-Local<br />

and metropolitan area networks-Specific requirements-Part 11: <strong>Wireless</strong><br />

LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.<br />

��������������������<br />

������������������������������������������������������������������������������������������<br />

����������������������������������������������������������������������������������������������������<br />

������<br />

�������������������<br />

�������������������<br />

������<br />

�������������������������<br />

����������������������������������������������������������������������������������������������������<br />

������<br />

Figure 5. UML diagram illustrating directionnal antenna implementation<br />

[2] Sana, G., Sonia, M. G., and Farouk, K. (2010). Comparison <strong>of</strong> Proposed<br />

Path Selection Protocols for <strong>IEEE</strong> <strong>802.11s</strong> WLAN <strong>Mesh</strong> <strong>Networks</strong>.<br />

Boston: Springer , 17-28.<br />

[3] Ian F. Akyildiz, Xudong Wang, Weilin Wang ”<strong>Wireless</strong> mesh networks:<br />

a survey”<br />

[4] Constantine A. Balanis ”Antenna Theory: A Review”. PROCEEDINGS<br />

OF THE <strong>IEEE</strong>, VOL. 80, NO. 1, JANUARY 1992.<br />

[5] Romit Roy Choudhury, Xue Yang, Ram Ramanathan.. and Nitin H.<br />

Vaidya ”Using Directional Antennas for Medium Access Control in Ad<br />

Hoc <strong>Networks</strong>”<br />

[6] Romit Roy Choudhury and Nitin H. Vaidya ”Deafness: A MAC Problem<br />

in Ad Hoc <strong>Networks</strong> when using Directional Antennas”<br />

[7] Romit Roy Choudhury, Xue Yang, Ram Ramanathan and Nitin H. Vaidya<br />

”Using Antennas for Medium Access Control in Ad Hoc <strong>Networks</strong>”<br />

[8] ”Ad Hoc Networking with Directional Antennas: A Complete System<br />

Solution”<br />

[9] Saravanan Kandasamy, Ricardo Morla, and Manuel Ricardo. ”Improving<br />

the Performance <strong>of</strong> <strong>IEEE</strong><strong>802.11s</strong> <strong>Networks</strong> using Directional Antennas<br />

over Multi-Radio/Multi-Channel Implementation The Research Challenges”<br />

[10] Michael Neufeld and Dirk Grunwald. ”Deafness and Virtual Carrier<br />

Sensing with Directional Antennas in 802.11 <strong>Networks</strong>”. May 2004<br />

[11] stream trace file http://www.tkn.tu-berlin.de/research/trace/<br />

pics/FrameTrace/mp4/ Verbose Jurassic 10.dat<br />

[12] The ns-3 network simulator : http ://www.nsnam.org/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!