13.10.2014 Views

Th l R i ti it f S il Thermal Resistivity of Soils and Engineered Materials

Th l R i ti it f S il Thermal Resistivity of Soils and Engineered Materials

Th l R i ti it f S il Thermal Resistivity of Soils and Engineered Materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Th</strong>ermal Resis<strong>ti</strong>v<strong>it</strong>y <strong>it</strong> <strong>of</strong> So<strong>il</strong>s<br />

<strong>and</strong> <strong>Engineered</strong> <strong>Materials</strong><br />

Gaylon S. Campbell, Ph. D.<br />

Decagon Devices, Inc.<br />

Pullman, WA<br />

www.decagon.com


Phoenix Scout Mission to Mars<br />

June 25, 2008 – Oct., 2008<br />

TECP: <strong>Th</strong>ermal <strong>and</strong><br />

electrical<br />

proper<strong>ti</strong>es p probe


TECP Purpose<br />

•Measure thermal <strong>and</strong> electrical<br />

proper<strong>ti</strong>es <strong>of</strong> Mar<strong>ti</strong>an regol<strong>it</strong>h<br />

•From those measurements, infer<br />

liquid water content, ice content, <strong>and</strong><br />

pore size distribu<strong>ti</strong>on


Some geotechnical applica<strong>ti</strong>ons<br />

<strong>of</strong> so<strong>il</strong> thermal proper<strong>ti</strong>es<br />

• Buried power transmission cables<br />

What is the thermal resistance between a buried<br />

power line <strong>and</strong> the external environment?<br />

• Ground source heat pump installa<strong>ti</strong>ons<br />

For a given volume <strong>of</strong> so<strong>il</strong>, how much heat can be<br />

stored? How fast can <strong>it</strong> be stored?<br />

• Burial <strong>of</strong> high level radio-ac<strong>ti</strong>ve ac<strong>ti</strong>ve waste<br />

How hot w<strong>il</strong>l <strong>it</strong> get? How w<strong>il</strong>l <strong>it</strong> affect moisture<br />

patterns?


<strong>Th</strong>ermal Proper<strong>ti</strong>es <strong>of</strong> So<strong>il</strong><br />

Impact Wind Power Genera<strong>ti</strong>on


U. S. Na<strong>ti</strong>onal Electrical<br />

Code: Annex B (2005)<br />

“Typical values <strong>of</strong> thermal resis<strong>ti</strong>v<strong>it</strong>y: rho”<br />

average so<strong>il</strong> (90 percent <strong>of</strong> USA) 90<br />

Concrete 55<br />

Damp so<strong>il</strong> 60<br />

very dry so<strong>il</strong> 120


Outline<br />

•Defini<strong>ti</strong>ons<br />

•<strong>Th</strong>ermal proper<strong>ti</strong>es <strong>of</strong> porous materials<br />

•Measuring so<strong>il</strong> thermal proper<strong>ti</strong>es<br />

•St<strong>and</strong>ards S d d for thermal proper<strong>ti</strong>es<br />

•Correc<strong>ti</strong>ve measures


<strong>Th</strong>e thermal proper<strong>ti</strong>es <strong>of</strong><br />

interest are<br />

•<strong>Th</strong>ermal conduc<strong>ti</strong>v<strong>it</strong>y (k )<br />

Ra<strong>ti</strong>o <strong>of</strong> heat flux dens<strong>it</strong>y to temperature<br />

gradient: 0.1 to 3 W/(m·K)<br />

•<strong>Th</strong>ermal resis<strong>ti</strong>v<strong>it</strong>y ( )<br />

R ip l f th m l nd <strong>ti</strong> <strong>it</strong> :<br />

Reciprocal <strong>of</strong> thermal conduc<strong>ti</strong>v<strong>it</strong>y :<br />

33 to 1000 cm·C/W


Which is best, conduc<strong>ti</strong>v<strong>it</strong>y<br />

or resis<strong>ti</strong>v<strong>it</strong>y?<br />

For so<strong>il</strong>, conduc<strong>ti</strong>v<strong>it</strong>y is almost always<br />

preferable to resis<strong>ti</strong>v<strong>it</strong>y:<br />

•Better sta<strong>ti</strong>s<strong>ti</strong>cal proper<strong>ti</strong>es<br />

•More correct for averaging<br />

•More linear w<strong>it</strong>h water content<br />

•A more correct percep<strong>ti</strong>on <strong>of</strong><br />

significance


More thermal proper<strong>ti</strong>es<br />

•Volumetric specific heat (C )<br />

Heat required to raise the temperature <strong>of</strong><br />

un<strong>it</strong> volume by 1 K (or C):<br />

1 to 3 MJ/(m 3 K)<br />

•<strong>Th</strong>ermal diffusiv<strong>it</strong>y (D )<br />

Ra<strong>ti</strong>o <strong>of</strong> conduc<strong>ti</strong>v<strong>it</strong>y to specific heat;<br />

Ra<strong>ti</strong>o <strong>of</strong> conduc<strong>ti</strong>v<strong>it</strong>y to specific heat;<br />

measure <strong>of</strong> propaga<strong>ti</strong>on rate <strong>of</strong> thermal<br />

disturbances: 0.1 to 0.7 mm 2 /s


Modeling So<strong>il</strong> <strong>Th</strong>ermal<br />

Proper<strong>ti</strong>es<br />

•So<strong>il</strong> is a mixture <strong>of</strong> solid, liquid<br />

(water) <strong>and</strong> gas (air <strong>and</strong> water vapor)<br />

•<strong>Th</strong>e thermal proper<strong>ti</strong>es <strong>of</strong> the so<strong>il</strong><br />

depend on the thermal proper<strong>ti</strong>es <strong>of</strong><br />

the cons<strong>ti</strong>tuents, their volume<br />

frac<strong>ti</strong>ons, <strong>and</strong> how they are mixed


So<strong>il</strong> Moisture Concepts <strong>and</strong><br />

Defini<strong>ti</strong>ons<br />

Air 25%<br />

Water 25%<br />

Solid 50%<br />

• A “saturated” so<strong>il</strong><br />

has no air<br />

• After satura<strong>ti</strong>on so<strong>il</strong>s<br />

typically quickly drain<br />

to “field capac<strong>it</strong>y”<br />

• Further drying is<br />

mainly due to plant<br />

water uptake


<strong>Th</strong>ermal proper<strong>ti</strong>es <strong>of</strong><br />

“pure” so<strong>il</strong> cons<strong>ti</strong>tuents<br />

k<br />

W/(mK)<br />

C<br />

MJ/(m 3 K)<br />

D<br />

mm 2 /s<br />

So<strong>il</strong> Minerals 2.5 2.3 1.09<br />

Gran<strong>it</strong>e 3 2.2 1.36<br />

Quartz 8.8 2.1 4.19<br />

Organic matter 0.25 2.5 0.10<br />

Water 06 0.6 418 4.18 014 0.14<br />

Ice 2.2 1.9 1.16<br />

Air 0.025025 0.001001 20.83<br />

From Campbell <strong>and</strong> Norman (1998)


Volumetric Specific Heat:<br />

varia<strong>ti</strong>on w<strong>it</strong>h water content<br />

(MJ/m3 K )<br />

Vo<br />

l. Sp. Ht.<br />

35 3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

S<strong>and</strong><br />

Clay<br />

Organic<br />

<strong>Th</strong>e specific heat <strong>of</strong> a mixture <strong>of</strong><br />

air, water <strong>and</strong> solids is the sum <strong>of</strong><br />

each volume frac<strong>ti</strong>on, mul<strong>ti</strong>plied by<br />

<strong>it</strong>s specific heat<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content


Specific Heat Take-Home<br />

• <strong>Th</strong>e volumetric specific heat <strong>of</strong> so<strong>il</strong>, rock<br />

<strong>and</strong> concrete is about 2 (±1) MJ m -3 K -1<br />

• Volumetric specific heat varies linearly<br />

w<strong>it</strong>h water content<br />

• Volumetric specific heat can <strong>of</strong>ten be<br />

computed more accurately than measured –<br />

you need volumetric water content t <strong>and</strong> bulk<br />

dens<strong>it</strong>y


Temperature dependence <strong>of</strong><br />

so<strong>il</strong> thermal conduc<strong>ti</strong>v<strong>it</strong>y<br />

<strong>Th</strong>ermal Co onduc<strong>ti</strong>v<strong>it</strong>y<br />

- W/(m K)<br />

1.8<br />

1.6<br />

1.4<br />

12 1.2<br />

1<br />

0.8<br />

06 0.6<br />

0.4<br />

0.2<br />

0<br />

50% solids<br />

0 0.1 0.2 0.3 0.4 0.5<br />

90 C<br />

65 C<br />

25 C<br />

No Vap.<br />

Water Content - m 3 /m 3


Liquid Return Flow: so<strong>il</strong> as a<br />

heat pipe<br />

1.8<br />

<strong>Th</strong>er rmal Condu uc<strong>ti</strong>v<strong>it</strong>y - W/(m K)<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

08 0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

liq<br />

90 C<br />

vap<br />

No vapor<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Water Content - m 3 /m 3


Temperature Dependence <strong>of</strong><br />

<strong>Th</strong>ermal Resis<strong>ti</strong>v<strong>it</strong>y<br />

C/W)<br />

<strong>Th</strong>ermal Res sis<strong>ti</strong>v<strong>it</strong>y (cm<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

25 C<br />

65 C<br />

0 0.2 0.4 0.6<br />

Water Content (m3/m3)<br />

U. S. Electrical Code<br />

90 C Average so<strong>il</strong> 90<br />

Concrete 55<br />

Damp so<strong>il</strong> 60<br />

Very dry so<strong>il</strong> 120


Response to <strong>Th</strong>ermal<br />

Conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> Solids<br />

<strong>Th</strong>er rmal Cond duc<strong>ti</strong>v<strong>it</strong>y - W/(mC)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

quartz s<strong>and</strong><br />

loam<br />

organic<br />

25 C<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Water Content - m3/m3


Resis<strong>ti</strong>v<strong>it</strong>y response to solids<br />

proper<strong>ti</strong>es<br />

<strong>Th</strong> hermal Res sis<strong>ti</strong>v<strong>it</strong>y (c cm C/W)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

loam<br />

quartz<br />

organic<br />

0 0.1 0.2 0.3 0.4<br />

Water Content (m3/m3)


Response to Compac<strong>ti</strong>on<br />

2<br />

<strong>Th</strong>e ermal Condu uc<strong>ti</strong>v<strong>it</strong>y - W/( (m K)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

04 0.4<br />

0.2<br />

0<br />

Loam so<strong>il</strong><br />

25C<br />

17% pores<br />

50% pores<br />

60% pores<br />

0 01 0.1 02 0.2 03 0.3 04 0.4 05 0.5 06 0.6<br />

Water Content - m 3 /m 3


Compac<strong>ti</strong>on effects on<br />

thermal resis<strong>ti</strong>v<strong>it</strong>y<br />

s<strong>ti</strong>v<strong>it</strong>y (cm<br />

C/W)<br />

<strong>Th</strong>e ermal Resi<br />

600<br />

400<br />

200<br />

0<br />

60% pores<br />

50% pores<br />

17% pores<br />

0 0.1 0.2 0.3 0.4 0.5<br />

3 3<br />

Water Content (m 3 /m 3 )


Take-home<br />

• <strong>Th</strong>ermal conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> porous material<br />

depends on:<br />

• Composi<strong>ti</strong>on<br />

• Temperature<br />

• Dens<strong>it</strong>y<br />

• Water content<br />

• <strong>Th</strong> i “ ld ” l f <strong>il</strong> th l<br />

• <strong>Th</strong>ere is no “golden” value for so<strong>il</strong> thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y – you need to measure <strong>it</strong>


How to get values for<br />

<strong>Th</strong>ermal Proper<strong>ti</strong>es<br />

•Compute them from composi<strong>ti</strong>on,<br />

dens<strong>it</strong>y, water content <strong>and</strong><br />

temperature (best for sp. Ht.)<br />

•Measure them using the line heat<br />

source (best for conduc<strong>ti</strong>v<strong>it</strong>y)


Line heat source methods<br />

for thermal proper<strong>ti</strong>es<br />

•Place a line heat source in the sample<br />

•Apply heat to the source <strong>and</strong> measure<br />

<strong>it</strong>s temperature over <strong>ti</strong>me<br />

•From the slope <strong>of</strong> temperature vs.<br />

logar<strong>it</strong>hm <strong>of</strong> <strong>ti</strong>me determine k


<strong>Th</strong>ermal conduc<strong>ti</strong>v<strong>it</strong>y: line<br />

heat source method<br />

ange (C )<br />

Tem pe<br />

ra ture C h<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

01 0.1<br />

0<br />

k = 0.5<br />

k = 1.0<br />

k = 2.0<br />

0.1 1 10 100<br />

Time (s)<br />

k propor<strong>ti</strong>onal to<br />

1/slope


Making a reading on a<br />

sample<br />

• Insert the needle<br />

• May need a p<strong>il</strong>ot hole<br />

• Turn on the controller<br />

• Press Enter<br />

• Wa<strong>it</strong> 5 – 10 minutes –<br />

controller heats needle,<br />

measures temperature,<br />

<strong>and</strong> computes k<br />

• Read the result from<br />

display


Example <strong>of</strong> k measurement<br />

Temp perature Ris se (C)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

y = 0.0906x + 0.0564<br />

R 2 = 0.9998<br />

=153 C cm/W<br />

y = 0.0853x + 0.008<br />

R 2 = 0.9996<br />

=144 C cm/W<br />

0 1 2 3 4<br />

ln t or ln t/(t-t o<br />

)<br />

hea<strong>ti</strong>ng cooling hea<strong>ti</strong>ng, excluded cooling, excluded


Contact Resistance Errors<br />

•Contact resistance errors occur any<br />

<strong>ti</strong>me there is an air gap around a single<br />

needle probe<br />

•No simple correc<strong>ti</strong>on is possible<br />

•Long read <strong>ti</strong>mes minimize these errors<br />

•Worst W in dry materials<br />

•<strong>Th</strong>ermal grease some<strong>ti</strong>mes helps


St<strong>and</strong>ards for thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y or resis<strong>ti</strong>v<strong>it</strong>y<br />

• ASTM D 5334-08 (2008) St<strong>and</strong>ard test methods<br />

for determina<strong>ti</strong>on <strong>of</strong> thermal conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> so<strong>il</strong><br />

<strong>and</strong> s<strong>of</strong>t rock by thermal needle probe procedure.<br />

Vol. 04.08, 08 ASTM, 100 Barr-Harbor Dr., West<br />

Conshocken, PA 19428-2059.<br />

• IEEE STD 442-1981 IEEE guide for <strong>Th</strong>ermal<br />

Resis<strong>ti</strong>v<strong>it</strong>y <strong>it</strong> Measurements . <strong>Th</strong>e Ins<strong>ti</strong>tute t <strong>of</strong><br />

Electrical <strong>and</strong> Electronics Engineers, Inc. 345 East<br />

47 Street, New York, NY 10017<br />

• Bristow, K. 2002 . <strong>Th</strong>ermal Conduc<strong>ti</strong>v<strong>it</strong>y <strong>it</strong> . p1209-<br />

1226. Methods <strong>of</strong> So<strong>il</strong> Analysis. Part 4 So<strong>il</strong><br />

Science Society <strong>of</strong> America, Inc. 677 South Segoe<br />

Rd. Madison, WI 53711-1086<br />

1086.


Comparison <strong>of</strong> st<strong>and</strong>ards<br />

ASTM<br />

IEEElab<br />

SSSA<br />

Probe length NS 100 mm NS<br />

Probe diam. NS 2.4 mm “thin”<br />

Record length NS 600 s 60 s<br />

Recording Elect. h<strong>and</strong> Elect.<br />

Analysis Rgr. 2 pt. Rgr<br />

Heat/cool yes no yes


Important points<br />

• Temperature drift during measurement can<br />

cause serious errors in hea<strong>ti</strong>ng-only<br />

analyses (as specified in older st<strong>and</strong>ards)<br />

• Probes can’t be used in layered or<br />

inhomogeneous media<br />

• Probes must be in good contact w<strong>it</strong>h so<strong>il</strong> –<br />

thermal grease can some<strong>ti</strong>mes help. Long<br />

read <strong>ti</strong>mes help a lot


<strong>Th</strong>ermal dryout curves<br />

•<strong>Th</strong>e rela<strong>ti</strong>onship between thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y (or resis<strong>ti</strong>v<strong>it</strong>y) <strong>and</strong> water<br />

content for a so<strong>il</strong> or other porous<br />

material<br />

al<br />

•Water content is an important<br />

variable, but dens<strong>it</strong>y, mineralogy <strong>and</strong><br />

temperature are also important.<br />

Need to hold these constant.


Dryout Curves –<br />

Measurement <strong>and</strong> Modeling<br />

• Pack a sample<br />

• Saturate w<strong>it</strong>h water<br />

• Measure wet conduc<strong>ti</strong>v<strong>it</strong>y<br />

• Weigh sample<br />

• Oven dry<br />

• Measure dry conduc<strong>ti</strong>v<strong>it</strong>y<br />

• Compute water content<br />

t<br />

• F<strong>it</strong> the model using wet <strong>and</strong><br />

dry conduc<strong>ti</strong>vi<strong>ti</strong>es


Dryout curves on S<strong>and</strong><br />

uc<strong>ti</strong>v<strong>it</strong>y (W /mK)<br />

<strong>Th</strong>e ermal Cond<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

single sample 1<br />

single sample 2<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content (m 3 /m 3 )<br />

Data from Dr. G. Todd Vanek


Dryout curves on S<strong>and</strong><br />

uc<strong>ti</strong>v<strong>it</strong>y (W /mK)<br />

<strong>Th</strong>e ermal Cond<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

single sample 1<br />

single sample 2<br />

model singlesample<br />

sample<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content (m 3 /m 3 )<br />

Data from Dr. G. Todd Vanek


S<strong>and</strong> data on a resis<strong>ti</strong>v<strong>it</strong>y<br />

scale<br />

<strong>Th</strong>erm mal Resis<strong>ti</strong>v<strong>it</strong>y<br />

4<br />

3<br />

2<br />

1<br />

single sample 1<br />

single sample 2<br />

mul<strong>ti</strong>sample<br />

model single sample<br />

model mul<strong>ti</strong>sample<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content


So – What’s needed for the<br />

combined approach?<br />

Wet conduc<strong>ti</strong>v<strong>it</strong>y <strong>and</strong><br />

water content<br />

Dry conduc<strong>ti</strong>v<strong>it</strong>y<br />

Volume frac<strong>ti</strong>on <strong>of</strong> solids<br />

Clay content<br />

Measure on saturated,<br />

compacted sample<br />

Measure on oven dried<br />

sample<br />

Compute from bulk<br />

dens<strong>it</strong>y <strong>of</strong> sample<br />

Measure or es<strong>ti</strong>mate<br />

from texture<br />

See www.Decagon.com for applica<strong>ti</strong>on note


Measuring thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> concrete


Important points for<br />

concrete<br />

•<strong>Th</strong>e sample must have the same<br />

dens<strong>it</strong>y as the in s<strong>it</strong>u material<br />

•Grease the pin before inser<strong>ti</strong>ng <strong>it</strong><br />

•Air gaps cause serious errors<br />

•Sample can be used for saturated <strong>and</strong><br />

dry measurements


Measuring thermal conduc<strong>ti</strong>v<strong>it</strong>y<br />

<strong>of</strong> cured concrete or rock<br />

•Rotohammer<br />

4 mm hole<br />

•<strong>Th</strong>ermal<br />

grease in<br />

bottom<br />

•Insert<br />

probe


Problem so<strong>il</strong>s – what if I<br />

need lower resis<strong>ti</strong>v<strong>it</strong>y?<br />

•Dens<strong>it</strong>y: compact materials for low<br />

resis<strong>ti</strong>v<strong>it</strong>y<br />

•Water content: low resis<strong>ti</strong>v<strong>it</strong>y when wet<br />

•Mineralogy: high quartz gives low<br />

resis<strong>ti</strong>v<strong>it</strong>y<br />

Fl idi d <strong>Th</strong> l B kf<strong>il</strong>l TM (FTB TM ) l<br />

•Fluidized <strong>Th</strong>ermal Backf<strong>il</strong>l TM (FTB TM ): low<br />

strength concrete, see www.geotherm.net


Conclusions<br />

• “Measure to Know”<br />

• Conduc<strong>ti</strong>v<strong>it</strong>y <strong>and</strong> capac<strong>it</strong>y depend on<br />

moisture, mineralogy, compac<strong>ti</strong>on <strong>and</strong><br />

temperature<br />

• Specific Heat is 2 +/- MJ/m 3 K<br />

• Measure conduc<strong>ti</strong>v<strong>it</strong>y w<strong>it</strong>h a heated needle<br />

• Provide dryout curves w<strong>it</strong>h wet <strong>and</strong> dry k


For Addi<strong>ti</strong>onal Informa<strong>ti</strong>on<br />

•www.decagon.com<br />

•www.thermalresis<strong>ti</strong>v<strong>it</strong>y.com<br />

•www.geotherm.net

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!