13.10.2014 Views

Compacted Clay Barriers for Waste Containment: Keys to ...

Compacted Clay Barriers for Waste Containment: Keys to ...

Compacted Clay Barriers for Waste Containment: Keys to ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Compacted</strong> <strong>Clay</strong> <strong>Barriers</strong> <strong>for</strong> <strong>Waste</strong><br />

<strong>Containment</strong>: <strong>Keys</strong> <strong>to</strong> Successful<br />

Implementation and Field Per<strong>for</strong>mance<br />

Craig H. Benson, PhD, PE, DGE<br />

Wisconsin Distinguished Professor of Geological Engineering<br />

University of Wisconsin-Madison<br />

Madison, Wisconsin USA 53706<br />

chbenson@wisc.edu<br />

©<br />

University of Wisconsin-Madison 2010


Objectives<br />

Leachate Collection Layer<br />

<strong>Clay</strong> Liner (> 600 mm)<br />

(1) Construct a clay barrier with low saturated<br />

hydraulic conductivity (< 10 -7 cm/s)<br />

(2) Protect the clay barrier from damage that may<br />

increase hydraulic conductivity


Three Principles <strong>for</strong><br />

Success<br />

• Selecting soil with suitable properties<br />

• Processing and compaction conditions<br />

that yield low hydraulic conductivity (K)<br />

• Protection of the constructed barrier


Criteria <strong>for</strong> Suitable Soil<br />

• Composition<br />

– particle size characteristics<br />

– clay mineralogy/Atterberg limits<br />

• Availability<br />

– volume<br />

– distance<br />

– cost<br />

• Heterogeneity<br />

– uni<strong>for</strong>m?<br />

– pick & choose?


Source Control<br />

<strong>Clay</strong> liner quality begins with controlling the quality of the source<br />

material. Some borrow pits are very uni<strong>for</strong>m, and require little<br />

inspection. This borrow pit near Detroit, MI, was extremely<br />

uni<strong>for</strong>m.


Total distance ~ 100 m<br />

<strong>Clay</strong><br />

<strong>Clay</strong>ey<br />

Silt<br />

Silty<br />

Sand<br />

This borrow pit near Racine, WI was highly heterogeneous, and<br />

required constant inspection.


Percent Finer (%)<br />

100<br />

80<br />

60<br />

40<br />

Particle Size Distribution<br />

4.8<br />

mm<br />

75<br />

mm<br />

2<br />

mm<br />

Definitions:<br />

Gravel: > No. 4 (4.8 mm)<br />

Sand: < No. 4<br />

> No. 200 (75 mm)<br />

Fines: < No. 200 (75 mm)<br />

<strong>Clay</strong>: < 5 mm or 2 mm<br />

2 mm clay definition most<br />

common<br />

20<br />

For this soil:<br />

0<br />

100<br />

Gravel<br />

10<br />

Sand Fines <strong>Clay</strong><br />

1 0.1 0.01 0.001<br />

Particle Size (mm)<br />

0.0001<br />

Gravel = 11%<br />

Sand = 55%<br />

Fines = 34%<br />

<strong>Clay</strong> = 20%


Gravel Content<br />

Lab data<br />

suggest that<br />

gravel<br />

content can<br />

be as much<br />

as 50%.<br />

Data from Shakoor and Cook<br />

Practical<br />

upper bound<br />

20-25%.


Gravel Content<br />

Lab data<br />

suggest that<br />

gravel<br />

content can<br />

be as much<br />

as 60%.<br />

Data from Shelly and Daniel<br />

Practical<br />

upper bound<br />

20-25%.


Fines (P200)<br />

Fines consist<br />

of silt and clay.<br />

Soil with 50%<br />

fines can be<br />

50% silt or<br />

50% clay<br />

(probably in<br />

between).<br />

Data from Benson et al. (1994)<br />

Practical lower<br />

bound 30%.


2 micron <strong>Clay</strong> Content<br />

Better<br />

correspondence<br />

between K and<br />

clay content.<br />

Data from Benson et al. (1994)<br />

Practical lower<br />

bound 15%.


Atterberg Limits and Hydraulic Conductivity<br />

Data from Benson et al. (1994) Data from Benson et al. (1994)<br />

Greater clay fraction and/or more active clay<br />

mineral yields lower K.<br />

Reasonable lower bounds: LL > 20 and PI > 10.


Recommended Minimum Properties<br />

<strong>for</strong> Liner Soils<br />

Gravel Content < 20%<br />

Fines Content > 30%<br />

<strong>Clay</strong> Content (2 mm) > 15%<br />

Liquid Limit > 20<br />

Plasticity Index > 10<br />

Soils meeting these criteria will classify as CL,<br />

CH, SC, SC-CL, or SC-CH. Not all are ‘clays.’<br />

For more detail: Benson, C., Zhai, H., and Wang, X. (1994), Estimating the Hydraulic Conductivity of <strong>Compacted</strong> <strong>Clay</strong> Liners, J. of Geotech. Eng., ASCE, 120(2), 366-387.


Hydraulic Conductivity (cm /s)<br />

Previous recommendations do NOT apply <strong>to</strong> soil-ben<strong>to</strong>nite<br />

mixtures. Cus<strong>to</strong>m-design <strong>for</strong> base soil.<br />

10 -4<br />

Soil-Ben<strong>to</strong>nite Mixtures<br />

6.2% = Compaction<br />

W ater Content<br />

Dry of Optimum<br />

W et of Optimum<br />

Add various ben<strong>to</strong>nite<br />

contents <strong>to</strong> soil and<br />

compact specimens<br />

<strong>for</strong> hydraulic<br />

conductivity testing<br />

10 -5<br />

10 -6<br />

10 -3 0 1 2 3 4 5 6<br />

17.3% 5.4%<br />

Determine ben<strong>to</strong>nite<br />

content <strong>to</strong> achieve<br />

target hydraulic<br />

conductivity.<br />

10 -7<br />

10 -8<br />

13.9%<br />

Ben<strong>to</strong>nite Content (%)<br />

13.1%<br />

14.7%<br />

Add 1-2% extra <strong>for</strong><br />

additional safety<br />

margin.


Conditioning and Placement<br />

• Compaction control – water content and<br />

dry unit weight<br />

• Water content tempering<br />

• Compaction methods & control


Compaction Curve<br />

Modified<br />

Proc<strong>to</strong>r<br />

Zero Air<br />

Voids<br />

ASTM<br />

Standards:<br />

Dry Unit Weight<br />

Max. Dry Unit<br />

Weight, g dm<br />

Standard<br />

Proc<strong>to</strong>r<br />

Lab Data<br />

Line of<br />

Optimums<br />

D 698 –<br />

standard<br />

Proc<strong>to</strong>r<br />

D 1557 –<br />

modified<br />

Proc<strong>to</strong>r<br />

Optimum Water<br />

Content, w opt<br />

Compaction Water Content


Hydraulic Conductivity Curve<br />

Hydraulic Conductivity<br />

Optimum Water<br />

Content, w opt<br />

Lab Data<br />

Compaction Water Content<br />

Hydraulic<br />

conductivity<br />

greatly affected by<br />

water content.<br />

Higher K occurs <strong>for</strong><br />

compaction dry of<br />

optimum water<br />

content.<br />

Low K occurs <strong>for</strong><br />

compaction wet of<br />

optimum water<br />

content.


Compaction<br />

Conditions<br />

Hydraulic conductivity affected<br />

by water content and<br />

compactive ef<strong>for</strong>t.<br />

Key <strong>to</strong> low K is compaction<br />

wet of optimum water content<br />

<strong>for</strong> any compactive ef<strong>for</strong>t.<br />

Optimum water content varies<br />

with compaction energy; field<br />

energy ambiguous.<br />

Compact wet of line of<br />

optimums.<br />

Data from Mitchell et al. (1965)<br />

line of<br />

optimums


Effect of Water Content and Compactive Ef<strong>for</strong>t on<br />

Remolding of Clods and Hydraulic Conductivity of <strong>Clay</strong><br />

A<br />

Highly Plastic Beaumont <strong>Clay</strong><br />

w o = 17% <strong>for</strong> Std. Proc<strong>to</strong>r<br />

w o = 10% <strong>for</strong> Mod. Proc<strong>to</strong>r<br />

Pho<strong>to</strong>graph: specimen<br />

compacted with standard<br />

Proc<strong>to</strong>r energy (ASTM D 698)<br />

at w = 12% (5% dry of<br />

optimum)<br />

Large interclod pores are<br />

readily visible. K ~ 10 -4 cm/s


Specimen compacted with<br />

standard Proc<strong>to</strong>r energy<br />

(ASTM D 698) at w = 16% (1%<br />

dry of optimum)<br />

Large interclod pores are still<br />

visible, but clay is visible<br />

softer and more remolding is<br />

apparent<br />

K ~ 10 -5 cm/s<br />

B


Specimen compacted with<br />

standard Proc<strong>to</strong>r energy<br />

(ASTM D 698) at w = 20% (3%<br />

wet of optimum)<br />

Only micro-scale pores exist.<br />

Clods fully remolded and<br />

interclod voids are<br />

eliminated.<br />

K ~ 10 -9 cm/s<br />

C


Influence of Compactive Ef<strong>for</strong>t<br />

Standard Proc<strong>to</strong>r<br />

w = 16%, w opt = 17%<br />

K ~ 10 -5 cm/s<br />

Modified Proc<strong>to</strong>r<br />

w = 16%, w opt = 10%<br />

K ~ 10 -9 cm/s<br />

B<br />

D


Dry Unit Weight<br />

Ways <strong>to</strong> Cross the Line of Optimums<br />

D<br />

Zero Air<br />

Voids<br />

MP<br />

A<br />

SP<br />

B<br />

C<br />

Line of<br />

Optimums<br />

Compaction Water Content<br />

For more detail: Benson, C. and Daniel, D. (1990), Influence of Clods on the Hydraulic Conductivity of <strong>Compacted</strong> <strong>Clay</strong>, J. of Geotech. Eng., ASCE, 116(8), 1231-1248..


Compaction Specifications<br />

Traditional Modern


4-Step Procedure: Daniel & Benson (1990)<br />

For more in<strong>for</strong>mation: Daniel, D. and Benson, C. (1990), Water Content-Density Criteria <strong>for</strong> <strong>Compacted</strong> Soil Liners, J. of Geotech. Eng., ASCE, 116(12), 1811-1830.


Example: upper bound normally placed on<br />

water content <strong>to</strong> ensure adequate shear<br />

strength and trafficability.<br />

Leroueil et al. (J. of Geotech. Engr., 1992)<br />

Undrained<br />

shear<br />

strength<br />

decreases<br />

as water<br />

content<br />

increases.


Clod Size<br />

Larger<br />

(< 19 mm)<br />

clods<br />

Smaller (< 4.8<br />

mm) clods<br />

Sensitivity <strong>to</strong> compaction water content is reduced if clod size is<br />

reduced. Smaller clods more readily hydrated and remolded.<br />

Benson, C. and Daniel, D. (1990), Influence of Clods on the Hydraulic Conductivity of <strong>Compacted</strong> <strong>Clay</strong>, J. of Geotech. Eng., ASCE, 116(8), 1231-1248.


Clods dumped from scraper or dump truck can be very<br />

large, and should be reduced in size (< 50 mm).


Agricultural disk may not be<br />

effective with stiffer clays.


Hydraulically<br />

actuated disk is<br />

more effective.


Road Reclaimer – good <strong>for</strong> dry<br />

clays & clays<strong>to</strong>nes


Carbide tipped teeth rapidly crush clods


Water Content Adjustment<br />

Modest adjustments<br />

(


Hydraulic Conductivity (cm/s)<br />

Swell (mm)<br />

Tempering Time<br />

Hydraulic Conductivity<br />

Swell<br />

15<br />

10<br />

Sufficient<br />

“tempering”<br />

(hydration) time<br />

needed <strong>to</strong><br />

penetrate and<br />

soften clods.<br />

10 -6 0<br />

10 -7<br />

10 -8<br />

0 10 20 30 40 50<br />

Hydration Time (hours)<br />

5<br />

24 hr tempering<br />

good rule of<br />

thumb.<br />

Add water, blend,<br />

s<strong>to</strong>ckpile/temper,<br />

blend again<br />

Benson, C., Gunter, J., Boutwell, G., Trautwein, S., and Berzanskis, P. (1997), Comparison of Four Methods <strong>to</strong> Assess Hydraulic Conductivity, J. of Geotech. and Geoenvironmental Eng., ASCE, 123(10), 929-937.


<strong>Clay</strong> with water content that is <strong>to</strong>o low <strong>for</strong> compaction.<br />

Note remnant clods and interclod pores. Compac<strong>to</strong>r<br />

footprints are not noticeable.


<strong>Clay</strong> at<br />

appropriate<br />

water content<br />

<strong>for</strong> compaction.<br />

Note remolding<br />

and penetration<br />

of compac<strong>to</strong>r<br />

feet.


Compacting clay <strong>for</strong> landfill cell. Wet and soft clay makes <strong>for</strong><br />

clay liners with very low hydraulic conductivity.


Compac<strong>to</strong>rs<br />

Data from Mitchell et al. (1965)<br />

Smooth Drum<br />

Conventional “Sheepsfoot”<br />

Partially-penetrating<br />

pad foot<br />

Fully-penetrating<br />

tamping foot<br />

Kneading action yields lower K…more<br />

effective in remolding clods.


Compac<strong>to</strong>r Type – UW Database<br />

Kneading<br />

Static<br />

In terms of<br />

‘average’<br />

conditions, UW<br />

field data in good<br />

agreement with<br />

data from<br />

Mitchell et al.<br />

(1965).


Compac<strong>to</strong>r Weight<br />

1 <strong>to</strong>n ~ 10 kN<br />

UW database<br />

suggest that<br />

heavier<br />

compac<strong>to</strong>rs yield<br />

lower K,<br />

although not<br />

particularly<br />

important <strong>for</strong><br />

weight > 20 <strong>to</strong>ns.


Tamping foot compac<strong>to</strong>r (CAT 815B)


Tamping Feet


Tow-behind tamping foot compac<strong>to</strong>r


Traditional Sheepsfoot


Protection of the Barrier<br />

Frost Damage:<br />

Freezing causes:<br />

- <strong>for</strong>mation of ice lenses:<br />

cracking<br />

- <strong>for</strong>mation of desiccation cracks<br />

as water moves <strong>to</strong> freezing front<br />

- cracking that causes increases<br />

in hydraulic conductivity<br />

Protect the clay barrier<br />

with insulation<br />

(synthetic or burial).


Cracks


Hydraulic Conductivity (cm/sec)<br />

How much does the hydraulic conductivity<br />

increase?<br />

10 -5 0 2 4 6 8 10<br />

At least 10 X<br />

10 -6<br />

Typically 100 <strong>to</strong><br />

1000 X<br />

Occasionally<br />

10,000 X<br />

10 -7<br />

10 -8<br />

10 -9<br />

Blue - Labora<strong>to</strong>ry ASTM D 6035<br />

Red - Field<br />

Number of Freeze-Thaw Cycles<br />

Benson, C., Abichou, T., Olson, M., and Bosscher, P. (1995), Winter Effects on the Hydraulic Conductivity of <strong>Compacted</strong> <strong>Clay</strong>, J. of Geotech. Eng., ASCE,<br />

121(1), 69-79.


Hydraulic Conductivity (cm/s)<br />

Desiccation Damage<br />

Drying of compacted clay barriers causes desiccation<br />

cracks <strong>to</strong> <strong>for</strong>m, increasing the hydraulic conductivity.<br />

10 -4 10 15 20 25 30 35<br />

w opt<br />

Standard Proc<strong>to</strong>r<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

# drying cycles<br />

N = 0<br />

N = 1<br />

N = 2<br />

N = 3<br />

N = 4<br />

N = 5<br />

10 -9<br />

Compaction Water Content (%)<br />

Large-scale cracks may <strong>for</strong>m, as in this clay barrier in southern<br />

Wisconsin five years after construction.<br />

Albrecht, B. and Benson, C. (2001), Effect of Desiccation on <strong>Compacted</strong> Natural <strong>Clay</strong>s, J. of Geotech. and Geoenvironmental Eng., 127(1), 67-76.


Is the increase permanent?<br />

Damage due <strong>to</strong><br />

frost or<br />

desiccation<br />

permanent.<br />

Does not<br />

“heal,” but<br />

stress will close<br />

cracks.<br />

Othman, M. and Benson, C. (1994), Effect of Freeze-Thaw on the Hydraulic Conductivity and Morphology of <strong>Compacted</strong> <strong>Clay</strong>, Canadian Geotech. J., 30(2), 236-246.


Three Principles <strong>for</strong><br />

Success<br />

• Selecting soil with suitable properties<br />

• Processing and compaction conditions<br />

that yield low hydraulic conductivity (K)<br />

• Protection of the constructed barrier


EXTRAS


Summary Remarks<br />

• Identified index properties <strong>for</strong> suitable clay<br />

liner soil.<br />

• Suitable soils may not classify as ‘clay.’<br />

• Hydraulic conductivity greatly affected by<br />

compaction condition (water content and dry<br />

unit weight).<br />

• Compact wet of the line of optimums <strong>to</strong><br />

achieve low hydraulic conductivity.


Consider Soil from PSD Slide<br />

Gravel Content < 20% 11% OK<br />

Fines Content > 30% 34% OK<br />

<strong>Clay</strong> Content (2 mm) > 15% 20% OK<br />

Liquid Limit > 20 28 OK<br />

Plasticity Index > 10 14 OK<br />

USCS Classification = SC<br />

K = 2.9x10 -8 <strong>to</strong> 1.1x10 -7 cm/s


Mineralogy – Atterberg Limits<br />

LL = liquid limit<br />

PL = plastic limit<br />

PI = LL – PL = plasticity index<br />

C = clay<br />

M = silt<br />

O = organic<br />

L = low plasticity<br />

H = high plasticity


Effect of <strong>Clay</strong> Content on Atterberg Limits<br />

LL and PI - affected by clay type and clay content<br />

Soil from PSD slide had 20% clay, LL = 28, and PI = 14


Subgrade Preparation<br />

Subgrade should be firm and moist. Dry subgrades will desiccate clay liners from<br />

below and wet/soft subgrades will impede compaction.<br />

Compaction near optimum water content and dry unit weight is appropriate (w opt<br />

± 2%, >0.95g dm ).<br />

Provide an outlet <strong>for</strong> runoff or a sump <strong>to</strong> facilitate construction after rainfall.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!