10.10.2014 Views

Dissipative Descent: Rocking and Rolling down an incline

Dissipative Descent: Rocking and Rolling down an incline

Dissipative Descent: Rocking and Rolling down an incline

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

cs <strong><strong>an</strong>d</strong><br />

BC<br />

<strong>Dissipative</strong> <strong>Descent</strong>: <strong>Rocking</strong> <strong><strong>an</strong>d</strong><br />

ommerfeld Rock’n’roll Experiments Contact Conclusions<br />

<strong>Rolling</strong> <strong>down</strong> <strong>an</strong> <strong>incline</strong><br />

ore<br />

Bill Young, Neil Balmforth,<br />

John Bush & David Vener<br />

hn<br />

<strong><strong>an</strong>d</strong>


The snail ball from “Gr<strong><strong>an</strong>d</strong> Illusions” - $50


“A small metallic gold ball just over 2cm in diameter ... the ball does roll, but does so<br />

incredibly slowly. To <strong>an</strong> audience it seems baffling ... inside the ball, which is actually<br />

hollow, there is a viscous liquid <strong><strong>an</strong>d</strong> a smaller ball which is heavy... it is the smaller heavier<br />

ball which determines the pace <strong><strong>an</strong>d</strong> this is slow because of the viscous liquid.”


The Snail Cylinder from UBC - $10,000


le Oce<strong>an</strong>ographic Institution, (Received for ?? <strong><strong>an</strong>d</strong> assist<strong>an</strong>ce in revised in building form ??)<br />

2 the snail cylinder.<br />

Department of Applied Mathema<br />

The state of the snail cylinder is specified by<br />

3 Scripps Institution of Oce<strong>an</strong>ography, La Jolla<br />

ppendix A. ɛ(t) Derivation , χ(t) of , theΩ equations a (t) , <strong><strong>an</strong>d</strong> of motion Ω b (t)<br />

(Received ?? <strong><strong>an</strong>d</strong> in revised fo<br />

A.1. Geometry<br />

e geometry is shown in Figure 1. We use a Cartesi<strong>an</strong> coordinate system attac<br />

The flow in the gap is<br />

l<strong>an</strong>e which is <strong>incline</strong>d at <strong>an</strong> <strong>an</strong>gle α to the –g<br />

Ω b<br />

ɛ(t)<br />

horizontal;<br />

, χ(t)<br />

the unit vector î points<br />

<strong>an</strong>alyzed , Ωwith a (t) , the <strong>an</strong><br />

Ω a<br />

α<br />

lubrication approximation.<br />

<strong>Rocking</strong> <strong>Rocking</strong> b& −rolling<br />

a = δ& ≪rolling<br />

a<br />

φ (<br />

B χ<br />

g = −g sin α î − cos α ˆk<br />

)<br />

arr<strong>an</strong>gement. arr<strong>an</strong>gement. In total, In the total, apparatus the apparatus has . mass, has mass,<br />

A<br />

e slope <strong><strong>an</strong>d</strong> the unit normal ˆk is perpendicular to the pl<strong>an</strong>e. The unit vecto<br />

o the page in Figure 1, <strong><strong>an</strong>d</strong> clockwise rotations are positive. The position ve<br />

= Xî + Zˆk <strong><strong>an</strong>d</strong> the gravitational acceleration is −g, where<br />

<strong>Rocking</strong> & rolling 3<br />

. In total, the apparatus has mass,<br />

φ = α + χ<br />

M ≡ m<br />

this (X, Z)-coordinate system, the two cylinders have centres a<br />

M<br />

+ m<br />

≡ b<br />

at m<br />

+ m<br />

a the + f .<br />

mpositions,<br />

b + m f .<br />

î + Z aˆk <strong><strong>an</strong>d</strong> Xb = X<br />

M O<br />

b î +<br />

≡<br />

Z<br />

m<br />

The reduced bˆk, mass a + respectively.<br />

m<br />

of b + m<br />

the inner f . The cylinder requirement is m that the outer cy<br />

lls without slipping <strong>down</strong><br />

The<br />

the<br />

reduced<br />

pl<strong>an</strong>e dictates<br />

mass of<br />

that<br />

the inner cylinder ′ a ≡ m<br />

is a −<br />

m ′ m<br />

a ≡ ′′ (2.1<br />

a , wh<br />

m a<br />

mass of the inner displaced<br />

displaced cylinder massis of<br />

mass m fluid. ′<br />

a ≡of mfluid.<br />

a − m ′′<br />

a , where m ′′<br />

a ≡ πa 2 Lρ is th<br />

ss of fluid.<br />

The mathematical ˙ formulation of the model consists of equa<br />

The C mathematical X b = bΩ b , formulation Z b = b .<br />

positions <strong><strong>an</strong>d</strong> rotations of the cylinders, plus of the model Navier-Stokes consis<br />

ematical formulation<br />

ometry implies that the positions of the model<br />

Appendixcenter A summarizes <strong><strong>an</strong>d</strong> of the α rotations consists<br />

inner the cylinder full of of the equations<br />

formulation iscylinders, of motion<br />

given byof plus the problem. the forNav<br />

the<br />

d rotations of the<br />

formulation<br />

cylinders, Appendix in<br />

plus<br />

all Aits summarizes the<br />

glory,<br />

Navier-Stokes<br />

but ( introduce the full equations<br />

the formulation ) Stokes approxima<br />

the of fluid the<br />

summarizes the part full Xformulation of a = the formulation Xdynamics. b + ɛ, in<br />

of<br />

all However, ɛ ≡the itsɛ<br />

glory,<br />

problem. sin because χ î but + cos the We<br />

introduce χarr<strong>an</strong>gement ˆk do . not<br />

the<br />

attack<br />

Stokes as a who thi<br />

a<br />

in all its glory, <strong>incline</strong>, but introduce some subtlety the Stokes is required approximation because oneto c<strong>an</strong> simply impose the the fluid ap<br />

k^<br />

^


th<strong>an</strong>k Keith Bradley of the Coastal Research Laboratory, Woods<br />

Institution, for assist<strong>an</strong>ce in building the snail cylinder.<br />

are d’Alembert forces arising because the position of the center of the outer cyl<br />

which the coordinates ɛ <strong><strong>an</strong>d</strong> χ are<br />

2.1. The equations of The<br />

referred,<br />

equations<br />

does not lieof in <strong>an</strong><br />

motion<br />

inertial frame. The<br />

of the inner The cylinder configuration followsofrom<br />

the apparatus is specified by four independent variab<br />

Ω a (t) <strong><strong>an</strong>d</strong> Ω b (t). The dynamical considerations of Appendix A indicate th<br />

–g<br />

1<br />

of the inner cylinder is determined 2 m aa 2 ˙Ωa by = theT a equations , of motion,<br />

α<br />

( )<br />

where T<br />

m a + m′′ 2<br />

a is the fluid torque.<br />

a<br />

Assuming<br />

(ɛ¨χ + 2 ˙ɛ ˙χ) = f χ + m ′ a<br />

m g sin φ − m′ a b ˙Ω b cos χ ,<br />

B χ<br />

that the outer cylinder f<br />

rolls without sliding <strong>down</strong> the <strong>incline</strong>d p<br />

A<br />

equation of motion of the outer cylinder c<strong>an</strong> be similarly broken <strong>down</strong>. Imp<br />

those equations contain<br />

O<br />

the<br />

(<br />

forces at<br />

)<br />

m a + m′′ 2 the contact point with the pl<strong>an</strong>e, which<br />

a<br />

eliminate from the problem algebraically (¨ɛ −given ɛ ˙χ 2 ) = that f ɛ −the m ′<br />

m<br />

ag rotation cos φ − rate, m ′ ab ˙Ω b Ωsin b , also χ ,<br />

C<br />

4 N. J. Balmforth, f J. W. M. Bush, D. Vener <strong><strong>an</strong>d</strong> W. R. Youn<br />

the dist<strong>an</strong>ce rolled. This leaves a single equation for Ω b (t), as described in App<br />

α<br />

where fAlternatively, χ <strong><strong>an</strong>d</strong> f ɛ represent the totalthe <strong>an</strong>gular fluidmomentum forces in bal<strong>an</strong>ce, the direction of the line<br />

perpendicular<br />

[<br />

to that direction, respectively.<br />

(<br />

The)<br />

second terms on the]<br />

rig<br />

d 1<br />

(2.3) denote the Archimede<strong>an</strong> buoy<strong>an</strong>cy force on the inner cylinder, <strong><strong>an</strong>d</strong><br />

dt<br />

2 m aa 2 Ω a + (M + m b )b 2 Ω b + m a + m′′ 2<br />

a<br />

ɛ 2 ˙χ + m ′ a<br />

m b d f dt (ɛ sin χ) are d’Alembert forces arising because the position of the center of the out<br />

which the coordinates ɛ <strong><strong>an</strong>d</strong> χ are referred,<br />

+m ′ does not lie in <strong>an</strong> inertial frame<br />

ab ˙Ω b ɛ cos χ ≈ Mgb sin α + m ′ agɛ sin φ ,<br />

Recall: of the inner cylinder follows from<br />

rivation of the equations of motion<br />

Ω b<br />

Ω a<br />

φ<br />

A.1. Geometry<br />

wn in Figure 1. We use a Cartesi<strong>an</strong> coordinate system attached to<br />

ined at <strong>an</strong> <strong>an</strong>gle α to the horizontal; the unit vector î points <strong>down</strong><br />

nit normal ˆk is perpendicular to the pl<strong>an</strong>e. The unit vector ĵ is<br />

ure 1, <strong><strong>an</strong>d</strong> clockwise rotations are positive. The position vector is<br />

he gravitational acceleration is −g, where<br />

(<br />

g = −g sin α î − cos α ˆk<br />

)<br />

. (A 1)<br />

k^<br />

^<br />

inate system, the two cylinders have centres at the positions, X a =<br />

= X b î + Z bˆk, respectively. The requirement that the outer cylinder<br />

g <strong>down</strong> the pl<strong>an</strong>e dictates that<br />

X˙<br />

b = bΩ b , Z b = b . (A 2)<br />

at the center of the inner cylinder is given by<br />

(<br />

)<br />

X a = X b + ɛ, ɛ ≡ ɛ sin χ î + cos χ ˆk . (A 3)<br />

where φ = α+χ, which provides <strong>an</strong> equivalent equation. Though (2.2)-(2.4)<br />

The only<br />

final relation (2.5) contains our 1first 2 m approximation<br />

aa 2 ˙Ωa = T<br />

approximation<br />

a ,<br />

by neglecting the int<br />

(so far)<br />

momentum of the fluid in the frame of its centre of mass.<br />

As the Stokes approximation describes the flow in the <strong>an</strong>nular gap, the fl<br />

etween the centers A <strong><strong>an</strong>d</strong> B is denoted by ɛ(t), <strong><strong>an</strong>d</strong> χ(t) is the <strong>an</strong>gle<br />

centers <strong><strong>an</strong>d</strong> the Z-axis. We denote the <strong>an</strong>gle between the line of<br />

ction of gravity by φ(t) ≡ α + χ(t).<br />

s of the fluid is<br />

∫<br />

where T is the fluid torque.<br />

The Assuming lubrication a state approximation that<br />

of inst<strong>an</strong>t<strong>an</strong>eous<br />

the outer the cylinder<br />

force gap bal<strong>an</strong>ce. expresses rolls<br />

The<br />

without the forces, hydrodynamic sliding<br />

f ɛ <strong><strong>an</strong>d</strong> f<br />

<strong>down</strong> χ , <strong><strong>an</strong>d</strong><br />

the<br />

torque,<br />

incli<br />

T<br />

equation forces computed <strong><strong>an</strong>d</strong> oftorques as<br />

motionin functions<br />

of terms theof of<br />

outer the the four inst<strong>an</strong>t<strong>an</strong>eous geometrical arr<strong>an</strong>gement (i.e.<br />

cylinder independent c<strong>an</strong> variables. be similarly broken <strong>down</strong><br />

those equations contain the forces at the contact point with the pl<strong>an</strong>e,<br />

velocities of the cylinder surfaces (given by Ω a , Ω b , ˙ɛ <strong><strong>an</strong>d</strong> ˙χ). We do this v


inner centres cylinder of (i.e., the with on cylinders κ point ≡ Aare in not figure moving, 1). The <strong><strong>an</strong>d</strong> <strong>an</strong>gle position θ is measured a polar c<br />

ρνu ɛ/δ. zz = The a<br />

nterclockwise at the inner direction cylinder with(i.e., θ = −1 result p θ , (Bp 6) z = is0,<br />

obtained 1<br />

on 0 running point Aalong in figure a u using<br />

θ h(θ) + w the z = 0 integrals: .<br />

∮<br />

the∮<br />

δ − ɛ cos θ<br />

dθ<br />

line 1). The of centers, <strong>an</strong>gle through Lubrication theThese counterclockwise narrowest must<br />

where in<br />

bethe solved<br />

δ ≡point gap:<br />

subject<br />

b −direction use of a the to<br />

≪ the<br />

a. gap. velocity<br />

with We c. Then of then θ m.<br />

boundary<br />

= the frame 0use gap running<br />

conditions<br />

a width of ‘gap the along coordinate h(θ) fluid.<br />

theis the<br />

cylind<br />

1 − κ cos θ = 2π<br />

√ ,<br />

dθ<br />

app lin<br />

In our new frame of reference, the fluid flow 1 − κ<br />

2 (1 − κ cos θ)<br />

is dictated by the motions 2 = (1<br />

of<br />

passing cylinders. through soThese that <strong><strong>an</strong>d</strong> ~ the narrowest point of the gap. Then the gap wid<br />

b#<br />

motions<br />

b<br />

(z, θ) c<strong>an</strong> h(θ) = be (0, = divided 0) δ −is into ɛthe cos the θ point , rotations, O ˜Ω in a = Figure Ω a − ˙φ <strong><strong>an</strong>d</strong> 1. ˜Ω b =<br />

∮<br />

<strong><strong>an</strong>d</strong> a “squeeze<br />

To a # ~ flow” which the cylinder movedθ<br />

towards each other with a s<br />

a leading r=a+z order in δ/a, h(θ) the= lubrication δ − ɛ cos θ , equation<br />

≡ b − asqueezing ≪ a. We outthen fluid usefrom a ‘gap the narrowest coordinate’, part of0 the zgap. To h(θ), easedefined the constru by<br />

(1 − κ cos θ) 3 = π(2 + κ2 )<br />

(1 − κ 2 ) . 5/2<br />

the fluid forces <strong><strong>an</strong>d</strong> torques, we split the lubrication problem into these two pa<br />

d ! /dt<br />

d ! /dt<br />

(z, θ) where = (0, 0) δ ≡is bthe Returning − apoint P<br />

≪ a. to OWe (Bin 5), then Figure <strong><strong>an</strong>d</strong>use eliminating 1. a ‘gapq ρνu<br />

coordinate’, 0 z h<br />

zz = a −1 with (B 6), we obtain<br />

construct the full solution via linear superposition. p θ , p z = 0,<br />

adingso order that Bin (z, δ/a, θ) " = the (0, lubrication 0) is the point equations O in Figure take the1.<br />

form<br />

[ ( ) ]<br />

! A O B.1. The p<br />

To leading order in δ/a, the R<br />

θ (θ) rotational = 12a2 ρν<br />

flow, u<br />

lubrication equations take the fo<br />

~<br />

b# ~<br />

b<br />

ρνu<br />

a # zz = a −1 1<br />

R (z, θ)<br />

h 3 (˜Ω a + ˜Ω h 1 − κ<br />

2<br />

b )<br />

2 − 2 + κ 2 δ<br />

To leading order, the boundary p θ , conditions p z = 0, are<br />

a<br />

These must be solved subject to the velocity bound<br />

In our new frame<br />

ρνu zz = a −1 of reference, a u θ + w z = 0 .<br />

u<br />

the fluid 1<br />

p θ , p z = 0,<br />

d ! /dt<br />

a u flow is<br />

R (0, θ) = a˜Ω a , w R B.2. The<br />

(0, θ) = 0 , <strong><strong>an</strong>d</strong> u R squeeze flow, u<br />

(h, θ) = a˜Ω b , w S R (z, θ)<br />

(h,<br />

θ +<br />

θ) =<br />

w0 . z =<br />

ust be solvedcylinders. subject The boundary toThese the condition velocity motions are boundary c<strong>an</strong> beconditions divided into on the cyli rot<br />

The solution is<br />

r newThese framemust <strong><strong>an</strong>d</strong> of reference, be a u S solved “squeeze (0, θ) = the wsubject S (0, ( fluid flow” θ) = to flow in thewhich isvelocity dictated theboundary by cylinder motions conditio move<br />

rs. The These rotational<br />

Inmotions oursqueezing part:<br />

newc<strong>an</strong> frame be u R (z, divided θ) = 1<br />

out of the reference, into −<br />

fluid z ) 0 , <strong><strong>an</strong>d</strong><br />

the a˜Ω<br />

from the rotations, fluid the narrowest flow ˜Ω a = isΩdictated a −part ˙φ <strong><strong>an</strong>d</strong>of<br />

by ˜Ω a + z u S (h, θ) = ˙ɛ sin θ , w S (h,<br />

h h a˜Ω b −<br />

pR θ<br />

z(h − z) .<br />

from which it follows that<br />

2aρν b<br />

“squeeze cylinders. flow”<br />

the<br />

in These fluid<br />

which motions forces<br />

the cylinder c<strong>an</strong> <strong><strong>an</strong>d</strong>be torques, divided move towards<br />

we intosplit theeach rotations, the<br />

other<br />

lubricatio<br />

with ˜Ω a =<br />

ng The out squeeze<br />

<strong><strong>an</strong>d</strong><br />

the<br />

a<br />

fluid part:<br />

“squeeze<br />

from the<br />

construct flow”<br />

narrowest u S (z, θ) = z<br />

the in full which<br />

part ˙ɛ sin θ<br />

solution the<br />

of −<br />

cylinder<br />

the pS θ<br />

h gap.<br />

via 2aρνlinear z(h − move z) To ease<br />

superposition. towards <strong><strong>an</strong>d</strong> the pS cons (θ) =<br />

eac<br />

d forces<br />

squeezing<br />

<strong><strong>an</strong>d</strong> torques,<br />

out the<br />

we<br />

fluid<br />

split<br />

from<br />

the lubrication<br />

the narrowest<br />

problem<br />

part of<br />

into<br />

the<br />

these<br />

gap.<br />

two<br />

B.3. Forces <strong><strong>an</strong>d</strong> torques To<br />

The ct the pressure the<br />

full<br />

fluid<br />

solution follows forces<br />

via<br />

<strong><strong>an</strong>d</strong><br />

linear<br />

torques,<br />

superposition.<br />

Because from global the hydrodynamic mass conservation. we split forceB.1. Integration is the dominated lubrication Theround rotational by the the problem lubrication inner flowi<br />

cylinder<br />

construct<br />

gives the forces ∮<br />

the full<br />

<strong><strong>an</strong>d</strong> torques.<br />

B.1. solution The rotational via linear flow, superposition.<br />

u R (z, θ)<br />

To leading order, the boundary conditions are<br />

F a = −aL<br />

p(θ)(ˆɛ cos θ + ˆχ sin θ) dθ ≡ f ɛˆɛ + f


total <strong>an</strong>gular momentum dt bal<strong>an</strong>ce, f<br />

2.1. The equations of motion m f dt<br />

m a a 2 Ω a + (M + m(<br />

b )b 2 Ω )<br />

]<br />

The configuration(<br />

b + m a + m′′ 2<br />

a<br />

ɛ<br />

of<br />

M + m b )b 2 Ω b + m a + m′′ the2<br />

apparatus )<br />

2 ˙χ + m ′<br />

a<br />

ɛ ˙χ + m ′ a<br />

m b d a<br />

m is specified b d +m ′ ab ˙Ω b ɛ cos χ ≈ Mgb sin α + m<br />

(ɛ sin χ)<br />

by four independent<br />

f dt (ɛ sin χ) +m ′ ab ˙Ω<br />

variables, ɛ(t), χ(t),<br />

Ω b ɛ cos χ ≈ Mgb sin α + m ′ a (t) <strong><strong>an</strong>d</strong> Ω b (t). The agɛ sin φ ,<br />

m<br />

dynamical considerations of Appendix A indicate that the position<br />

a + m′′ 2 f where φ = α+χ, dt which provides <strong>an</strong> equivalent equation. Though<br />

a<br />

(¨ɛ final<br />

The − ɛrelation ˙χ 2 ) full = f ɛ<br />

(2.5)<br />

Monty − m ′ contains<br />

of the inner cylinder where is φ determined = m<br />

ag cos φ − m our ′ first<br />

ab ˙Ω b sinapproximation χ , (2.3) by neglect<br />

+m ′ ab ˙Ω b f α+χ, ɛ cosmomentum χwhich ≈by Mgb theprovides sin equations ofα + m <strong>an</strong> fluid ′ agɛ of equivalent motion, sin the φ , frame equation. of(2.5)<br />

its centre Though of mass. (2.2)-(2.4)<br />

(<br />

+m ′ final<br />

ab ˙Ω relation )<br />

φ = α+χ, where which f χ provides <strong><strong>an</strong>d</strong> f ɛ represent <strong>an</strong> equivalent (2.5) contains<br />

b ɛ cos χ ≈ Mgb sin α + m ′ our first approximation by neglecting the int<br />

momentum of the fluid agɛ<br />

the<br />

sin<br />

frame<br />

φ ,<br />

of its centre<br />

(2.5)<br />

m a + m′′ 2 the equation. fluid As the forces Stokes<br />

Though in approximation the(2.2)-(2.4) directionare of describes<br />

a<br />

(ɛ¨χ + 2 ˙ɛ ˙χ) = f χ + m ′ a<br />

of mass.<br />

which provides <strong>an</strong> equivalent m<br />

As the equation. Stokes approximation Though (2.2)-(2.4) g sin describes are φ − exact, m′ a b ˙Ω<br />

exact, the line this<br />

the of flow centres the <strong><strong>an</strong>d</strong><strong>an</strong>nular<br />

elation perpendicular (2.5) contains to our that firstdirection, approximation<br />

arespectively. state of<br />

by<br />

inst<strong>an</strong>t<strong>an</strong>eous<br />

neglecting The second the<br />

force terms intrinsic<br />

bal<strong>an</strong>ce. on b cos <strong>an</strong>gular theThe χ right , forces, of (2.2) f ɛ (2.2) <strong><strong>an</strong>d</strong> <strong><strong>an</strong>d</strong>f χ , <strong><strong>an</strong>d</strong><br />

ntum of(2.3) the fluid denote in the frame Archimede<strong>an</strong> of f<br />

its centre buoy<strong>an</strong>cy computed<br />

of mass. force as functions the inner of the the cylinder, inst<strong>an</strong>t<strong>an</strong>eous flow this<br />

<strong><strong>an</strong>d</strong> the the <strong>an</strong>nular geometrical final terms gap, arr<strong>an</strong>ge the fl<br />

he ) contains Stokes areapproximation d’Alembert our first approximation ( aforces state describes arising of inst<strong>an</strong>t<strong>an</strong>eous the ) because velocities<br />

flow by neglecting the<br />

of<br />

force position <strong>an</strong>nular<br />

the the bal<strong>an</strong>ce.<br />

cylinder<br />

gap, of intrinsic the the<br />

surfaces<br />

The center fluid <strong>an</strong>gular forces, remains of (given thef ɛ outer by<br />

<strong><strong>an</strong>d</strong> in<br />

Ω<br />

fcylinder, a , Ω<br />

χ , <strong><strong>an</strong>d</strong> b , ˙ɛ <strong><strong>an</strong>d</strong><br />

torque, ˙χ). W<br />

T<br />

e fluid the frame ofcomputed its centre as of functions mass. of the inst<strong>an</strong>t<strong>an</strong>eous geometrical arr<strong>an</strong>gement (i.e.<br />

m<br />

pproximation describes velocities the a + m′′ 2<br />

of inst<strong>an</strong>t<strong>an</strong>eous which the coordinates force bal<strong>an</strong>ce. ɛ <strong><strong>an</strong>d</strong> The a χforces, are theory, referred, f<br />

as<br />

(¨ɛ − ɛ ˙χ<br />

flowof the thecylinder <strong>an</strong>nular 2 ɛ <strong><strong>an</strong>d</strong><br />

outlined does f<br />

) = f ɛ − χ , <strong><strong>an</strong>d</strong> notin m<br />

surfaces gap, the ′ torque, lieAppendix T<br />

m<br />

ag cos φ − m<br />

(given fluid remains ′ a inertial , c<strong>an</strong><br />

ab<br />

by Ω ˙Ω<br />

B,<br />

then<br />

because frame. be The ourrotation<br />

snail cylinder<br />

b sin χ , (2.3)<br />

ted as functions of the inner of the cylinder inst<strong>an</strong>t<strong>an</strong>eous follows f<br />

from geometrical<br />

gaps, although<br />

arr<strong>an</strong>gement<br />

more general<br />

(i.e.<br />

results<br />

ɛ <strong><strong>an</strong>d</strong> a , in<br />

exist<br />

Ωχ) b , <strong><strong>an</strong>d</strong><br />

(Finn & Cox 2002).<br />

˙ɛ <strong><strong>an</strong>d</strong> ˙χ). We do this v<br />

<strong>an</strong>eous ies of the force cylinder bal<strong>an</strong>ce. 4 surfaces theory, TheN. (given forces, J. asBalmforth, by outlined f ɛ Ω<strong><strong>an</strong>d</strong> a , Ωf b χ , in J. , W. Appendix M. torque, Bush, B, TD. a , because c<strong>an</strong> Vener then <strong><strong>an</strong>d</strong> our be<br />

where f W. snail R. cylinders Young have rela<br />

χ <strong><strong>an</strong>d</strong> f ɛ represent the fluid<br />

1forces in the direction of the line of centres <strong><strong>an</strong>d</strong><br />

ctions of the inst<strong>an</strong>t<strong>an</strong>eous gaps, although geometrical more arr<strong>an</strong>gement<br />

2 m ˙ɛ <strong><strong>an</strong>d</strong><br />

aa 2 ˙χ). We<br />

˙Ωa = T2.2. do<br />

general results (i.e. a , Lubrication<br />

this via lubrication<br />

approximation <strong><strong>an</strong>d</strong> (2.4) a reduced<br />

, as outlined Appendix B, because our snail cylinders have exist ɛ <strong><strong>an</strong>d</strong> relatively<br />

perpendicular (Finn χ) <strong><strong>an</strong>d</strong> & narrow Cox 2002).<br />

Alternatively, to that the direction, total <strong>an</strong>gular respectively. momentum The second bal<strong>an</strong>ce, terms on the right of (2.2) <strong><strong>an</strong>d</strong><br />

although ylinder (2.3) where surfaces more<br />

denote Tgeneral a is [(given theresults fluid Archimede<strong>an</strong> by torque. Ωexist a , Ω b<br />

(Finn<br />

In lubrication<br />

, buoy<strong>an</strong>cy ˙ɛ <strong><strong>an</strong>d</strong> & Cox ˙χ). force ( We 2002).<br />

approximation (δ ≡ (b − a) ≪ a), the fluid forces<br />

T<br />

do on this the inner ) via lubrication<br />

a , take the form (see Appendix cylinder, B), <strong><strong>an</strong>d</strong> the]<br />

final terms<br />

ed in Appendix d B, because our snail cylinders 2.2. Lubrication have relatively approximation narrow<strong><strong>an</strong>d</strong> a reduced model<br />

1<br />

ore general results dt<br />

2 m exist aa<br />

In 2 Ω<br />

lubrication (Finn a + (M<br />

&<br />

+<br />

Cox<br />

m<br />

approximation b )b<br />

2002).<br />

2 Ω b + m a + m′′ 2<br />

areAssuming d’Alembert that forces thearising outer cylinder because the rollsposition withoutof sliding<br />

a the<br />

ɛ<br />

(δm≡ f (b − 2 center <strong>down</strong><br />

˙χ + m<br />

of<br />

a) ≪ ′ aa), b<br />

the the d<br />

dt the (ɛ<br />

<strong>incline</strong>d outer sin fluid χ) cylinder, pl<strong>an</strong>e, the<br />

2.2. Lubrication approximation <strong><strong>an</strong>d</strong> a reduced model<br />

to<br />

which equation the coordinates of motion of ɛ <strong><strong>an</strong>d</strong> the χouter are referred, cylinderdoes c<strong>an</strong> not be similarly lie in <strong>an</strong> inertial brokenframe. <strong>down</strong>. The Import<strong>an</strong>tly, forces rotation <strong><strong>an</strong>d</strong> torqu<br />

rication<br />

of those approximation<br />

the inner equations (δ<br />

cylinder Tcontain ≡ (b −<br />

a , take follows the a) ≪<br />

from forces a), the<br />

form (see at the fluid<br />

Appendix contact forces <strong><strong>an</strong>d</strong> pointtorques, f ɛ =<br />

B), with the f − 12νam′′ a ˙κ<br />

χ , pl<strong>an</strong>e, f ɛ <strong><strong>an</strong>d</strong> δ 2 which (1 −one κ 2 ) c<strong>an</strong><br />

, 3/2<br />

e2.2. the Lubrication form eliminate (see Appendix from approximation the B), problem<strong><strong>an</strong>d</strong> algebraically a reduced<br />

+m<br />

given ′ model<br />

ab ˙Ω 1<br />

b ɛ<br />

that<br />

cos χ<br />

the<br />

≈ Mgb<br />

rotation<br />

sin α<br />

rate,<br />

+ m<br />

Ω<br />

proximation (δ ≡ (b − a) ≪ a), the fluid forces <strong><strong>an</strong>d</strong>ftorques, ɛ = − 12νam′′ f χ , fa<br />

˙κ<br />

′ b ,<br />

agɛ sin<br />

also<br />

φ ,<br />

dictates<br />

(2.5)<br />

the dist<strong>an</strong>ce rolled. This leaves a single 2<br />

where φ = α+χ, which provides m aaequation 2 ˙Ωa = T a for , Ω b (t), as described<br />

<strong>an</strong> equivalent equation. ɛ <strong><strong>an</strong>d</strong> in Appendix<br />

(see Appendix B),<br />

δ 2 Though (2.2)-(2.4)<br />

(1 − κ 2 ) , (2.4) A.<br />

f ɛ = − 12νam′′ a ˙κ<br />

f 3/2 are exact, this<br />

where Tfinal a is the relation fluid torque. (2.5) contains δ 2<br />

, χ = 12νam′′ a κ(Ω a + Ω b − 2 ˙χ)<br />

(1 −our κ 2 )<br />

3/2<br />

δ 2 (2.6)<br />

+ κ 2 ) √ 1 − κ 2<br />

<strong><strong>an</strong>d</strong><br />

first approximation by neglecting the intrinsic <strong>an</strong>gular<br />

Assuming momentum that<br />

f ɛ = − 12νam′′ the of the outer fluid cylinder<br />

a ˙κ<br />

therolls frame without of its centre sliding<br />

δ 2<br />

, f (2.6)<br />

(1 − κ 2 )<br />

3/2 χ = 12νam′′ of<strong>down</strong> mass.<br />

a κ(Ωthe a + <strong>incline</strong>d Ω b − 2 ˙χ) pl<strong>an</strong>e, the<br />

equation of Asmotion thef Stokes of the approximation outer cylinder describes c<strong>an</strong> be thesimilarly flow in<br />

δ 2 the broken <strong>an</strong>nular <strong>down</strong>.<br />

(2 + κ 2 ) √ χ = 12νam′′ a κ(Ω a + Ω b − 2 ˙χ)<br />

gap, Import<strong>an</strong>tly,<br />

the<br />

1 − κ 2 fluid remains in<br />

δ<br />

those equations a state ofcontain inst<strong>an</strong>t<strong>an</strong>eous the 2<br />

forces<br />

(2<br />

force<br />

+ κ<br />

at 2 ) √ T (2.7)<br />

bal<strong>an</strong>ce. the<br />

1 −<br />

contact<br />

κ 2 a = 12νam′′ a (1 − κ 2 )(Ω b − ˙χ) − (1 + 2κ 2 )(Ω a<br />

The forces, point with<br />

δ<br />

f ɛ <strong><strong>an</strong>d</strong> thef χ pl<strong>an</strong>e, , <strong><strong>an</strong>d</strong> torque, which 3(2 + κone T 2 ) √ a , c<strong>an</strong> 1 −<br />

then<br />

κ 2<br />

be<br />

eliminate computed from the <strong><strong>an</strong>d</strong><br />

f χ 12νam′′ asproblem a κ(Ω<br />

functions algebraically<br />

a + Ω<br />

of where<br />

b −<br />

the<br />

2 ˙χ)<br />

inst<strong>an</strong>t<strong>an</strong>eous given thatgeometrical the rotationarr<strong>an</strong>gement rate, Ω b , also (i.e. dictates ɛ <strong><strong>an</strong>d</strong> χ) <strong><strong>an</strong>d</strong><br />

the dist<strong>an</strong>ce velocities rolled.<br />

δ 2 of This the cylinder leaves<br />

(2 + κ 2 ) √ asurfaces single equation (2.7)<br />

1 −Tκ a 2 = 12νam′′ (given by afor (1Ω Ω κ 2 )(Ω b − − (1 + 2κ 2 a , b Ω(t), b , as ˙ɛ <strong><strong>an</strong>d</strong> described ˙χ). We )(Ω a − ˙χ)<br />

T<br />

δ<br />

3(2 + κ 2 ) √ indo Appendix this via lubrication A.<br />

a = 12νam′′ a (1 − κ 2 )(Ω b − ˙χ) − (1 + 2κ 2 )(Ω a − ˙χ)<br />

,<br />

theory, δ as outlined in3(2 Appendix + κ 2 ) √ , κ(t) (2.8) ≡ ɛ(t)<br />

1B, − κbecause 2 our snail cylinders have 1 − κrelatively δ .<br />

2 narrow<br />

gaps, although<br />

′′ 2where<br />

more general The results equations exist of (Finn motion & Cox in (2.2), 2002). (2.3), (2.4) <strong><strong>an</strong>d</strong> (2.5), <strong><strong>an</strong>d</strong> t<br />

tities defined 2 in (2.6) through (2.8), comprise a sixth-order dyn


Scripps Institution of Oce<strong>an</strong>ography, La Jolla CA 92093-0213, USA<br />

g<br />

A non-accelerating solution<br />

(Received ?? <strong><strong>an</strong>d</strong> in revised form ??)<br />

ɛ(t) , χ(t) , Ω a (t) , <strong><strong>an</strong>d</strong> Ω b (t)<br />

b − a = δ ≪ a<br />

b − a = δ ≪ a<br />

δ<br />

a ≪ 1 <strong><strong>an</strong>d</strong> sin α ∼ δ δ<br />

a<br />

<br />

a ≪ 1 <strong><strong>an</strong>d</strong> sin α ∼ δ a<br />

˙Ω a = ˙Ω a = ˙ɛ = ˙χ = 0<br />

˙Ω a = ˙Ω a = ˙ɛ = ˙χ = 0<br />

⇒<br />

⇒<br />

O<br />

δ<br />

a ≪ 1 <strong><strong>an</strong>d</strong> sin α ∼ δ a<br />

A<br />

B<br />

˙Ω a = ˙Ω a = ˙ɛ = ˙χ = 0<br />

⇒<br />

<br />

Ω b & Ω a ∝ 1<br />

sin α<br />

(this is crazy)<br />

Ω b & Ω a ∝ 1<br />

sin α<br />

C<br />

α<br />

<br />

We are relieved to<br />

discover that this<br />

solution is linearly<br />

unstable<br />

The c. of m. lies directly above the<br />

point of contact <strong><strong>an</strong>d</strong> the line of<br />

centers is horizontal.


Alternatively,<br />

m a + m′′ 2<br />

( In lubrication the total <strong>an</strong>gular<br />

a ) approximation momentum(δ bal<strong>an</strong>ce, ≡ (b −<br />

(ɛ¨χ + 2 ˙ɛ ˙χ) = f χ + m ′ a<br />

m 2.1. The equations g sin of φ motion<br />

− ] a) m′ a b ˙Ω<br />

≪ a), the fluid forces <strong><strong>an</strong>d</strong> torques, f χ , f ɛ <strong>an</strong><br />

[ T a , take the form (see(<br />

Appendix b cos χ , (2.2)<br />

d<br />

f<br />

1<br />

The dt configuration 2m (<br />

aa 2 Ω a + (M of)<br />

the + m apparatus b )b Ω b m<br />

is specified a + m′′ 2B),<br />

)<br />

]<br />

δ<br />

M + m a<br />

ɛ 2 ˙χ + m ′ by four independent m b d a ≪ 1 <strong><strong>an</strong>d</strong> sin f dt (ɛ α variables, sin ∼ δ χ) ⇒<br />

The<br />

b )b<br />

main 2 Ω b + m<br />

approximation:<br />

a + m′′ 2<br />

a<br />

ɛ 2 ˙χ + m ′ a<br />

m b d f dt (ɛ sin χ) +m ′ ab ˙Ω b ɛ cos χ ≈ Mgb sin α + m ′ agɛ sin φ ,<br />

ɛ(t), χ(t),<br />

f<br />

Ω a (t) <strong><strong>an</strong>d</strong> Ω b (t). The dynamical considerations of Appendix A indicate that the position<br />

of the inner m a cylinder + m′′ 2<br />

ɛ = − 12νam′′ a ˙κ a<br />

where φ = α+χ, which provides <strong>an</strong> equivalent<br />

δ<br />

a<br />

is(¨ɛ determined − ɛ ˙χ 2 ) = fby ɛ −the m equations ′ of motion,<br />

m<br />

ag cos φ − m ′ ab ˙Ω 2 (1 − κ 2 )<br />

3/2<br />

equation. , Though (2.2)-(2.4)<br />

b sin χ , (2.3)<br />

+m ′ final<br />

ab ˙Ω relation (2.5) contains<br />

( f +m ′<br />

)<br />

ab ˙Ω b ɛ cos χ ≈ Mgb sin α m ′ b ɛ cos χ ≈ Mgb sin α + m ′ our first approximation by neglecting the int<br />

agɛ sin φ , (2.5)<br />

momentum of the fluid in agɛ<br />

the<br />

sin<br />

m a + m′′ 2<br />

where f χ<br />

where <strong><strong>an</strong>d</strong> fφ ɛ<br />

= represent α+χ, which the fluid aprovides (ɛ¨χ forces <strong>an</strong><br />

+ 2 ˙ɛ in equivalent<br />

˙χ) = the<br />

f<br />

f direction χ = equation. 12νam′′ frame<br />

φ ,<br />

a κ(Ω of a its + Ω b − 2 ˙χ)<br />

χ + m ′ a<br />

m g sin of φ − the Though m′ a b line ˙Ω b cos of (2.2)-(2.4)<br />

χ centres , <strong><strong>an</strong>d</strong> are exact, this<br />

δ (2.2)<br />

perpendicular final to relation that direction, (2.5) contains respectively. f our first The approximation 2 (2 + κ<br />

second terms by on neglecting 2 ) √ centre<br />

(2.5)<br />

of mass.<br />

which provides <strong>an</strong> equivalent<br />

(2.<br />

As the equation. Stokes approximation Though (2.2)-(2.4) describes are exact, the1flow −this<br />

κ<br />

the right of the 2 in the <strong>an</strong>nular gap, the fl<br />

(2.2) intrinsic <strong><strong>an</strong>d</strong> <strong>an</strong>gular<br />

) contains our first<br />

(2.3) denote momentum<strong><strong>an</strong>d</strong><br />

approximation a state of inst<strong>an</strong>t<strong>an</strong>eous by neglecting forcethe bal<strong>an</strong>ce. intrinsic The<strong>an</strong>gular<br />

forces, f<br />

the Archimede<strong>an</strong> of the fluid<br />

(<br />

buoy<strong>an</strong>cy in the frame<br />

)<br />

force on of its thecentre inner cylinder, of mass.<br />

ɛ <strong><strong>an</strong>d</strong> f χ , <strong><strong>an</strong>d</strong> torque, T<br />

e fluid in the frame of<br />

<strong><strong>an</strong>d</strong> the final terms<br />

are d’Alembert As the forces Stokescomputed its centre<br />

arising approximation because<br />

m a + m′′ 2<br />

as of functions mass.<br />

the position of the center of the<br />

a T<br />

describes the flow the <strong>an</strong>nular<br />

(¨ɛ − ɛ ˙χ 2 ) = f ɛ − m ′<br />

m<br />

ag cos φ − m ′ ab ˙Ω<br />

outer gap, cylinder, the fluid to remains in<br />

a = 12νam′′ of<br />

a (1 the − κinst<strong>an</strong>t<strong>an</strong>eous 2 )(Ω b − ˙χ) − (1 + 2κ 2 )(Ω a − ˙χ)<br />

which theacoordinates state of inst<strong>an</strong>t<strong>an</strong>eous ɛ <strong><strong>an</strong>d</strong> χ are referred, force bal<strong>an</strong>ce. b sin χ , (2.3)<br />

f<br />

does not The δ lie forces, in <strong>an</strong> finertial ɛ <strong><strong>an</strong>d</strong> 3(2 fframe. + χ , κ<strong><strong>an</strong>d</strong> 2 ) √ geometrical arr<strong>an</strong>gement (i.e.<br />

pproximation describes<br />

, (2.<br />

velocities the flowof inthe thecylinder <strong>an</strong>nularsurfaces gap, the(given fluid remains by The torque, Ω1 a −, in<br />

rotation κΩ 2 b T, a<br />

˙ɛ , c<strong>an</strong> <strong><strong>an</strong>d</strong>then ˙χ). be We do this v<br />

<strong>an</strong>eous of the inner force computed cylinder bal<strong>an</strong>ce. as where follows functions theory, Thefrom<br />

forces, of asthe outlined f ɛ inst<strong>an</strong>t<strong>an</strong>eous <strong><strong>an</strong>d</strong> f χ , <strong><strong>an</strong>d</strong> Appendix geometrical torque, B, T a arr<strong>an</strong>gement , because c<strong>an</strong> thenour be (i.e. snail ɛ <strong><strong>an</strong>d</strong> cylinders χ) <strong><strong>an</strong>d</strong> have rela<br />

ctions ofwhere velocities the inst<strong>an</strong>t<strong>an</strong>eous f χ <strong><strong>an</strong>d</strong> of the f ɛ<br />

gaps,<br />

represent cylinder although geometrical surfaces the fluid forces in the direction of the line of centres <strong><strong>an</strong>d</strong><br />

perpendicular 4 to thatN. direction, J. Balmforth, 1<br />

respectively. The second terms on the right of (2.2) <strong><strong>an</strong>d</strong><br />

2 m more (given arr<strong>an</strong>gement general by Ω a , Ωresults b ,(i.e. ˙ɛ <strong><strong>an</strong>d</strong>exist ɛ ˙χ). We do this via lubrication<br />

theory, as outlined in Appendix aa 2 ˙Ωa B, = J.<br />

because TW. a , M.<br />

our<br />

Bush,<br />

snail κ(t) D. ≡cylinders Vener ɛ(t)<br />

<strong><strong>an</strong>d</strong> W. R. (2.4) Young<br />

(2.3) denote the Archimede<strong>an</strong> buoy<strong>an</strong>cy force on the inner cylinder, δ . (Finn χ) <strong><strong>an</strong>d</strong> & Cox 2002).<br />

ylinder surfaces (given by Ω have relatively narrow (2.<br />

a , Ω b , ˙ɛ <strong><strong>an</strong>d</strong> ˙χ). We do this via lubrication<br />

<strong><strong>an</strong>d</strong> the final terms<br />

ed where in<br />

gaps,<br />

TAppendix a are is theAlternatively, although more<br />

d’Alembert fluidB, torque. because The the general total results <strong>an</strong>gularexist momentum (Finn & bal<strong>an</strong>ce, Cox 2002).<br />

[<br />

forces equations arising ourbecause snail of motion cylinders 2.2.<br />

the position Lubrication (2.2), have<br />

(<br />

of (2.3), therelatively approximation<br />

)<br />

center (2.4) of<strong><strong>an</strong>d</strong> thenarrow<br />

outer (2.5), cylinder, <strong><strong>an</strong>d</strong>the a reduced<br />

]<br />

tohydrodynamic model qua<br />

ore Assuming general which that results the d<br />

the coordinates tities outer exist Indefined cylinder ɛ <strong><strong>an</strong>d</strong> χrolls are referred, withoutdoes sliding not lie <strong>down</strong> in <strong>an</strong>the inertial <strong>incline</strong>d frame. pl<strong>an</strong>e, The rotation the<br />

1<br />

equation ofthe motion inner of cylinder the outer follows cylinder from c<strong>an</strong> be similarly broken <strong>down</strong>. Import<strong>an</strong>tly,<br />

dt<br />

2 m aa 2 Ω a + (M + m b )b 2 Ω b + m a + m′′ 2<br />

2.2. lubrication (Finn Lubrication<br />

in &(2.6) Cox approximation through 2002).<br />

(2.8), comprise (δ<br />

a<strong><strong>an</strong>d</strong> ≡ a(b ɛ 2 reduced −a a) sixth-order ≪<br />

˙χ + m ′ a<br />

m b model d a), the dynamical fluid forces system. <strong><strong>an</strong>d</strong>Howeve<br />

torqu<br />

some<br />

those equations<br />

In lubrication<br />

contain<br />

approximation T further simplifications are afforded by virtue of<br />

the forces at the<br />

(δ ≡<br />

contact<br />

(b − a)<br />

1<br />

2 m aa 2 point<br />

≪ a),<br />

with<br />

the f dt (ɛ δ sin ≪ χ) a. Moreover, unless the slop<br />

a , take the form (see Appendix<br />

the<br />

fluid B),<br />

pl<strong>an</strong>e,<br />

forces<br />

which<br />

<strong><strong>an</strong>d</strong> torques,<br />

one c<strong>an</strong><br />

f χ , f ɛ <strong><strong>an</strong>d</strong><br />

2.2. Lubrication approximation is small, the cylinder <strong><strong>an</strong>d</strong> accelerates reduced model uncontrollably <strong>down</strong>hill. Hence, we focus on the disti<br />

˙Ωa = T a , (2.4)<br />

eliminate<br />

T<br />

from a , take<br />

the<br />

the<br />

problem<br />

form (see<br />

algebraically<br />

Appendix<br />

given<br />

B),<br />

guished limit in which also that sinthe rotation rate, Ω b , also dictates<br />

the dist<strong>an</strong>ce where rolled. T a isThis the fluid leaves torque. a single equation<br />

+m<br />

for ′ α<br />

ab<br />

Ω ˙Ω ∼ δ/a. In this limit, the<br />

b (t), b ɛ cos<br />

as<br />

χ<br />

described<br />

≈ Mgb sin<br />

in<br />

α<br />

Appendix<br />

+ m ′ equations are systematical<br />

proximation (δ ≡ (b − a) ≪ a), the fluid forces <strong><strong>an</strong>d</strong> agɛ sin<br />

A.<br />

φ , (2.5)<br />

simplified by first non-dimensionalizing<br />

ftorques, Assuming wherethat φ = α+χ, the outer which cylinder provides f ɛ = − 12νam′′ a ˙κ ɛ<br />

using<br />

= − 12νam′′ f<br />

the χ , fa<br />

˙κ<br />

time ɛ <strong><strong>an</strong>d</strong><br />

scale,<br />

(see Appendix B),<br />

rolls <strong>an</strong>without δequivalent 2 (1sliding − κ<br />

equation. , δ 2 )<br />

3/2 <strong>down</strong> the Though 2 (1 − κ<br />

<strong>incline</strong>d (2.2)-(2.4) 2 ) , 3/2<br />

pl<strong>an</strong>e, the are exact, (2.6) this<br />

equation final of relation motion of (2.5) the contains outer cylinder our first c<strong>an</strong>approximation be similarly τ ≡ 12broken m′′ by a ν<strong>an</strong>eglecting <strong>down</strong>. Import<strong>an</strong>tly, the intrinsic <strong>an</strong>gular<br />

those equations fmomentum contain of the the fluid forces in the at the frame contact of itspoint centre with of mass. the pl<strong>an</strong>e, which one c<strong>an</strong><br />

eliminateAs from the the Stokes problem approximation algebraically<br />

f χ = 12νam′′ a κ(Ω a + Ω b − 2 ˙χ)<br />

describes δ 2 given(2 that + the κ 2 the ) flow √ m ′ aδ 2 g . (2.1<br />

ɛ = − 12νam′′ a ˙κ<br />

δ<br />

1rotation −in κthe 2 rate, <strong>an</strong>nular Ω b , gap, also the dictates fluid remains<br />

(2.7)<br />

We next 2<br />

, f<br />

(1 − κ<br />

introduce 2 )<br />

3/2 χ = 12νam′′ a κ(Ω a + Ω b − 2 ˙χ)<br />

(2.6)<br />

δ<br />

non-dimensional variables<br />

2 (2 + κ 2 ) √ 1 − κ 2 in<br />

the dist<strong>an</strong>ce a staterolled. of inst<strong>an</strong>t<strong>an</strong>eous This leaves aforce singlebal<strong>an</strong>ce. equationThe for forces, Ω b (t), as f ɛ described <strong><strong>an</strong>d</strong> f χ , <strong><strong>an</strong>d</strong> in Appendix torque, TA.<br />

a , c<strong>an</strong> then be<br />

<strong><strong>an</strong>d</strong> <strong><strong>an</strong>d</strong><br />

computed as functions of the inst<strong>an</strong>t<strong>an</strong>eous geometrical arr<strong>an</strong>gement (i.e. ɛ <strong><strong>an</strong>d</strong> χ) <strong><strong>an</strong>d</strong><br />

velocities of Tthe a = cylinder 12νam′′ a (1 − κ 2 (ˆΩ<br />

)(Ω b − ˙χ) a ,<br />

− ˆΩ b ) ≡ τ(Ω<br />

+ 2κ a , Ω<br />

a b ) , (2.1<br />

f χ = 12νam′′ a κ(Ω a + Ω b − 2 ˙χ)<br />

˙χ)<br />

surfaces (given by Ω a , Ω b , ˙ɛ <strong><strong>an</strong>d</strong> ˙χ). We do this via lubrication<br />

theory, as outlined in<br />

δ<br />

Appendix B, 3(2 because + κ 2 ) √ , (2.8)<br />

<strong><strong>an</strong>d</strong><br />

δ 2<br />

a non-dimensional (2 + κ 2 ) √ (2.7)<br />

1 −T time κ a 2 = 12νam′′ a (1 − κ 2 )(Ω b − ˙χ) − (1 + 2κ 2 )(Ω a − ˙χ)<br />

ˆt ≡ t/τ. δ It is<br />

our 1also −snail κ 2 convenient to work with φ = χ + α. The<br />

cylinders 3(2 + κhave 2 ) √ ,<br />

1relatively − κ 2 narrow<br />

wheregaps, on<br />

although<br />

suppressing<br />

more general<br />

the hats<br />

results<br />

<strong><strong>an</strong>d</strong> to<br />

exist<br />

leading<br />

(Finn<br />

order<br />

& Cox<br />

in<br />

2002).<br />

δ/a,<br />

12νam ′′<br />

a (1 − where<br />

κ2 )(Ω b − ˙χ) − (1 + 2κ 2 ˙κ )(Ω a −ɛ(t)<br />

˙χ)


Solution of the reduced equations<br />

Ω b & Ω a ∝ 1<br />

sin α<br />

If the slope is not too<br />

αlarge, we find rocking<br />

solutions in which the inner cylinder slowly<br />

sediments towards the outer cylinder.<br />

1 − κ(t) ∝ t −1<br />

δ<br />

a ≪ 1 <strong><strong>an</strong>d</strong> sin α ∼ δ a<br />

˙Ω a = ˙Ω a = ˙ɛ = ˙χ = 0<br />

Ω b & Ω a ∝ 1<br />

sin α<br />

⇒<br />

<br />

<br />

If the slope is large, the system locks onto a<br />

runaway rolling solution with concentric cylinders:<br />

Ω b ∝ t −q , X b (t) ∝ t 1−q , q ≡ 3(1 + 4µ2 )<br />

2(1 + 2µ) 2 , µ ≡ M + m b<br />

˙ X b =<br />

Mg sin α<br />

M + m b + 1 2 m a<br />

There is a r<strong>an</strong>ge of slopes for which both rocking<br />

<strong><strong>an</strong>d</strong> rolling solutions co-exist (depending Mgon sinICs).<br />

α<br />

t<br />

α<br />

1 − κ(t) ∝ t −1<br />

Ω b ∝ t −q , X b (t) ∝ t 1−q , q ≡ 3(1 + 4µ2 )<br />

2(1 + 2µ) 2 , µ<br />

X˙<br />

b =<br />

M + m b + 1 2 m a<br />

m a<br />

t<br />

The decisive slope parameter is:<br />

s ≡ a δ<br />

M<br />

m a<br />

′<br />

sin α


T a , take the form (see Appendix B),<br />

center of the<br />

inner cylinder<br />

Some ɛ(t) , details χ(t) of the rocking solutions:<br />

a, ˙κ Ω a (t) , <strong><strong>an</strong>d</strong> Ω b (t)<br />

f χ = 12νam′′ a κ(Ω a + Ω b − 2 ˙χ)<br />

!(t)<br />

"(t) <strong><strong>an</strong>d</strong> X b<br />

(t)<br />

# a<br />

(t) <strong><strong>an</strong>d</strong> # b<br />

(t)<br />

δ 2 (2 + κ 2 ) √ (2.7)<br />

δ<br />

1 − κ 2<br />

<strong><strong>an</strong>d</strong><br />

1<br />

a ≪ 1 <strong><strong>an</strong>d</strong> b − sin a = α δ ∼ ≪ δ a<br />

⇒<br />

6<br />

0.6<br />

T a = 12νam′′ 0.8 a (1 − κ 2 )(Ω b − ˙χ) − (1 + 2κ 2 )(Ω a<br />

a− ˙χ)<br />

δ δ 3(2 + κ 2 ) √ , (2.8)<br />

1 − κ 2 4<br />

0.4<br />

where<br />

0.6<br />

˙Ω a ≪ = 1 ˙Ω <strong><strong>an</strong>d</strong> a = ˙ɛ = sin ˙χ 2 = α ∼ δ ⇒<br />

0 a<br />

0.2<br />

0.4 κ(t) ≡ ɛ(t)<br />

δ . 0<br />

(2.9)<br />

The equations of motion0.2<br />

in (2.2), (2.3), (2.4) <strong><strong>an</strong>d</strong> (2.5), <strong><strong>an</strong>d</strong> the hydrodynamic qu<strong>an</strong>tities<br />

defined in (2.6) through (2.8), comprise a sixth-order !2dynamical system. However,<br />

0<br />

˙Ω a = ˙Ω a = ˙ɛ<br />

0<br />

!0.2<br />

some further simplifications are afforded Ω by virtue of δ ≪ a. Moreover, unless the slope<br />

0 b & Ω<br />

10 a ∝ 1 = ˙χ = 0<br />

20 0 10 20 0 10 20<br />

is small, the cylinder accelerates uncontrollably<br />

Time, t<br />

<strong>down</strong>hill. sin Hence, α we focus<br />

Time,<br />

on<br />

t<br />

the distinguished<br />

limit in which also sin α ∼ δ/a. InΩthis limit, the equations are systematically<br />

b & Ω a ∝ 1<br />

simplified by first non-dimensionalizing using the time<br />

Time, t<br />

scale,<br />

outer<br />

cylinder<br />

Limiting<br />

sedimentation<br />

point<br />

f ɛ = − 12νam′′<br />

δ 2<br />

, (2.6)<br />

(1 − κ 2 )<br />

3/2<br />

τ ≡ 12 m′′ a νa<br />

m ′ aδ 2 g . (2.10)<br />

<strong><strong>an</strong>d</strong> a non-dimensional time ˆt ≡ t/τ. It is also convenient to work with φ = χ + α. Then,<br />

on suppressing the hats <strong><strong>an</strong>d</strong> to leading order in δ/a,<br />

˙κ<br />

= − cos φ ,<br />

(1 − κ 2 )<br />

3/2<br />

κ(Ω a + Ω b − 2 ˙φ) = − sin φ ,<br />

(2 + κ 2 )(1 − κ 2 )<br />

1/2<br />

b − a = δ ≪ a<br />

α<br />

sin α<br />

α<br />

We next introduce non-dimensional variables<br />

The gap closes: (ˆΩ a , 1 ˆΩ b ) −≡ τ(Ω κ(t) a , Ω b<br />

∝) , t −1<br />

(2.11)<br />

1 − κ(t) ∝ t −1<br />

Power-law deceleration:<br />

X b (t) ∝ t q , q ≡ 3(1 + 4µ2 )<br />

2(1 + 2µ) 2 , µ ≡ M + m b<br />

Ω b ∝ t −q , X b (t) ∝ t 1−q , q ≡ 3(1 + 4µ2 ) m a<br />

2(1 + 2µ) 2 , µ ≡ M + m b<br />

m a


Experiments with the snail-cylinder<br />

10 N. J. Balmforth, J. W. M. Bush, D. Vener <strong><strong>an</strong>d</strong> W. R. Young<br />

40<br />

90<br />

80<br />

4<br />

3<br />

35<br />

5.6 °<br />

70<br />

2<br />

30<br />

Dist<strong>an</strong>ce, X<br />

60<br />

50<br />

40<br />

1<br />

0<br />

0 2 4<br />

30<br />

20<br />

(a) ν=2×10 −4 , Slope 2.4 ° 10<br />

2.4 °<br />

10<br />

5<br />

(b) ν=2×10 −4<br />

0<br />

0 20 40 60 80 100 120<br />

0<br />

0 5 10 15<br />

Time, t<br />

Figure 5. Dist<strong>an</strong>ce travelled along the runway for a steel inner cylinder with various slopes.<br />

P<strong>an</strong>el (a) shows a long run at 2.4 ◦ ; the inset shows a magnification of the path. P<strong>an</strong>el (b) shows<br />

four different slopes, as marked. The dotted lines show the best linear fits calculated for all the<br />

experiments. There is no indication of power-law deceleration.<br />

<br />

The experimental results are (far) simpler<br />

way (cm)<br />

35<br />

30<br />

th<strong>an</strong> 2×10the theoretical model.....<br />

−4<br />

3.5×10 −4<br />

(gt 2 sinα)/3<br />

25<br />

20<br />

15<br />

5.0 °<br />

3.3 °


˙<br />

Mg sin α<br />

X b =<br />

M + m b + 1 2 m t<br />

a<br />

)(Ω Hypothesis<br />

b − ˙φ) − (1 + 2κ 2 )(Ω a − ˙φ) { 1<br />

3(2 Asperities + κ 2 ) √ prevent s ≡ a = 2 Υ ˙Ω a if κ <<br />

1 − κ 2 1<br />

M the closure 2<br />

sin α of Υ the ˙Ω a + C<br />

gap χ if κ =<br />

<strong><strong>an</strong>d</strong><br />

e (C maintain <strong>an</strong> effective δ mminimum ′ ɛ , C χ ) denotes the (suitably a non-dimensionalized) separation: con<br />

of motion (2.12)b remains<br />

κ(t) ≡ ɛ(t)<br />

unch<strong>an</strong>ged<br />

κ ∗ = ɛ because the fric<br />

the fray when it becomes comparable ∗ to the viscous<br />

ller th<strong>an</strong> the lubricationδ<br />

pressure force, δ f χ . Moreover,<br />

ce (2.12)d is not affected by either of the contact forces.<br />

t<strong><strong>an</strong>d</strong>ard model of friction, the two components of the co<br />

We include a contact force with a “friction <strong>an</strong>gle”:<br />

|C χ | |C ɛ | t<strong>an</strong> ψ,<br />

ion <strong>an</strong>gle. There are two options contained in (5.3): eith<br />

yThe strong radial to lock equation the cylinder <strong><strong>an</strong>d</strong> the surface torque together, equation ormust<br />

the su<br />

eakly <strong><strong>an</strong>d</strong>be slide modified over one once <strong>an</strong>other contact with occurs. |C χ | = |C ɛ | t<strong>an</strong>


Intro The Fluid Cylinders Sommerfeld Rock’n’roll Experiments Contact Conclusio<br />

Microscope images of the surfaces<br />

Steel<br />

Steel<br />

Steel<br />

Steel<br />

Microscope images of<br />

Microscope images of the<br />

the<br />

surfaces<br />

surface<br />

Steel<br />

Perspex<br />

Perspex<br />

Perspex<br />

Perspex<br />

Perspex<br />

Aluminium<br />

Aluminium<br />

Aluminium<br />

Aluminium<br />

Aluminium<br />

The Thescale scaleis is 250 250 microns microns in in total tot<br />

The scale<br />

Suggests is 250 microns<br />

the the roughness in total length<br />

scale scale<br />

The scale is 250 microns in total length is<br />

Suggests the theorder order roughness of of tens tens scale of of microns. is microns. indeed of<br />

Suggests the order the of tens roughness of microns. scale is indeed o<br />

the order of tens of microns.


Steel, 50 cS<br />

offers insight into the variations<br />

0.01<br />

ζ =0.4 *<br />

of κ<br />

Alum, 50 cS<br />

∗ .<br />

The Steel, fixed 60 cSpoint Figure to which 10. The the average solution speeds converges fitted to the<br />

ζ =0.2 *<br />

is given experiments. by P<strong>an</strong>el<br />

Steel, Predictions against<br />

200 cS of slope, the withcontact the different theory symbols corresponding to diffe<br />

centipoise) 0.005 <strong><strong>an</strong>d</strong> inner cylinders. In p<strong>an</strong>el (b) we scale the spee<br />

Alum, 200 cS<br />

<strong><strong>an</strong>d</strong> add errorbars basedκon ∗ sin theφ variations = −s , between several exp<br />

Steel, 350 cS<br />

theoretical <strong>Rocking</strong> & rolling<br />

Alum, 350 cS 0<br />

predictions assuming V/V ∗ = (ζ ∗ κ/2) ∗ (Ωsin a + α with Ω b ) ζ ∗ = 0<br />

3 4 5 6<br />

0 1 2 3 4 5 6<br />

Slope (degrees) Steel, 500 cS<br />

circles indicate measurementsintaken φ = for − 500 centiStoke (cS) oil in<br />

Slope (degrees)<br />

0.35<br />

Alum, 500 cS<br />

bubbles are entrained in the fluid <strong><strong>an</strong>d</strong> migrate (2 + κ 2 ∗ into )(1 − ,<br />

the κ2 ∗ narrowe )1/2 Ω b<br />

/(3ζ *<br />

)<br />

cylinders.<br />

0.3<br />

cos φ = −C ɛ ,<br />

average speeds fitted to the experiments. P<strong>an</strong>el (a) shows the raw data, plotted<br />

ith the different symbols 0.25corresponding (1 −to κdifferent 2 ∗ )Ω b −<br />

viscosities<br />

(1 + 2κ 2 ∗ (as )Ω alabelled in<br />

inner cylinders. In p<strong>an</strong>el (b) we<br />

0.2<br />

6. scaleComparison the3(2 speeds + κ 2 by the factor, V ∗ , in (6.2),<br />

∗) √ = C χ .<br />

of 1 −theory κ 2 ∗<br />

<strong><strong>an</strong>d</strong> experiment<br />

ictions assuming V/V ∗ = 0.15 (ζ ∗ /2) sin α with ζ ∗ = 0.1 <strong><strong>an</strong>d</strong> 0.2. The data6.1. shown Outer by cylinder speeds<br />

easurements taken Thefor condition 500 centiStoke (5.5)(cS) oil which a large number of small<br />

In dimensional<br />

for locking<br />

terms,<br />

now<br />

the<br />

reduces<br />

limiting<br />

to s<br />

cylinder<br />

< 2 √ 1<br />

speed<br />

− s 2 /κ<br />

with 2 ∗ t<strong>an</strong><br />

roug<br />

φ<br />

( √<br />

0.05<br />

Ω 1 1 − s<br />

← Locking a = V ΩSliding b = 1<br />

V→<br />

∗<br />

0<br />

2κ<br />

× 2 sin s(2 α + × κζ 2 ∗) √ ∗ Max 1 − κ<br />

2 , 2 ∗. 1 −<br />

∗<br />

s<br />

0 0.1 0.2 0.3 0.4 0.5<br />

son of theory <strong><strong>an</strong>d</strong> experiment<br />

s<br />

Otherwise,<br />

6.1. Outer cylinder Equation speeds (6.1) divides the speed into three factors: a veloci<br />

igure 9. Scaled, steady rotation rates, Ω a /(3ζ ∗ ) <strong><strong>an</strong>d</strong> Ω b /(3ζ ∗ ), for ψ = 0.15 radi<strong>an</strong>s.<br />

terms, the limiting cylinder speed with rough contact is expected to be<br />

( √ )<br />

V ∗ bMδg<br />

Ω 4νm ′′ ,<br />

a = s(1 − κ2 ∗) 3/2<br />

2κ 2 − 3 √ 1 − κ 2 ∗ cos φ t<strong>an</strong> ψ, Ω b = s(2 + κ2 ∗) √<br />

1 1 − s<br />

V = V ∗ × sin α × ζ ∗ Max<br />

2 , 1 − 2<br />

a 1 −<br />

∗<br />

2κ<br />

t<strong>an</strong> ψ . where<br />

2 ∗<br />

(6.1)<br />

the mainsdependence on slope, sin α, <strong><strong>an</strong>d</strong> a final factor dep<br />

When the minimum erties. gap On the is relatively smaller slopes, narrow, (6.1) <strong><strong>an</strong>d</strong>reduces ζ ∗ ≡ √ to1 V −= κ 2 ∗(V ∗ ζ ∗ /2)<br />

edivides addition the speed of a rough into three contact factors: Average<br />

therefore a velocity speeds<br />

allows scale, of<br />

the<br />

the<br />

cylinder<br />

outer cylinder<br />

arr<strong>an</strong>gement<br />

in the experiments<br />

to approa<br />

≪ 1, w<br />

solutions in the compact form,<br />

a<br />

Scaled rotation rates<br />

ars based on the variations between several experiments. The two lines show<br />

0.1<br />

Ω a<br />

/(3ζ *<br />

)<br />

rained in the fluid <strong><strong>an</strong>d</strong> migrate into the narrowest part of the gap between the<br />

dy rolling solution. In reality, the minimum gap size, κ , is unlikely to be unifor


particle size.<br />

Wrap the inner-cylinder αwith s<strong><strong>an</strong>d</strong>paper<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

50 grit<br />

CAMI vs σ (mm)<br />

(a) Scaled speed, V / V<br />

80 grit<br />

b *<br />

1 − κ(t) ∝ t −1 1.5<br />

120 grit<br />

0.15<br />

150 grit<br />

1<br />

220 grit<br />

0.5<br />

Smooth<br />

0.1 0<br />

0 0.2<br />

Ω b ∝ t −q , X b (t) ∝ t 1−q , q ≡ 3(1 + 4µ2 )<br />

X˙<br />

b =<br />

0<br />

0 1 2 3 4 5<br />

Slope (degrees)<br />

(b) 2V<br />

<strong>Rocking</strong> & rolling b<br />

/ ζ *<br />

V * 15<br />

0<br />

0 1 2 3 4 5<br />

Figure 11. Cylinder speeds with s<strong><strong>an</strong>d</strong>paper-coated inner cylinders. P<strong>an</strong>el (a) shows average<br />

speeds of the outer<br />

Grade<br />

cylinder scaled by<br />

220<br />

V<br />

150 120 80 50 Smooth<br />

∗ against slope for the steel inner cylinder <strong><strong>an</strong>d</strong> 500<br />

centiStoke silicone oil. Inferred The stars (mm) indicate 0.3the 0.4 speeds 0.5with 1the1.6 usual, smooth 0.05 cylinder. In p<strong>an</strong>el<br />

(b), a further scalingExpected of ζ ∗ /2 is(mm) used to0.07 collapse 0.09the 0.12 data. 0.2 The 0.36 values of ζ ∗ are calculated using<br />

the roughness scales, Expected σ, listed = average in table particle 3. κ(t) The diameter inset ≡ ɛ(t) plots quoted<br />

the by<br />

κinferred the CAMI σ−values st<strong><strong>an</strong>d</strong>ard against the me<strong>an</strong><br />

∗ = ɛ ∗<br />

particle size of the s<strong><strong>an</strong>d</strong>paper (according to the Americ<strong>an</strong> CAMI st<strong><strong>an</strong>d</strong>ard).<br />

Table For 3. small Roughness slopes scales the for the various grades of s<strong><strong>an</strong>d</strong>paper (as given by the “grit” value<br />

microns. listed). The This “inferred” estimatevalue is consistent indicates with the number images used takento of collapse the surface the data of the in figure cylinders 11; the<br />

“expected” contact value force isprevents<br />

the number V quoted = bMgδ<br />

with a microscope which revealed roughness by theof Americ<strong>an</strong> × sin α<br />

that order. CAMI × √ 1st<strong><strong>an</strong>d</strong>ard − κ <strong><strong>an</strong>d</strong> refers to average<br />

4νm<br />

′′<br />

2 ∗<br />

particle slipping size. <strong><strong>an</strong>d</strong> the system<br />

a } {{ }<br />

To explore further the dependence of } cylinder {{ } speed on surface ≡ζroughness, we conducted<br />

more<br />

rolls<br />

experiments<br />

with const<strong>an</strong>t<br />

in which<br />

speed<br />

∗<br />

the steel cylinder ≡V ∗ was first covered with differing grades of<br />

s<strong><strong>an</strong>d</strong>paper (more specifically, we used 50, 80 120, 150 <strong><strong>an</strong>d</strong> 220 “grit”, Americ<strong>an</strong> CAMI<br />

0.08 50 grit CAMI vs σ (mm)<br />

0.05<br />

Mg sin α<br />

M + m b + 1 2 m a<br />

s ≡ a δ<br />

δ<br />

M<br />

sin α<br />

m<br />

′ a<br />

2(1 + 2µ) 2 , µ ≡ M + m<br />

δ<br />

t<br />

← sinα<br />

m a


Ω b ∝ t −q , X b (t) ∝ t 1−q , q ≡<br />

Conclusions<br />

3(1 + 4µ )<br />

2(1 + 2µ) 2 , µ ≡ M + m<br />

m a<br />

<br />

<br />

<br />

<br />

Mg sin α<br />

S<strong><strong>an</strong>d</strong>paper experiments X˙<br />

show b = that surface roughness controls<br />

the speed of descent<br />

M +<br />

in<br />

mrocking b + 1 2 m t<br />

aregime.<br />

s ≡ a δ<br />

M<br />

sin α<br />

m<br />

′ a<br />

The κ_✳ theory has some success in rationalizing<br />

experimental results. But κ(t) κ_✳ ≡ ɛ(t) is not κ ∗ completely = ɛ ∗<br />

convincing.<br />

V = bMgδ<br />

4νm a<br />

′′<br />

} {{ }<br />

≡V ∗<br />

Nonetheless, I am now officially declaring victory over<br />

the snail cylinder <strong><strong>an</strong>d</strong> the snail ball.<br />

δ<br />

δ<br />

× sin α × √ 1 − κ 2 ∗<br />

} {{ }<br />

≡ζ ∗<br />

For example, the experimental<br />

dependence on α is not this simple.<br />

Other <strong>incline</strong>d-pl<strong>an</strong>e problems are diverting....


A Gr<strong>an</strong>ular Snail Cylinder

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!