Extended Spectrum Beta-Lactamases and Cephalosporinases in ...

Extended Spectrum Beta-Lactamases and Cephalosporinases in ... Extended Spectrum Beta-Lactamases and Cephalosporinases in ...

<strong>Extended</strong> <strong>Spectrum</strong> <strong>Beta</strong>-<strong>Lactamases</strong><br />

<strong>and</strong><br />

<strong>Cephalospor<strong>in</strong>ases</strong><br />

<strong>in</strong><br />

Enterobacteriaceae<br />

September 2010


MODE OF ACTION - βLACTAMS IN GRAM NEGATIVES<br />

SUSCEPTIBLE<br />

RESISTANT<br />

β-LACTAM ANTIBIOTIC<br />

<br />

DIFFUSION THROUGH PORIN BLOCKS ENTRY<br />

OUTER MEMBRANE EFFLUX PUMP<br />

<br />

DIFFUSION THROUGH BETA-LACTAMASE<br />

PEPTIDOGLYCAN<br />

HYDROLYZES BETA-LACTAM<br />

<br />

PENICILLIN BINDING CHANGES IN PBP RESULTS IN<br />

PROTEINS<br />

FAILURE TO BIND TO β-LACTAM<br />

<br />

CELL DEATH


Resistance to <strong>Beta</strong>-Lactam Antibiotics<br />

Three major mechanisms:<br />

1. Production of beta-lactamases<br />

2. Altered PBP<br />

3. Lack or dim<strong>in</strong>ished expression of outer membrane por<strong>in</strong>s<br />

(OMPs)


<strong>Beta</strong>-lactamases<br />

– Hydrolyze the beta-lactam bond<br />

– Active site<br />

• Ser<strong>in</strong>e residue (Ambler Class A,B,C)<br />

• Metal ion (z<strong>in</strong>c) ( Ambler Class D)


GROUP<br />

FUNCTIONAL CLASSIFICATION<br />

ATTRIBUTES OF GROUP<br />

1 CHROMOSOMAL; NOT INHIBITED CLAVULANATE<br />

2 INHIBITED BY CLAVULANIC ACID<br />

2a PENICILLINASE EX. STAPHYLOCOCCUS<br />

2b BROAD-SPECTRUM β-LACTAMASES EX. TEM-1<br />

2be EXTENDED SPECTRUM β-LACTAMASES<br />

2br INHIBITOR-RESISTANT TEM<br />

2c CARBENICILLIN HYDROLYZING<br />

2d OXACILLIN HYDROLYZING<br />

2e CEPHALOSPORINASE<br />

2f CARBAPENEM HYDROLYZING (SERINE<br />

ACTIVE SITE; INHIBITED BY CLAVULANIC ACID)<br />

3 METALLO-β-LACTAMASES<br />

4 MISCELLANEOUS GROUP


β-<strong>Lactamases</strong><br />

Different Substrate Profiles<br />

• Penicill<strong>in</strong>ases:<br />

– <strong>in</strong>activate penicill<strong>in</strong>s<br />

• <strong>Cephalospor<strong>in</strong>ases</strong>:<br />

– <strong>in</strong>activate cephalospor<strong>in</strong>s<br />

• Broad spectrum ß-lactamases:<br />

– <strong>in</strong>activate both penicill<strong>in</strong>s <strong>and</strong> narrow spectrum cephalospor<strong>in</strong>s<br />

• <strong>Extended</strong> spectrum ß-lactamases:<br />

– also <strong>in</strong>activate one or more newer cephalospor<strong>in</strong>s or aztreonam, not<br />

carbapenems<br />

• Carbapenemases:<br />

– resistance aga<strong>in</strong>st all beta-lactams


Genetics of <strong>Beta</strong>-<strong>Lactamases</strong><br />

Genes encod<strong>in</strong>g beta-lactamases (bla)<br />

• Chromosome<br />

• Plasmids<br />

• Transposons<br />

Genetic environment dictates if production:<br />

• Constitutive<br />

• Inducible


Genetics of <strong>Beta</strong>-<strong>Lactamases</strong><br />

bla genes:<br />

• Integrons:<br />

– Genetic elements of variable length<br />

• Conta<strong>in</strong> 5’ conserved <strong>in</strong>tegrase gene(<strong>in</strong>t)<br />

• Gene cassette with other resistance genes<br />

• Integration site for the gene cassette attI<br />

Mobile elements that conta<strong>in</strong> <strong>in</strong>tegrons :<br />

important source of spread of bla genes<br />

• plasmids<br />

• transposons


<strong>Extended</strong> <strong>Spectrum</strong> <strong>Beta</strong>-<strong>Lactamases</strong>


<strong>Extended</strong> <strong>Spectrum</strong> <strong>Beta</strong>-Lactamase (ESBL)<br />

First described <strong>in</strong> 1983 – Germany<br />

• Knothe et al Infection 1983;11:315-7<br />

Mid 1980’s - France<br />

– Klebsiella spp<br />

Jarlier et al. Rev Infect Dis 1988;10:867-878


<strong>Extended</strong> <strong>Spectrum</strong> <strong>Beta</strong>-Lactamase (ESBL)<br />

• Po<strong>in</strong>t mutation to parent TEM/SHV enzymes<br />

– Now > 130 TEM ESBLS/ > 50 SHV ESBLS<br />

• TEM (10/26) predom<strong>in</strong>ant <strong>in</strong> USA<br />

– Preferentially hydrolyze ceftazidime<br />

• SHV (2/3)<br />

– Broad resistance to all cephalospor<strong>in</strong>s <strong>and</strong> aztreonam


DEVELOPMENT OF ESBL<br />

TEM-1 238 GLYCINE<br />

(high level resistance)<br />

SERINE = TEM-19<br />

SHV-1 238 GLYCINE SERINE = SHV-2<br />

(cefotaxime resistance)<br />

SHV-2 240 GLUTAMATE LYSINE = SHV-5<br />

(ceftazidime resistance)


<strong>Extended</strong> <strong>Spectrum</strong> <strong>Beta</strong>-Lactamase<br />

Outbreaks - clonal spread<br />

• Hospital<br />

• Associated resistance- am<strong>in</strong>oglycosides/TMP-SMX<br />

Risk Factors<br />

– Broad antimicrobial use<br />

– Immunosuppression<br />

– Ceftazidime use<br />

• Meyer et al. Ann Intern Med. 1993:119:353-358<br />

• Rice et al. AAC.1990;34:2193-2199<br />

• Naumovski et al. AAC .1992;36:1991-1996<br />

• Rice et al. CID 1996;23:118-24


<strong>Extended</strong> <strong>Spectrum</strong> <strong>Beta</strong>-Lactamase<br />

CTX-M enzymes - 2004<br />

• significant resistance to cefotaxime /ceftriaxone<br />

• now multiple CTX-M beta-lactamases<br />

• worldwide spread<br />

– very high prevalence <strong>in</strong> some geographic locations<br />

• plasmid acquisition of chromosomal ESBL from Kluyvera spp<br />

– Polyclonal - plasmid spread<br />

• Community<br />

Risk factors:<br />

• FQ use<br />

• Long term care facility<br />

• UTI<br />

Now: community → hospital<br />

• human fecal carriage<br />

Qu<strong>in</strong>olones- important <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g CTX-M stra<strong>in</strong>s


TREATMENT OF ESBL POSITIVE ORGANISMS WITH<br />

CEPHALOSPORINS<br />

MIC FAILURE DEATH<br />

8 100% (6/6) 33% (2/6)<br />

4 67% (2/3) 0% (0/3)<br />

2 33% (1/3) 0% (0/3)<br />

≤1 27% (3/11) 18% (2/11)<br />

Paterson, DL, et al. JCM 39: 2206 – 2212, 2001


Cephalospor<strong>in</strong> Breakpo<strong>in</strong>ts<br />

• Cl<strong>in</strong>ical data:<br />

– better correlated with MIC than presence of ESBL??<br />

– MICs of ≥ 4µg/mL - predict failure<br />

– Phenotypic tests not always reliable <strong>in</strong> presence of multiple mechanisms<br />

of resistance<br />

– ESBL + AmpC ~ false negative ESBL test<br />

• Screen<strong>in</strong>g methods:<br />

– need to be adjusted as new beta-lactamases found <strong>in</strong> more species


Cephalospor<strong>in</strong> Breakpo<strong>in</strong>ts<br />

CLSI :<br />

• Lower breakpo<strong>in</strong>ts<br />

– Correct cl<strong>in</strong>ical breakpo<strong>in</strong>ts could obviate need for ESBL<br />

screen<strong>in</strong>g for predict<strong>in</strong>g cl<strong>in</strong>ical outcome<br />

• Detection <strong>and</strong> characterization of ESBL / other<br />

mechanisms of resistance<br />

– Important for Infection Control <strong>and</strong> Surveillance


MIC breakpo<strong>in</strong>ts (µg/ml):<br />

Agent Old (M100-S19) Revised (M100-S20)<br />

S I R S I R<br />

Cefazol<strong>in</strong> ≤8 16 ≥32 ≤1 2 ≥4<br />

Cefotaxime ≤8 16-32 ≥64 ≤1 2 ≥4<br />

Ceftriaxone ≤8 16-32 ≥64 ≤1 2 ≥4<br />

Ceftazidime ≤8 16 ≥32 ≤4 8 ≥16<br />

Aztreonam ≤8 16 ≥32 ≤4 8 ≥16


Disk diffusion breakpo<strong>in</strong>ts (mm):<br />

Agent Old (M100-S19) Revised (M100-S20)<br />

S I R S I R<br />

Cefazol<strong>in</strong> ≥18 15-17 ≤14 NA NA NA<br />

Cefotaxime ≥23 15-22 ≤14 ≥26 23-25 ≤22<br />

Ceftriaxone ≥21 14-20 ≤13 ≥23 20-22 ≤19<br />

Ceftazidime ≥18 15-17 ≤14 ≥21 18-20 ≤17<br />

Aztreonam ≥22 16-21 ≤15 ≥21 18-20 ≤17


Cephalospor<strong>in</strong> Breakpo<strong>in</strong>ts<br />

Dilemma:<br />

• what if only one cephalospor<strong>in</strong> is tested?<br />

– Can you predict others??<br />

• what if one is S <strong>and</strong> one is R??<br />

– Controversy to report as tested??


ESBL Detection-Laboratory<br />

• Chromosomally encoded <strong>in</strong>ducible AmpC beta-lactamase<br />

– Enterobacter, Serratia, Providencia, Citrobacter etc.<br />

• Acquired AmpC<br />

– E. coli , K. pneumoniae spp., Proteus spp<br />

High level expression of AmpC:<br />

•may prevent recognition of an ESBL<br />

•clavulanate - <strong>in</strong>ducer of high level Amp<br />

•<strong>in</strong>crease resistance to screen<strong>in</strong>g drugs<br />

→false negative ESBL confirmatory test<br />

Option:<br />

Cefepime+/- clavulanate


ESBL +<br />

(control)<br />

Escherichia coli


Enterobacter cloacae<br />

Cefipime / Amox-clav<br />

ESBL +<br />

(<strong>in</strong> the presence of Amp C)


<strong>Cephalospor<strong>in</strong>ases</strong>


<strong>Cephalospor<strong>in</strong>ases</strong><br />

Amp C / Functional Group 1<br />

• Chromosomal<br />

– Inducible- regulator genes<br />

• Resistant to penicill<strong>in</strong>s <strong>and</strong> 1 st generation cephalospor<strong>in</strong>s<br />

• Hydrolyze all beta-lactams except carbapenems<br />

• Not <strong>in</strong>hibited by clavulanic acid<br />

• Vary <strong>in</strong> how they test to 2 nd generation cephalospor<strong>in</strong>s<br />

– cefoxit<strong>in</strong> <strong>and</strong> cefuroxime


<strong>Cephalospor<strong>in</strong>ases</strong><br />

MICs to 2 nd generation cephalospor<strong>in</strong>s<br />

– E. cloacae, E. aerogenes – cefoxit<strong>in</strong> > cefuroxime<br />

– Citrobacter freundii – cefoxit<strong>in</strong> > cefuroxime<br />

– Serratia spp – cefuroxime > cefoxit<strong>in</strong><br />

– Morganella morganii - cefuroxime > cefoxit<strong>in</strong><br />

– Hafnia spp – S to cefoxit<strong>in</strong> / cefuroxime<br />

– Providencia spp – S to cefoxit<strong>in</strong> /cefuroxime<br />

– Pantoae agglomerans – S to cefoxit<strong>in</strong> / cefuroxime


<strong>Cephalospor<strong>in</strong>ases</strong><br />

Inducer Potential<br />

GOOD VARIABLE POOR<br />

Cefoxit<strong>in</strong> Clavulanate Sulbactam<br />

Imipenem Cefotaxime Tazobactam<br />

Ampicill<strong>in</strong> Cefam<strong>and</strong>ole Aztreonam<br />

Cephaloth<strong>in</strong><br />

3 rd Gen Cephs<br />

4 th Gen Cephs


Inducible <strong>Beta</strong> <strong>Lactamases</strong><br />

Constitutive production<br />

• Mutant stra<strong>in</strong>s arise spontaneously :<br />

– frequencies of about 10 -6 to 10 -9<br />

• Cephalospor<strong>in</strong>ase produced constitutively at high levels<br />

– not reversible<br />

– antibiotics that are poor <strong>in</strong>ducers:<br />

• good selectors of mutants


<strong>Cephalospor<strong>in</strong>ases</strong><br />

Mutant Selection<br />

GOOD SELECTORS<br />

POOR SELECTORS<br />

3 rd Gen Cephs Imipenem<br />

4 th Gen Cephs Cephamyc<strong>in</strong>s<br />

Older Cephalospor<strong>in</strong>s


<strong>Cephalospor<strong>in</strong>ases</strong><br />

Now appear<strong>in</strong>g on plasmids !!!<br />

– plasmid mediated Amp C<br />

– transmission to E.coli / Klebsiella spp<br />

– derived from chromosomal Amp C from;<br />

• Citrobacter freundii - CMY-2A, LAT-1, BIL-1<br />

• Enterobacter cloacae - MIR-1<br />

• Pseudomonas aerug<strong>in</strong>osa - MOX-1, FOX-1


Plasmid mediated cephalospor<strong>in</strong>ases<br />

Problems:<br />

– Major threat to ICU/hospital sett<strong>in</strong>g<br />

– Some are regulated <strong>and</strong> <strong>in</strong>ducible<br />

– Comb<strong>in</strong>ation of por<strong>in</strong> loss plus AmpC<br />

→ carbapenem resistance<br />

Potential problem with Klebsiella spp


<strong>Cephalospor<strong>in</strong>ases</strong><br />

Laboratories:<br />

• not easily detected by current laboratory methods<br />

– agar tends to m<strong>in</strong>imize effect of ß-lactamases<br />

Pitout et al AAC 1997;41:35-39<br />

– broth microdilution tests use small <strong>in</strong>ocula<br />

• may not be detectable by rapid methods


Amp C detection<br />

• Boronic acid <strong>in</strong>hibits Amp C enzyme<br />

– 120mg phenylboronic acid <strong>in</strong> 3ml DMSO<br />

• Add 3ml sterile distilled water<br />

– Add 20µl to 30µg cefotetan disc<br />

→ compare cefotetan +/- boronic acid<br />

• Cloxacill<strong>in</strong>/Cefotetan E test


Cephalospor<strong>in</strong>ase<br />

P. vulgaris, P. penneri<br />

Cephalospor<strong>in</strong>ase<br />

– cefuroximase<br />

– Class A – <strong>in</strong>ducible<br />

– R : penicill<strong>in</strong>s,1 st generation cephalospor<strong>in</strong>s<br />

– S : cefoxit<strong>in</strong> <strong>and</strong> amox/clav


Enterobacter cloacae<br />

Cefotetan +/- boronic acid<br />

- +<br />

Amp C +<br />

(control)


Cefotetan +/- boronic acid<br />

+<br />

-<br />

Enterobacter absuriae<br />

Ertapenem R, Amp C +


Interior Health<br />

• Detection of both ESBL <strong>and</strong> AmpC<br />

– Phenotypic<br />

– MAST discs<br />

• Simplify detection<br />

• Avoid Delays<br />

– Molecular Diagnosis<br />

• Infection Control Implications<br />

– Klebsiella spp/ Proteus spp<br />

– Isolation Precautions<br />

– Screen<strong>in</strong>g<br />

• Prevalence study<br />

• Active screen<strong>in</strong>g??


Molecular Detection at BCCDC<br />

Gene targets :<br />

• Amp C cephalospor<strong>in</strong>ase:<br />

– MOX 1-2, CMY 1-11, LAT 1-4,BIL 1, DHA 1-2,<br />

ACC, MIR 1T, ACT 1, FOX 1-5b<br />

• ESBL:<br />

– SHV, TEM, CTX-M, OXA-1 <strong>and</strong> CMY-2<br />

• Carbapenemase:<br />

– KPC, IMP <strong>and</strong> VIM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!