Molecular Diagnostics in the Clinical Microbiology Laboratory

Molecular Diagnostics in the Clinical Microbiology Laboratory Molecular Diagnostics in the Clinical Microbiology Laboratory

05.10.2014 Views

Molecular Diagnostics in the Clinical Microbiology Laboratory Patrick Tang, MD, PhD, FRCPC B.C. Centre for Disease Control University of British Columbia BCCDC Public Health Microbiology & Reference Laboratory

<strong>Molecular</strong> <strong>Diagnostics</strong> <strong>in</strong> <strong>the</strong><br />

Cl<strong>in</strong>ical <strong>Microbiology</strong> <strong>Laboratory</strong><br />

Patrick Tang, MD, PhD, FRCPC<br />

B.C. Centre for Disease Control<br />

University of British Columbia<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Molecular</strong> <strong>Diagnostics</strong> <strong>in</strong> <strong>the</strong> Cl<strong>in</strong>ical<br />

<strong>Microbiology</strong> <strong>Laboratory</strong><br />

Introduction to molecular microbiology<br />

Overview of PCR<br />

<strong>Molecular</strong> genotyp<strong>in</strong>g methods<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Traditional <strong>Microbiology</strong><br />

Culture<br />

Microscopy<br />

Serology<br />

PCR<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Detection of Organism<br />

Microscopy<br />

Culture<br />

Antigens<br />

Nucleic Acids<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Detection of Host Response<br />

Serology<br />

(Host<br />

Immune<br />

Response)<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Detection of Host Response (Future)<br />

Metabolomics<br />

Gene Expression<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Nucleic Acid Detection<br />

Detection of organism-specific DNA or RNA<br />

Must know <strong>the</strong> sequence of <strong>the</strong> target region<br />

ATGATTTCGAGAACGGGACCTATTGCTAGTTGCGTACATGCTCTTCGAGTCACTGGCT<br />

Non-amplified Nucleic Acid Probe<br />

labelled DNA or RNA probe (enzyme, fluorescence, etc.)<br />

Signal Amplification<br />

<strong>in</strong>crease concentration of labeled molecules attached to target<br />

Target Amplification<br />

enzyme-mediated syn<strong>the</strong>sis of copies of <strong>the</strong> target nucleic acid<br />

Probe Amplification<br />

amplification products generated only from probes, not from target<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Non-Amplified Nucleic Acid Probe<br />

Liquid-phase hybridization protection assay<br />

e.g., Gen-Probe<br />

S<strong>in</strong>gle-stranded DNA probe labeled with<br />

acrid<strong>in</strong>ium ester is added to sample<br />

If <strong>the</strong> probe b<strong>in</strong>ds to its complementary<br />

target sequence, <strong>the</strong> acrid<strong>in</strong>ium ester is<br />

protected from alkal<strong>in</strong>e hydrolysis<br />

o<strong>the</strong>rwise, acrid<strong>in</strong>ium ester will be hydrolyzed<br />

Acrid<strong>in</strong>ium ester emits light upon addition of<br />

peroxides<br />

DNA probe<br />

target sequence<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Signal Amplification<br />

Branched DNA (Bayer)<br />

sandwich hybridization assay<br />

with multiple sets of probes<br />

bDNA has 15 identical<br />

branches, each can b<strong>in</strong>d 3<br />

labeled probes<br />

bDNA<br />

target sequence<br />

enzyme-labeled probes<br />

microwell with capture probes<br />

target probes<br />

capture probes<br />

Hybrid capture assay (Digene)<br />

target DNA is hybridized to RNA<br />

probe<br />

DNA:RNA hybrids are captured by<br />

immobilized antibodies<br />

soluble enzyme-conjugated<br />

antibodies <strong>the</strong>n b<strong>in</strong>d to <strong>the</strong> hybrids<br />

tube with capture antibodies<br />

enzyme-conjugated<br />

antibody<br />

RNA probe<br />

target DNA<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Target Amplification<br />

Polymerase Cha<strong>in</strong> Reaction (PCR)<br />

reverse transcriptase PCR (RT-PCR)<br />

nested PCR<br />

multiplex PCR<br />

real-time PCR (qPCR)<br />

Transcription-mediated amplification (TMA) /<br />

Nucleic acid sequence-based amplification (NASBA)<br />

iso<strong>the</strong>rmic amplification of RNA target<br />

Strand displacement amplification (SDA)<br />

iso<strong>the</strong>rmic amplification of DNA or RNA target<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Polymerase Cha<strong>in</strong> Reaction<br />

95°C<br />

denaturation<br />

72°C<br />

primer extension<br />

50°C<br />

primer anneal<strong>in</strong>g<br />

95°C<br />

50°C<br />

72°C<br />

3’<br />

5’<br />

5’ 3’<br />

3’<br />

5’<br />

exponential<br />

amplification<br />

5’ 3’<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Probe Amplification<br />

Ligase Cha<strong>in</strong> Reaction<br />

employs two sets of labeled probes that b<strong>in</strong>d to adjacent target<br />

regions<br />

ligase enzyme jo<strong>in</strong>s <strong>the</strong> two contiguous probes <strong>in</strong>to a l<strong>in</strong>ear<br />

product that can be captured and detected<br />

biot<strong>in</strong>ylated probe 1<br />

enzyme-labeled probe 2<br />

ligase<br />

target DNA<br />

ligated probe<br />

streptavid<strong>in</strong> matrix<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Probe Amplification<br />

Multiplex Ligation-dependent Probe Amplification<br />

employs two probes that b<strong>in</strong>d to adjacent target regions<br />

one probe conta<strong>in</strong>s forward primer site, o<strong>the</strong>r probe conta<strong>in</strong>s<br />

reverse primer site<br />

multiple sets of probes b<strong>in</strong>d to different targets<br />

each probe set has a different length l<strong>in</strong>ker region<br />

ligase enzyme jo<strong>in</strong>s <strong>the</strong> contiguous probes<br />

PCR with <strong>the</strong> forward and reverse primers is used to generate<br />

amplicons of variable length correspond<strong>in</strong>g to each target<br />

probe A1<br />

probe A2<br />

probe B1<br />

probe B2<br />

target A<br />

target B<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Polymerase Cha<strong>in</strong> Reaction<br />

DNA Extraction<br />

Polymerase Cha<strong>in</strong> Reaction<br />

Thermal cycl<strong>in</strong>g<br />

Components<br />

Primers<br />

Controls<br />

Detection of PCR amplicons<br />

Amplicon Contam<strong>in</strong>ation<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


DNA Extraction<br />

Sample homogenization<br />

tissues, viscous fluids, formal<strong>in</strong>-fixed tissue<br />

Mechanical lysis<br />

boil<strong>in</strong>g, sonication, freeze/thaw, mortar/pestle<br />

Enzymatic lysis<br />

prote<strong>in</strong>ase K<br />

Chemical lysis<br />

detergents<br />

guanid<strong>in</strong>ium thiocyanate +/- phenol/chloroform<br />

DNA precipitation<br />

ethanol, isopropanol<br />

adsorption to silica matrix<br />

columns, silica beads/res<strong>in</strong>, silica-coated magnetic beads<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Select<strong>in</strong>g a Method of Extraction<br />

Automated versus manual extraction<br />

cost per extraction, cost of equipment<br />

ease of use, hands-on time, turn-around time<br />

throughput (number of samples per run)<br />

Type of specimens be<strong>in</strong>g extracted<br />

Volume (mass) of specimen be<strong>in</strong>g extracted<br />

Efficiency of DNA recovery<br />

Quality of extracted DNA<br />

Extraction of DNA and/or RNA<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Polymerase Cha<strong>in</strong> Reaction<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Stages of PCR<br />

Denaturation (90-95 ° C)<br />

separate <strong>the</strong> two strands <strong>in</strong> double stranded DNA<br />

Anneal<strong>in</strong>g (50-55 ° C)<br />

temperature depends upon primers<br />

Extension (65-72 ° C)<br />

depends upon enzyme and size of targeted region<br />

F<strong>in</strong>al extension (65-72 ° C)<br />

fill <strong>in</strong> partially completed PCR products<br />

Cool<strong>in</strong>g (4-10 ° C)<br />

keep cold to ma<strong>in</strong>ta<strong>in</strong> DNA amplicons<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PCR Thermal Cycl<strong>in</strong>g<br />

Temperature<br />

denaturation<br />

extension<br />

anneal<strong>in</strong>g<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PCR Target Amplification<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Choos<strong>in</strong>g a Thermal Cycler<br />

Ramp rate<br />

rate of heat<strong>in</strong>g and cool<strong>in</strong>g<br />

Temperature stability<br />

Block uniformity<br />

S<strong>in</strong>gle temperature or gradient<br />

Capacity<br />

Compatibility with PCR tubes and plates<br />

Cost<br />

Conventional or real-time PCR<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PCR Reaction Components<br />

Master mix (typically 10-50 µL)<br />

Target (DNA/RNA) – typically 5-10% of total volume<br />

Polymerase<br />

Primers (~0.2 µM)<br />

Nucleotides – dNTPs (50-200 µM)<br />

KCl (≤ 50 mM)<br />

salts affect stability of dsDNA str<strong>in</strong>gency of reaction<br />

Mg 2+ (0.5 to 2.5 mM greater than [dNTP])<br />

b<strong>in</strong>ds to DNA and dNTP<br />

required for activity of polymerase<br />

Buffer<br />

Water<br />

Available as commercial pre-mixes<br />

just add water, primers and sample<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PCR Primers<br />

Proper PCR primer design is crucial <strong>in</strong> <strong>the</strong> success of<br />

<strong>the</strong> assay<br />

requires access to database of sequences<br />

sensitivity, specificity<br />

Typically 20bp and 50-60% GC content<br />

GC clamp at 3’ end of primer<br />

too many G and C at 3’ end may lead to misprim<strong>in</strong>g<br />

Typical melt<strong>in</strong>g temperature (Tm) 50-70°C<br />

Must pick sequences to avoid:<br />

self dimerization<br />

secondary structures (hairp<strong>in</strong>s)<br />

dimerization with o<strong>the</strong>r primer<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Degenerate Primers<br />

Mix of primers with variable bases at one or<br />

more sites<br />

GCATCTATATAACGTACGT<br />

GCATCTATATAACGTCCGT<br />

GCATCTATATAACGTGCGT<br />

Inos<strong>in</strong>e can be used as a base <strong>in</strong>stead<br />

universal base (found <strong>in</strong> tRNA)<br />

more expensive<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Controls for PCR<br />

Positive control (low titer)<br />

ensure reagents were added and work<strong>in</strong>g properly<br />

Negative control(s)<br />

detect amplicon contam<strong>in</strong>ation, non-specific<br />

amplification<br />

Extraction control<br />

ensure that DNA was efficiently extracted<br />

Internal positive control<br />

ensure that amplification is occurr<strong>in</strong>g <strong>in</strong> each sample<br />

i.e., no PCR <strong>in</strong>hibitors are present <strong>in</strong> sample<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Variations of PCR<br />

Reverse-transcriptase PCR (RT-PCR)<br />

use reverse transcriptase to convert RNA to cDNA<br />

o<strong>the</strong>r steps are identical to regular PCR<br />

Nested PCR<br />

amplify a larger target region <strong>in</strong> first PCR reaction<br />

amplify a sub-region of <strong>the</strong> <strong>in</strong>itial target <strong>in</strong> second PCR<br />

Multiplex PCR<br />

detect multiple targets <strong>in</strong> a s<strong>in</strong>gle reaction<br />

multiple sets of primers<br />

Real-time PCR (rt-PCR or qPCR)<br />

real-time PCR can be quantitative<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Detection of PCR product<br />

Agarose gel electrophoresis<br />

Polyacrylamide gel electrophoresis<br />

DNA separated by size<br />

Visualized with <strong>in</strong>tercalat<strong>in</strong>g dye<br />

Ethidium bromide<br />

SYBR green<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Agarose Gel Electrophoresis<br />

-<br />

larger fragments<br />

slower migration<br />

+<br />

smaller fragments<br />

faster migration<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


pos extraction control<br />

neg extraction control<br />

water extraction control<br />

strong pos PCR control<br />

weak pos PCR control<br />

water PCR control<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PCR Contam<strong>in</strong>ation<br />

PCR clean room/area vs. “dirty area”<br />

one-way flow of samples<br />

amplicons from previous PCR reactions<br />

highly positive samples or controls<br />

lam<strong>in</strong>ar flow hood<br />

gloves<br />

filtered pipette tips<br />

change lab coats<br />

careful technique<br />

open one tube at a time, avoid aerosols<br />

bleach, high concentration NaOH, ultraviolet, commercial products<br />

uracil N-glycosylase<br />

use dUTP <strong>in</strong>stead of dTTP <strong>in</strong> PCR reactions<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Conventional PCR vs. Real-Time PCR<br />

Real-time PCR<br />

detection of amplification<br />

dur<strong>in</strong>g exponential and<br />

l<strong>in</strong>ear phase<br />

measure amount of PCR<br />

product at each PCR cycle<br />

Conventional PCR<br />

detection of amplification with<br />

ethidium bromide when<br />

reaction complete<br />

results are not quantifiable<br />

because of variability of <strong>the</strong><br />

endpo<strong>in</strong>t yield of PCR product<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Amplification Plot<br />

Fluorescence<br />

Cycle Number<br />

C t (cycle threshold)<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Intercalat<strong>in</strong>g Dyes<br />

SYBR Green, SYBR Gold,<br />

Yo-Yo-1, Yo-Pro-1<br />

Dye b<strong>in</strong>ds to double stranded<br />

DNA once extension is<br />

complete<br />

Only fluorescent when bound<br />

to <strong>the</strong> dsDNA<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


SYBR Green PCR<br />

Standard PCR<br />

reaction with SYBR<br />

Green added to detect<br />

total DNA amplification<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Melt<strong>in</strong>g Curve Analysis<br />

Different sizes of DNA<br />

molecules melt at a different<br />

temperatures<br />

Melt<strong>in</strong>g curves are needed to<br />

confirm amplification of<br />

desired DNA target<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


SYBR Green Disadvantages<br />

B<strong>in</strong>ds to all <strong>the</strong> double stranded DNA <strong>in</strong><br />

<strong>the</strong> reaction <strong>in</strong>clud<strong>in</strong>g non-specific<br />

amplification products and primer-dimers<br />

Melt-curve analysis is required to resolve<br />

amplification products<br />

Real-time (quantitative) PCR reactions<br />

that use non-specific dyes must be VERY<br />

well optimized to give good results<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


DNA Probes<br />

5’ exonuclease probes (TaqMan)<br />

<strong>Molecular</strong> beacons<br />

Hybridizes to specific region of PCR<br />

product<br />

Based on <strong>the</strong> pr<strong>in</strong>ciple of fluorescent<br />

resonant energy transfer (FRET)<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Fluorescent Resonant Energy<br />

Transfer (FRET)<br />

distance-dependent <strong>in</strong>teraction between <strong>the</strong><br />

electronic excited states of two dye molecules <strong>in</strong><br />

which excitation is transferred from a donor<br />

molecule to an acceptor molecule<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Anatomy of a TaqMan Probe<br />

Fluorescent reporter dye<br />

(donor)<br />

R<br />

Quencher molecule<br />

(acceptor)<br />

Q<br />

Target-specific s<strong>in</strong>gle stranded DNA<br />

(13-24 base pairs <strong>in</strong> length)<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Polymerization<br />

Primers and probe anneal to target DNA<br />

5’<br />

3’<br />

Forward<br />

Primer<br />

R<br />

TaqMan<br />

Probe<br />

Q<br />

5’<br />

5’<br />

Reverse<br />

Primer<br />

3’<br />

5’<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Displacement<br />

Taq polymerase displaces <strong>the</strong> probe<br />

strand<br />

5’<br />

3’<br />

5’<br />

Forward<br />

Primer<br />

R<br />

Q<br />

Reverse<br />

Primer<br />

5’<br />

3’<br />

5’<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Cleavage<br />

5’exonuclease activity of Taq polymerase<br />

cleaves reporter molecule<br />

R<br />

5’<br />

3’<br />

5’<br />

Q<br />

5’<br />

3’<br />

5’<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Polymerization Completed<br />

R<br />

Q<br />

5’<br />

3’<br />

5’<br />

5’<br />

3’<br />

5’<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Molecular</strong> Beacons<br />

Target specific DNA <strong>in</strong> loop<br />

Probe forms hairp<strong>in</strong> loop<br />

when not hybridized to<br />

template<br />

Reporter and quencher <strong>in</strong><br />

proximity when loop closed<br />

Hybridized<br />

to<br />

template<br />

Hairp<strong>in</strong><br />

loop<br />

Melted<br />

Anneal<strong>in</strong>g exactly to correct<br />

template favored over stemloop<br />

formation<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Quantitative PCR<br />

There is a quantitative relationship between <strong>the</strong> amount of target<br />

nucleic acid present at <strong>the</strong> start of PCR and <strong>the</strong> amount of product<br />

amplified dur<strong>in</strong>g its exponential (geometric) phase<br />

Exponential<br />

phase<br />

Threshold<br />

Basel<strong>in</strong>e<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Relationship Between Initial Copy<br />

Number and Cycle Number<br />

Cycle number<br />

Threshold<br />

28 29 30<br />

Copy No.<br />

1000<br />

500<br />

250<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Advantages of real-time PCR<br />

Faster than conventional PCR<br />

Faster cycl<strong>in</strong>g and no need to run samples on<br />

agarose gels<br />

Higher analytical sensitivity<br />

Detection limit at 1-10 copies versus 10-100 copies<br />

Results available dur<strong>in</strong>g test<strong>in</strong>g/<strong>the</strong>rmocycl<strong>in</strong>g<br />

Reduced chance for PCR contam<strong>in</strong>ation<br />

Closed system<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Molecular</strong> Typ<strong>in</strong>g<br />

Methods<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Laboratory</strong> Methods for Epidemiological<br />

Analysis of Microorganisms<br />

Biotyp<strong>in</strong>g (Phenotyp<strong>in</strong>g)<br />

Biochemicals<br />

Assimilation of different biochemicals<br />

Can comb<strong>in</strong>e with antibiotic susceptibility profile<br />

Serotyp<strong>in</strong>g<br />

Recognition by type-specific antibodies<br />

Phage typ<strong>in</strong>g<br />

Susceptibility to different bacteriophage<br />

Multilocus enzyme electrophoresis (MLEE)<br />

Compare electrophoretic mobility of a set of prote<strong>in</strong>s<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Laboratory</strong> Methods for Epidemiological<br />

Analysis of Microorganisms<br />

Genotyp<strong>in</strong>g<br />

Restriction fragment-length polymorphism (RFLP)<br />

Pulsed-field gel electrophoresis (PFGE)<br />

Random amplification of polymorphic DNA<br />

(RAPD)<br />

Amplified fragment length polymorphism (AFLP)<br />

Variable number of tandem repeats (VNTR)<br />

Multilocus sequence typ<strong>in</strong>g (MLST)<br />

S<strong>in</strong>gle nucleotide polymorphism (SNP) typ<strong>in</strong>g<br />

Microarray typ<strong>in</strong>g<br />

Whole genome sequenc<strong>in</strong>g<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


RFLP<br />

1. AMPLIFY<br />

ORGANISM<br />

3. RUN GEL<br />

1<br />

2<br />

3<br />

2. FRAGMENT<br />

GENOME<br />

3<br />

Restriction<br />

Endonucleases<br />

1 2<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


IS6110-based RFLP for Genotyp<strong>in</strong>g of<br />

Mycobacterium tuberculosis<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PFGE<br />

Restriction enzyme<br />

Voltage gradient<br />

Switch <strong>in</strong>terval<br />

Reorientation angle<br />

Agarose content of gel<br />

Temperature<br />

Run time<br />

A-<br />

B+<br />

B-<br />

A+<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


PFGE of Shigella flexneri (BlnI)<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


RAPD<br />

1. AMPLIFY<br />

GENOME<br />

3<br />

Short Primers<br />

1 2<br />

2. GENERATE<br />

PCR FRAGMENTS<br />

1<br />

2<br />

3<br />

3. RUN GEL<br />

1<br />

2<br />

3<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


AFLP<br />

1. FRAGMENT<br />

GENOME<br />

2. LIGATE<br />

ADAPTERS<br />

3. PCR<br />

3<br />

Restriction<br />

Endonucleases<br />

Adapters<br />

1 2<br />

4. RUN GEL<br />

1<br />

2<br />

Primers<br />

3<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Laboratory</strong> Methods for Epidemiological<br />

Analysis of Microorganisms<br />

Restriction fragment-length polymorphism (RFLP)<br />

Amplify DNA by cultur<strong>in</strong>g <strong>the</strong> organism<br />

Restriction endonuclease digestion of DNA <strong>in</strong>to small pieces<br />

Resolve DNA fragments on agarose gel<br />

Pulsed-field gel electrophoresis (PFGE)<br />

PFGE is a type of RFLP<br />

DNA is cut <strong>in</strong>to large fragments that can only be resolved us<strong>in</strong>g pulsedfield<br />

gel apparatus<br />

Random amplification of polymorphic DNA (RAPD)<br />

A def<strong>in</strong>ed set of short primers are used to PCR amplify <strong>the</strong> genomic DNA<br />

The short primers b<strong>in</strong>d at multiple locations creat<strong>in</strong>g a band pattern when<br />

resolved by agarose gel electrophoresis<br />

Amplified fragment-length polymorphism (AFLP)<br />

Restriction digest DNA first<br />

Amplify by PCR and resolve with gel electrophoresis<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


VNTR<br />

1. AMPLIFY<br />

TARGET<br />

REGIONS<br />

1 2 3<br />

3 different PCR reactions<br />

2. GENERATE<br />

PCR FRAGMENTS<br />

1<br />

2<br />

Determ<strong>in</strong>e number<br />

of tandem repeats<br />

3<br />

3. CAPILLARY<br />

ELECTROPHORESIS<br />

5<br />

VNTR pattern = 5 - 9 - 6<br />

6<br />

9<br />

1<br />

2<br />

3<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


MLST<br />

1. AMPLIFY<br />

MULTIPLE<br />

LOCI<br />

2. GENERATE<br />

PCR FRAGMENTS<br />

1<br />

2<br />

3<br />

1 2 3<br />

3 different PCR reactions<br />

3. DNA SEQUENCING<br />

ATCGTTAGGAAGCAT<br />

TTACAACCAGTAGCACCC<br />

GAGCTTACCAATCGGAC<br />

1<br />

2<br />

3<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


SNP Genotyp<strong>in</strong>g<br />

DETERMINE<br />

SNPs @<br />

MULTIPLE LOCI<br />

1 2 3<br />

T<br />

G<br />

A<br />

1. qPCR 2. PYROSEQUENCING<br />

3. MICROARRAY<br />

A<br />

T<br />

A<br />

C<br />

G<br />

C<br />

P<br />

SNP1 = T SNP2 = G SNP3 = A<br />

G<br />

A<br />

A<br />

T<br />

C<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Microarray Genotyp<strong>in</strong>g<br />

Oligonucleotide<br />

probes target<strong>in</strong>g<br />

different regions of<br />

<strong>the</strong> genome<br />

different alleles of<br />

<strong>the</strong> same gene<br />

different SNPs<br />

unique genes<br />

A1 A2 A3 A4 A5 A6 A7<br />

B1 B2 B3 B4 B5 B6 B7<br />

C1 C2 C3 C4 D1 D2 D3<br />

E1 E2 E3 F G1 G2 G3<br />

H1 H2 I J1 J2 K L<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Microarray Genotyp<strong>in</strong>g<br />

Isolate No.1<br />

A1 A2 A3 A4 A5 A6 A7<br />

B1 B2 B3 B4 B5 B6 B7<br />

C1 C2 C3 C4 D1 D2 D3<br />

Isolate No.2<br />

A1 A2 A3 A4 A5 A6 A7<br />

B1 B2 B3 B4 B5 B6 B7<br />

C1 C2 C3 C4 D1 D2 D3<br />

E1<br />

E2 E3 F G1 G2<br />

G3<br />

E1 E2 E3 F G1 G2 G3<br />

H1 H2 I J1 J2 K L<br />

H1 H2 I J1 J2 K L<br />

Isolates 1 and 2 are related but not identical<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Laboratory</strong> Methods for Epidemiological<br />

Analysis of Microorganisms<br />

Variable number of tandem repeats (VNTR)<br />

PCR amplify genetic regions conta<strong>in</strong><strong>in</strong>g tandem repeats<br />

Electrophoresis to resolve size of PCR products<br />

Multilocus sequence typ<strong>in</strong>g (MLST)<br />

Sequence a def<strong>in</strong>ed set of loci with<strong>in</strong> <strong>the</strong> genome<br />

S<strong>in</strong>gle nucleotide polymorphism (SNP) typ<strong>in</strong>g<br />

Determ<strong>in</strong>e <strong>the</strong> SNP at a set of def<strong>in</strong>ed positions <strong>in</strong> <strong>the</strong><br />

genome by PCR, sequenc<strong>in</strong>g or microarray<br />

Microarray typ<strong>in</strong>g<br />

Determ<strong>in</strong>e presence or absence of a def<strong>in</strong>ed set of markers<br />

with<strong>in</strong> <strong>the</strong> genome<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


<strong>Laboratory</strong> Methods for Epidemiological<br />

Analysis of Microorganisms<br />

Whole genome sequenc<strong>in</strong>g<br />

Fragment genome <strong>in</strong>to smaller overlapp<strong>in</strong>g<br />

pieces<br />

PCR, restriction digest, sonication, etc.<br />

Sequence fragments<br />

Assemble contigs<br />

Bio<strong>in</strong>formatics analysis<br />

Whole genome alignments<br />

Detection of mutations<br />

Genomic islands<br />

Insertions/deletions<br />

Po<strong>in</strong>t mutations, SNPs<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


Phylogenetics<br />

Compare <strong>the</strong> genetic<br />

relatedness between<br />

organisms<br />

Distance-based methods<br />

are used to create trees<br />

which approximate<br />

phylogenetic relationships<br />

Based on genotyp<strong>in</strong>g data<br />

RFLP, MLST, etc.<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>


The End<br />

BCCDC Public Health <strong>Microbiology</strong> & Reference <strong>Laboratory</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!