Introduction to Mass Spectrometry

Introduction to Mass Spectrometry Introduction to Mass Spectrometry

<strong>Introduction</strong> <strong>to</strong> <strong>Mass</strong> <strong>Spectrometry</strong><br />

Jenny Moshin<br />

Staff Application Specialist


What is a <strong>Mass</strong> Spectrometer<br />

<strong>Mass</strong> Spectrometers measure:<br />

− a<strong>to</strong>mic weight of single elements (ICP-MS)<br />

− the molecular weight of molecules (LCMS, MALDI MS)<br />

2 © 2010 AB SCIEX


Newborn Screening for metabolic conditions<br />

by LC-MS/MS<br />

− Newborn screening is the process of testing newborn babies<br />

for treatable diseases:<br />

− genetic<br />

− endocrinologic<br />

− metabolic<br />

− hema<strong>to</strong>logic<br />

3 © 2010 AB SCIEX


Neonatal Screening<br />

Blood Specimen Collection:<br />

− A few drops of blood taken from the baby’s heel are put on<br />

special filter paper. The blood is then sent <strong>to</strong> a state-approved<br />

lab for testing<br />

4 © 2010 AB SCIEX


Metabolic Diseases<br />

− Metabolic diseases affect the body’s ability <strong>to</strong> use certain parts<br />

of food for growth, energy, and repair.<br />

− The parts include:<br />

– Amino acids from proteins,<br />

– Fatty acids from fats<br />

– Organic acids from proteins, fats, and sugars.<br />

5 © 2010 AB SCIEX


Some of the metabolic diseases screened for by the<br />

NBS Program:<br />

− Phenylke<strong>to</strong>nuria (PKU)<br />

− Galac<strong>to</strong>semia<br />

− Maple Syrup Urine Disease (MSUD)<br />

− Medium-Chain Acyl-CoA Dehydrogenase Deficiency<br />

(MCADD)<br />

− Biotinidase Deficiency<br />

6 © 2010 AB SCIEX


25-Hydroxy Vitamin D by LC/MS/MS<br />

− Vitamin D is clinically useful <strong>to</strong> diagnose disorders related<br />

<strong>to</strong> intestinal malabsorption and vitamin D deficiency or<br />

in<strong>to</strong>xication.<br />

− The 25-Hydroxy vitamin D blood test allows<br />

moni<strong>to</strong>ring for therapeutic response in patients being<br />

treated for vitamin D-related disorders.<br />

7 © 2010 AB SCIEX


Background<br />

− 25-Hydroxy vitamin D (250HD) is the major circulating<br />

form of vitamin D and the precursor of the active form<br />

(1,25-dihydroxy vitamin D). It has a long half-life, which<br />

makes its measurements ideal for assessing a patient’s<br />

vitamin D level<br />

8 © 2010 AB SCIEX


Components of a <strong>Mass</strong> Spectrometer<br />

9 © 2010 AB SCIEX


LCMSMS –What can it do?<br />

− The two most important uses of LC/MS/MS<br />

– Identify unknown species (structural elucidation)<br />

– Quantification (how much of an analyte is in your sample)<br />

− Technologies<br />

– Spherical and Linear Ion Traps<br />

– Time-of-Flight (TOF) MS & Hybrid Quadrupole TOF MS<br />

– Quadrupole based MS<br />

– Hybrid Quadrupole –Linear Ion Trap MS<br />

− Application areas<br />

– Small molecules<br />

– Proteomics and Biomarker research<br />

10 © 2010 AB SCIEX


Benefits of LCMSMS<br />

− Extreme detection power for single and multi analyte analysis<br />

− Often simplified sample preparation (typically no derivatization<br />

needed)<br />

− Can be used <strong>to</strong> identify unknowns (structural elucidation) and<br />

quantitation<br />

− Simpler LC methods and shorter LC run times >> more throughput<br />

− Analytes from low <strong>to</strong> very high polarity can be efficiently ionized<br />

− Rugged instrument design and high throughput<br />

– Lower cost/sample<br />

– Increased productivity<br />

– Easy-<strong>to</strong>-use<br />

11 © 2010 AB SCIEX


Instrument performance criteria which matter<br />

− Ion source & interface design<br />

− Number of analytes that can be quantified from single injections<br />

− Minimum dwell time and pause time and consequences on<br />

Signal/noise<br />

− Absence of cross-talk<br />

− Detec<strong>to</strong>r technology<br />

− Sensitivity, signal/noise (S/N) & detection power<br />

− Dynamic range<br />

− Scan speed<br />

− Systems ruggedness when analyzing many real samples<br />

12 © 2010 AB SCIEX


System Components<br />

Eluent<br />

Delivery<br />

Eluent<br />

Reservoir<br />

Pump<br />

Houses the mobile phase continuously<br />

applied <strong>to</strong> the column. Usually consists of two<br />

bottles, one aqueous and one organic.<br />

Accurately delivers eluent<br />

<strong>to</strong> the column. Capable of<br />

forming precise eluent<br />

gradients.<br />

Introduces the sample in<strong>to</strong><br />

the mobile phase stream<br />

UV/VIS<br />

Refractive Index<br />

ELSD<br />

<strong>Mass</strong><br />

Spectrometer<br />

Detection<br />

Sample<br />

<strong>Introduction</strong><br />

Separation<br />

Guard<br />

Column<br />

Analytical<br />

Column<br />

Thermostatted<br />

Column<br />

Compartment<br />

The heart of an HPLC<br />

system. The column<br />

separates the individual<br />

analytes from the matrix.<br />

Stable temperature ensures<br />

constant retention times and<br />

may reduce column<br />

backpressure.<br />

The detec<strong>to</strong>r moni<strong>to</strong>rs the<br />

presence of a compound<br />

in the mixture.<br />

Data Acquisition<br />

and Instrument<br />

Control<br />

Interprets the data<br />

collected from the<br />

detec<strong>to</strong>r.<br />

13 © 2010 AB SCIEX


Reversed Phase Mechanism<br />

Pump Delivering Higher Concentration of Organic Solvent<br />

aqueous<br />

1. The au<strong>to</strong>sampler picks up sample from the vial.<br />

2. The sample is injected on<strong>to</strong> the column.<br />

3. Initially, the pump delivers a low concentration of organic solvent, and the analytes “stick”<br />

on the column.<br />

4. As the concentration of organic solvent increases, the analyte “unsticks” from the column,<br />

separating one analyte from another.<br />

%B<br />

organic<br />

14 © 2010 AB SCIEX


Reversed Phase Mechanism<br />

H 2 O<br />

H 2 O<br />

Aqueous Mobile Phase<br />

Si<br />

O<br />

Si<br />

O<br />

Si<br />

O<br />

O<br />

O<br />

Si<br />

Si<br />

Si<br />

H 2 O<br />

H 2 O<br />

H 2 O<br />

H 2 O<br />

O<br />

Si<br />

O<br />

Si<br />

H 2 O<br />

silica ( -OH)<br />

H 2 O<br />

15 © 2010 AB SCIEX


Reversed Phase Mechanism<br />

H 2 O<br />

H 2 O<br />

Ace<strong>to</strong>nitrile in Mobile Phase<br />

Si<br />

O<br />

Si<br />

O<br />

Si<br />

O<br />

O<br />

O<br />

Si<br />

Si<br />

Si<br />

ACN<br />

ACN<br />

ACN<br />

ACN<br />

ACN<br />

ACN<br />

H 2 O<br />

ACN<br />

H 2 O<br />

ACN<br />

O<br />

Si O Si<br />

silica ( -OH)<br />

ACN<br />

ACN<br />

ACN<br />

H 2 O<br />

ACN<br />

16 © 2010 AB SCIEX


HPLC versus UHPLC<br />

−<br />

Conventionally, HPLC analysis is run on columns with a particle size 3µm or larger<br />

– Useful for samples with high matrix<br />

– Works with standard HPLC pumps<br />

−<br />

−<br />

Recently, there has been a movement <strong>to</strong> columns packed with column particles ≤2µm<br />

– Less diffusion in the column<br />

– Decreases the chroma<strong>to</strong>graphic run time<br />

– Produces sharper peaks<br />

– Requires pump capable of increased column backpressure<br />

Both methods have advantages, and each is easily coupled <strong>to</strong> a mass spectrometer<br />

0 3 6 9 12 15 18 0 3 6 9 12 15 18<br />

Minutes<br />

Conventional Chroma<strong>to</strong>graphy<br />

0 0.3<br />

0.6 Minutes 0.9<br />

Ultra High Pressure Chroma<strong>to</strong>graphy<br />

17 © 2010 AB SCIEX


How <strong>Mass</strong> <strong>Spectrometry</strong> Works – The Basics<br />

Ionized<br />

compounds are<br />

introduced in<strong>to</strong><br />

the instrument<br />

Ions are<br />

sorted by m/z<br />

1. 2.<br />

4.<br />

intensity<br />

m/z<br />

the results are displayed<br />

the signal is<br />

detected and<br />

counted<br />

3.<br />

18 © 2010 AB SCIEX


Convenient “Plug and Play” Sources<br />

Turbo V source with ESI & APCI probes<br />

• Efficiently ionizes compounds and eliminates cross contamination<br />

• Accommodates large sample loads and LC flow rates up <strong>to</strong> 3ml/min<br />

• Embedded ceramic heater technology and improved gas dynamics enable low<br />

detection limits<br />

• Quick change TurboIonSpray® probe and APCI probe let you switch ionization<br />

modes in seconds<br />

Optional DuoSpray ion source<br />

Optional Pho<strong>to</strong>Spray® source<br />

19 © 2010 AB SCIEX


Ion Spray<br />

Voltage<br />

(IS)<br />

LC<br />

Flow<br />

Gas 1<br />

(GS1)<br />

Electrospray Ionization Theory<br />

(positive mode shown)<br />

Droplet<br />

Gas 2 (GS2)<br />

& Heat (TEM)<br />

Curtain Plate<br />

+<br />

Solvent molecule<br />

Ion of interest<br />

Curtain<br />

Gas(CUR)<br />

+<br />

+ - +<br />

+ +<br />

+ +<br />

+<br />

+<br />

+ +<br />

- ++<br />

+<br />

+- +<br />

++<br />

+<br />

+<br />

+<br />

+ +<br />

+<br />

Orifice<br />

(DP)<br />

1. Formation of<br />

Charged<br />

Droplets<br />

2. Evaporation 3. Ionic repulsion<br />

w/clustering<br />

4. Ions enter<br />

<strong>Mass</strong> Analyzer<br />

20 © 2010 AB SCIEX


Corona<br />

discharge<br />

needle<br />

LC<br />

Flow<br />

Heated<br />

nebulizer<br />

APCI Theory<br />

+<br />

Gas 1<br />

Curtain Plate<br />

(GS1)<br />

+<br />

+ .<br />

+<br />

+<br />

+ +<br />

+<br />

+<br />

+<br />

+ +<br />

+ . + .<br />

+ .<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+ . + . + .<br />

O 2 or N 2<br />

Solvent molecule<br />

Ion of interest<br />

Curtain<br />

Gas(CUR)<br />

+ . Orifice<br />

+<br />

1. Molecules<br />

in gas phase<br />

2. Corona<br />

discharge<br />

needle ionizes<br />

N2 or O2 in<br />

source<br />

3. N 2 or O 2<br />

pass charge<br />

<strong>to</strong> vaporized<br />

solvent<br />

4. Vaporized,<br />

charged solvent<br />

passes charge<br />

<strong>to</strong> Analyte<br />

5. Ions enter<br />

<strong>Mass</strong> Analyzer<br />

aided by DP<br />

(DP)<br />

21 © 2010 AB SCIEX


When <strong>to</strong> use the various sources<br />

22 © 2010 AB SCIEX


Triple Quadrupole Overview<br />

6<br />

1<br />

Ion Production<br />

2 Ion Transmission<br />

2 3 4 5<br />

3<br />

<strong>Mass</strong> Filter<br />

1<br />

TM<br />

4<br />

Fragmentation<br />

5<br />

<strong>Mass</strong> Filter<br />

6<br />

Detec<strong>to</strong>r<br />

23 © 2010 AB SCIEX


Triple Quadrupole (Tandem) MS schematics<br />

24 © 2010 AB SCIEX


LC/MS/MS – Multiple Reaction Moni<strong>to</strong>ring (MRM)<br />

Filter precursor ion Fragmentation Filter product ion<br />

− Superior selectivity and sensitivity for quantitation of targeted<br />

compounds<br />

− MRM ratio calculation for compound identification (qualifier/quantifier)<br />

− Multi-target screening for hundreds of compounds<br />

25 © 2010 AB SCIEX


Multiple Reaction Moni<strong>to</strong>ring (MRM)<br />

N 2<br />

Q0 Q1 Q2 Q3 Detec<strong>to</strong>r<br />

LC<br />

MRM<br />

intensity<br />

0 5 min<br />

time<br />

26 © 2010 AB SCIEX


Single Quadrupole vs. Triple Quadrupole<br />

SIM<br />

MRM<br />

1.6e5<br />

1.5e5<br />

1.4e5<br />

1.3e5<br />

6500<br />

6000<br />

5500<br />

6.9<br />

1.2e5<br />

5000<br />

1.1e5<br />

1.0e5<br />

9.0e4<br />

8.0e4<br />

7.0e4<br />

11.1<br />

4500<br />

4000<br />

3500<br />

3000<br />

6.0e4<br />

5.0e4<br />

4.0e4<br />

3.0e4<br />

2.0e4<br />

1.0e4<br />

0.6<br />

7.1<br />

9.6<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0.0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Time, min<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Time, min<br />

− Higher selectivity resulting in better S/N for quantitation<br />

− Better accuracy and reproducibility<br />

− Wider linear range<br />

− More reliable identification using MRM ratios<br />

27 © 2010 AB SCIEX


How quantitation is performed<br />

Run calibration curve<br />

Integrate curve<br />

Integrate sample<br />

28 © 2010 AB SCIEX


Confirmation through MRM<br />

− LCMSMS analysis<br />

usually requires<br />

moni<strong>to</strong>ring 2 MRM<br />

transitions for each<br />

compound –<br />

Quantitation Ion and<br />

Qualifier Ion<br />

− Ion ratio (ratio of the<br />

areas of the 2<br />

transitions) needs <strong>to</strong><br />

be calculated<br />

Oxazepam<br />

Quant 287>241<br />

Qualifier 287>269<br />

Lorazepam<br />

Quant 321>275<br />

Qualifier 321>229<br />

Nordiazepam<br />

271>140<br />

271>165<br />

Temazepam<br />

301>177<br />

301>193<br />

29 © 2010 AB SCIEX


Scheduled MRM Algorithm<br />

1.7e6<br />

1.5e6<br />

1.0e6<br />

5.0e5<br />

0.58<br />

0.0<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0<br />

Time, min<br />

− Adjusts detection windows au<strong>to</strong>matically depending on retention time<br />

− Allows detecting many more MRM transitions<br />

− Allows using faster LC<br />

30 © 2010 AB SCIEX


QTRAP® System Overview<br />

6<br />

1<br />

Ion Production<br />

2 Ion Transmission<br />

2 3 4 5<br />

3<br />

<strong>Mass</strong> Filter<br />

1<br />

TM<br />

4<br />

Fragmentation<br />

5<br />

<strong>Mass</strong> Filter<br />

• Q3 can be used as a quadrupole or<br />

as a linear ion trap<br />

6<br />

Detec<strong>to</strong>r<br />

31 © 2010 AB SCIEX


Q1 MS Scan vs. Enhanced MS Scan<br />

Q0 Trap<br />

Trap<br />

Q0 Q1 Q2 Q3 Detec<strong>to</strong>r<br />

Q1 MS<br />

Scan<br />

Enhanced<br />

MS Scan<br />

32 © 2010 AB SCIEX


Product Ion Scan vs. Enhanced Product Ion Scan<br />

Q0 Trap<br />

N 2<br />

Trap<br />

Q0 Q1 Q2 Q3 Detec<strong>to</strong>r<br />

Product<br />

Ion Scan<br />

Enhanced<br />

Product<br />

Ion Scan<br />

33 © 2010 AB SCIEX


Movie<br />

− ..\Help\Brent\4000QTRAP_4x3<br />

_640x480_052808.wmv<br />

34 © 2010 AB SCIEX


Information Dependent Acquisition (IDA)<br />

− Acquisition method that au<strong>to</strong>matically selects candidate ions for<br />

MS/MS study<br />

Wide variety of survey or<br />

independent scans possible<br />

Survey Scan<br />

Selection criteria<br />

IDA Criteria<br />

Dynamic<br />

Exclusion<br />

Dependant scan<br />

(EPI, Product Ion and MS3)<br />

Acquire MSMS<br />

Spectra<br />

35 © 2010 AB SCIEX


IDA Workflows<br />

− MultiTarget Screening (MTS)<br />

– MRM or sMRM survey scan will trigger EPI scans<br />

– High sensitivity<br />

− General Unknown Screening (GUS)<br />

– EMS survey scan will trigger EPI scans<br />

– Searching for unknown compounds<br />

36 © 2010 AB SCIEX


EMS Triggering EPI for Library Search<br />

EMS<br />

intensity threshold<br />

Threshold<br />

EPI<br />

297<br />

159<br />

69 173<br />

81 141<br />

109<br />

115<br />

176<br />

201<br />

255<br />

Library Search<br />

37 © 2010 AB SCIEX


sMRM Quant Survey Triggering EPI for Library<br />

Search<br />

Scheduled MRM Algorithm<br />

intensity threshold<br />

Threshold<br />

EPI<br />

297<br />

159<br />

69 173<br />

81 141<br />

109<br />

115<br />

176<br />

201<br />

255<br />

Library Search<br />

38 © 2010 AB SCIEX


Cliquid ® 3.0 Software<br />

39 © 2010 AB SCIEX


Cliquid ® 4-Step Workflow<br />

1. Choose a Test 2. Build Sample List<br />

4. Submit Samples 3. Select Report<br />

40 © 2010 AB SCIEX


Au<strong>to</strong>matic Report Generation<br />

41 © 2010 AB SCIEX


iMethod Test: Instant Methods for<br />

Accelerated Results<br />

− Download a lab proven method from the web or a CD<br />

− Add your samples<br />

− Ready <strong>to</strong> go<br />

42 © 2010 AB SCIEX


http://www.absciex.com/imethods/<br />

43 © 2010 AB SCIEX


iMethod Tests<br />

– Inborn Errors of Metabolism<br />

– Antiretrovirals<br />

– Vitamin D<br />

– Immunosuppressants<br />

– Steroids Panel<br />

– Pain Panel<br />

44 © 2010 AB SCIEX


Summary<br />

− LC-MS/MS provides the selectivity and sensitivity required <strong>to</strong> analyze<br />

patient samples for clinical research applications.<br />

− LC-MS/MS allows for simultaneous quantitaion and verification of<br />

results<br />

– Can detect non-volatile, polar and thermally labile compounds<br />

– More sensitive than GC, LC or GC/MS<br />

– More information for confirmation via RT, ion ratios, library searching<br />

− LC-MS/MS has the ability <strong>to</strong> moni<strong>to</strong>r hundreds of analytes per<br />

analysis<br />

– Moni<strong>to</strong>r hundreds of analytes per analysis<br />

– Obtain full scan confirma<strong>to</strong>ry MS/MS in the same run<br />

– High throughput capabilities – fast chroma<strong>to</strong>graphy and multiple analytes<br />

can be screened for in the same run<br />

− Cliquid Software and iMethod Tests provide ease of use along with a<br />

number of key features<br />

45 © 2010 AB SCIEX


Legal Acknowledgments<br />

− For Research Use Only. Not for use in diagnostic<br />

procedures.<br />

− UltiMate is a registered trademark of Dionex Corporation<br />

− All other trademarks mentioned herein are the property of<br />

AB SCIEX Pte. Ltd. or their respective owners.<br />

− AB SCIEX is being used under license.<br />

− © 2010 AB SCIEX.<br />

46 © 2010 AB SCIEX

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!