27.09.2014 Views

Problems to Standard Model - Theoretische Physik 1 ...

Problems to Standard Model - Theoretische Physik 1 ...

Problems to Standard Model - Theoretische Physik 1 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Problems</strong> <strong>to</strong> <strong>Standard</strong> <strong>Model</strong> SS 2011<br />

Th. Mannel, T. Huber, S. Faller<br />

Sheet 7 — Handout: 27.05.2011 — Due: Friday, 03.06.2011<br />

Problem 22: The -<strong>Model</strong><br />

The so called -model for four real scalar fields , j .j D 1; 2; 3/ and two Dirac-fields 1 , 2 is<br />

defined through the Lagrangian density<br />

5 P<br />

ˇ D 1 2<br />

3X<br />

.@ j /.@ j / C 1 2X<br />

2 .@ /.@ / C<br />

j D1<br />

j D1<br />

N j i =@ j V .; i / ˇint ;<br />

where<br />

V .; i / D 1 2 2 2 C<br />

ˇint D g<br />

2X<br />

j;lD1<br />

3X<br />

j D1<br />

2 j<br />

N j<br />

ı jl C i<br />

<br />

C <br />

2 C<br />

4<br />

3X<br />

2<br />

j 2 ; with 2 < 0 ; > 0 ;<br />

j D1<br />

3X<br />

<br />

k . k / jl 5<br />

kD1<br />

l ; k : Pauli matrices :<br />

a) Prove the invariance under the infinitesimal global SU.2/ symmetry transformations,<br />

7 ! ;<br />

j 7 ! j C jkl˛k l ;<br />

2X<br />

<br />

i<br />

3X<br />

<br />

k 7 ! ı kl ˛j . j / kl<br />

2<br />

lD1<br />

j D1<br />

l ;<br />

and calculate the associated Noether currents.<br />

b) Verify that the Lagrangian density is also invariant under the global transformations,<br />

3X<br />

7 ! C ˛j j ;<br />

j D1<br />

j 7 ! j ˛j ;<br />

2X<br />

<br />

k 7 ! ı kl C i 2<br />

lD1<br />

3X<br />

<br />

˛j . j / kl 5<br />

j D1<br />

l :<br />

Compute the corresponding Noether currents.


Problem 23: Two Particle Phase Space<br />

a) Show that<br />

Z<br />

d 3 Z<br />

k d 3`<br />

.2/ 3 2k 0 .2/ 3 2`0<br />

.2/ 4 ı .4/ .q k `/ D 1<br />

8q 2 q2 ; m 2 k ; m2` q<br />

0 q 2 .m k C m`/ 2 ;<br />

where m 2 1 ; m2 2 ; q<br />

m2 3 D m 4 1 C m4 2 C m4 3<br />

2m 2 1 m2 2<br />

2m 2 1 m2 3<br />

2m 2 2 m2 3 .<br />

Compute the limiting cases<br />

Hint:<br />

i) m k D m ; m` D m ;<br />

ii) m k D 0 ; m` D m ;<br />

iii) m k D 0 ; m` D 0 :<br />

Use the result of problem 9b).<br />

5 P<br />

b) Now use this result, <strong>to</strong> compute the vec<strong>to</strong>r and tensor integrals<br />

Z<br />

d 3 Z<br />

k d 3`<br />

.2/ 3 2k 0 .2/ 3 k˛.2/ 4 ı .4/ .q k `/ and<br />

2`0<br />

Z<br />

d 3 Z<br />

k d 3`<br />

k˛`ˇ .2/ 3 2k 0 .2/ 3 .2/ 4 ı .4/ .q k `/ :<br />

2`0<br />

For simplicity put the masses m` D m k D 0.<br />

Hint:<br />

Show that the integral has <strong>to</strong> be covariant under Lorentz transformations. Which Lorentz<br />

vec<strong>to</strong>rs and tensors are available <strong>to</strong> construct the needed Lorentz structure?<br />

Make a general Ansatz, and determine the coefficients by appropriate projections.<br />

Problem 24: The Dirac Field<br />

Consider the Dirac field, as given in the lecture<br />

˛.x/ D X Z<br />

d 3 p<br />

h<br />

.2/ 3 2p 0 a.p; s/u˛.p; s/e ipx C b .p; s/v˛.p; s/e ipxi<br />

sD˙ 1<br />

2<br />

N ˇ .x/ D X<br />

sD˙ 1<br />

2<br />

Z<br />

d 3 p<br />

h<br />

.2/ 3 2p 0 a .p; s/ Nuˇ .p; s/e ipx C b.p; s/ Nvˇ .p; s/e ipxi :<br />

a) An alternative way <strong>to</strong> compute the propaga<strong>to</strong>r of the Dirac field is by considering the following<br />

matrix element,<br />

˝0<br />

ˇˇT<br />

<br />

˛.x/ N ˇ .y/ ˇˇ 0˛<br />

:<br />

5 P<br />

please turn over!


The symbol T Œ: : : denotes the time-ordered product, which means<br />

˝0<br />

ˇˇT ˛.x/ N ˇ .y/ ˇˇ 0˛<br />

D<br />

˝0<br />

ˇˇ ˛.x/ N ˇ .y/ˇˇ 0˛<br />

x<br />

0<br />

y 0 ˝0 ˇˇ N ˇ .y/ ˛.x/ˇˇ 0˛<br />

y<br />

0<br />

x 0 ;<br />

where the minus sign is due <strong>to</strong> the fact that the fermion fields anticommute.<br />

Show that this leads <strong>to</strong> the Dirac propaga<strong>to</strong>r in the following form,<br />

˝0<br />

ˇˇT<br />

<br />

˛.x/ N ˇ .y/ ˇˇ Z<br />

0˛<br />

D<br />

d 4 p<br />

.2/ 4 <br />

i QG.p/ ˛ˇ e ip.x y/ ;<br />

where i QG.p/ is the Dirac propaga<strong>to</strong>r in momentum space as given in the lecture.<br />

Hint:<br />

Use the following representation for the -step function<br />

.z/ D 1 Z 1<br />

d eiz<br />

2i 1 i :<br />

b) Show that the annihilation opera<strong>to</strong>rs a.p; r/ and b.p; r/ can be written as the following integrals<br />

over the field .x/.<br />

Z<br />

a.p; r/ D d 3 x u ˛.p; r/ ˛.x/ e ipx ;<br />

Z<br />

b.p; r/ D d 3 x N ˛.x/ 0˛ˇ vˇ .p; r/ e ipx :

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!