27.09.2014 Views

Quantum Spin Hall Effect in Graphene - APS Link Manager ...

Quantum Spin Hall Effect in Graphene - APS Link Manager ...

Quantum Spin Hall Effect in Graphene - APS Link Manager ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PRL 95, 226801 (2005)<br />

PHYSICAL REVIEW LETTERS week end<strong>in</strong>g<br />

25 NOVEMBER 2005<br />

with a ferromagnetic contact) will be split, with the up<br />

(down) sp<strong>in</strong>s transported to the top (bottom) contacts,<br />

generat<strong>in</strong>g a measurable sp<strong>in</strong> <strong>Hall</strong> voltage.<br />

The magnitude of so may be estimated by treat<strong>in</strong>g the<br />

microsopic SO <strong>in</strong>teraction<br />

@<br />

V SO<br />

4m 2 s rV p (7)<br />

c2 <strong>in</strong> first order degenerate perturbation theory. We thus<br />

evaluate the expectation value of (8) <strong>in</strong> the basis of states<br />

given <strong>in</strong> (1) treat<strong>in</strong>g r as a constant. A full evaluation<br />

depends on the detailed form of the Bloch functions. However<br />

a simple estimate can be made <strong>in</strong> the ‘‘first star’’<br />

P<br />

p<br />

approximation: u K;K 0 ; A;B r p exp iK p r d = 3 .<br />

Here K p are the crystal momenta at the three corners of the<br />

Brillou<strong>in</strong> zone equivalent to K or K 0 , and d is the a basis<br />

vector from a hexagon center to an A or B sublattice site.<br />

We f<strong>in</strong>d that the matrix elements have precisely the structure<br />

(3), and us<strong>in</strong>g the Coulomb <strong>in</strong>teraction V r e 2 =r we<br />

estimate 2 so 4 2 e 2 @ 2 = 3m 2 c 2 a 3 2:4K. This is a<br />

crude estimate, but it is comparable to the SO splitt<strong>in</strong>gs<br />

quoted <strong>in</strong> the graphite literature [8].<br />

The Rashba <strong>in</strong>teraction due to a perpendicular electric<br />

field E z may be estimated as R @v F eE z = 4mc 2 .For<br />

E z 50 V=300 nm [3] this gives R 0:5 mK. This is<br />

smaller than so because E z is weaker than the atomic<br />

scale field. The Rashba term due to <strong>in</strong>teraction with a<br />

substrate is more difficult to estimate, though s<strong>in</strong>ce it is<br />

presumably a weak Van der Waals <strong>in</strong>teraction, this too can<br />

be expected to be smaller than so.<br />

This estimate of so ignores the effect of electronelectron<br />

<strong>in</strong>teractions. The long range Coulomb <strong>in</strong>teraction<br />

may substantially <strong>in</strong>crease the energy gap. To lead<strong>in</strong>g order<br />

the SO potential is renormalized by the diagram shown <strong>in</strong><br />

Fig. 3, which physically represents the <strong>in</strong>teraction of electrons<br />

with the exchange potential <strong>in</strong>duced by so. This is<br />

similar <strong>in</strong> spirit to the gap renormalizations <strong>in</strong> 1D Lutt<strong>in</strong>ger<br />

liquids and leads to a logarithmically divergent correction<br />

to so. The divergence is due to the long range 1=r<br />

Coulomb <strong>in</strong>teraction, which persists <strong>in</strong> graphene even<br />

account<strong>in</strong>g for screen<strong>in</strong>g [20]. The divergent corrections<br />

to so as well as similar corrections to @v F can be summed<br />

us<strong>in</strong>g the renormalization group (RG) [20]. Introduc<strong>in</strong>g the<br />

dimensionless Coulomb <strong>in</strong>teraction g e 2 =@v F we <strong>in</strong>tegrate<br />

out the high energy degrees of freedom with energy<br />

between and e ‘ . To lead<strong>in</strong>g order <strong>in</strong> g the RG flow<br />

equations are<br />

dg=d‘ g 2 =4; d so =d‘ g so =2: (8)<br />

These equations can be <strong>in</strong>tegrated, and at energy scale ",<br />

so "<br />

0 so 1 g 0 =4 log 0 =" 2 . Here g 0 and 0 so are<br />

the <strong>in</strong>teractions at cutoff scale<br />

0 . The renormalized gap is<br />

determ<strong>in</strong>ed by<br />

R R so so so . Us<strong>in</strong>g an effective <strong>in</strong>teraction<br />

g 0 0:74 [21] and<br />

0<br />

2eVthis leads to 2 R so<br />

15 K.<br />

σ τ s<br />

z z z<br />

FIG. 3. Feynman diagram describ<strong>in</strong>g the renormalization of<br />

the SO potential by the Coulomb <strong>in</strong>teraction. The solid l<strong>in</strong>e<br />

represents the electron propagator and the wavy l<strong>in</strong>e is the<br />

Coulomb <strong>in</strong>teraction.<br />

In summary, we have shown that the ground state of a<br />

s<strong>in</strong>gle plane of graphene exhibits a QSH effect, and has a<br />

nontrivial topological order that is robust aga<strong>in</strong>st small<br />

perturbations. The QSH phase should be observable by<br />

study<strong>in</strong>g low temperature charge transport and sp<strong>in</strong> <strong>in</strong>jection<br />

<strong>in</strong> samples of graphene with sufficient size and purity<br />

to allow the bulk energy gap to manifest itself. It would<br />

also be of <strong>in</strong>terest to f<strong>in</strong>d other materials with stronger SO<br />

coupl<strong>in</strong>g which exhibit this effect, as well as possible<br />

three-dimensional generalizations.<br />

We thank J. Kikkawa and S. Murakami for helpful<br />

discussions. This work was supported by the NSF under<br />

MRSEC Grant No. DMR-00-79909 and the DOE under<br />

Grant No. DE-FG02-ER-0145118.<br />

[1] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301,<br />

1348 (2003).<br />

[2] J. S<strong>in</strong>ova et al., Phys. Rev. Lett. 92, 126603 (2004).<br />

[3] Y. K. Kato et al., Science 306, 1910 (2004).<br />

[4] J. Wunderlich et al., Phys. Rev. Lett. 94, 047204 (2005).<br />

[5] S. Murakami, N. Nagaosa, and S. C. Zhang, Phys. Rev.<br />

Lett. 93, 156804 (2004).<br />

[6] K. S. Novoselov et al., Science 306, 666 (2004).<br />

[7] G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. 140,<br />

A401 (1965).<br />

[8] N. B. Brandt, S. M. Chud<strong>in</strong>ov, and Y. G. Ponomarav, Semimetals<br />

1. Graphite and its Compounds (North Holland,<br />

Amsterdam, 1988).<br />

[9] D. P. DiV<strong>in</strong>cenzo and E. J. Mele, Phys. Rev. B 29, 1685<br />

(1984).<br />

[10] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039<br />

(1984).<br />

[11] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).<br />

[12] D. J. Thouless, M. Kohmoto, M. P. Night<strong>in</strong>gale, and<br />

M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).<br />

[13] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).<br />

[14] S. Murakami, N. Nagaosa, and S. C. Zhang, Phys. Rev. B<br />

69, 235206 (2004).<br />

[15] R. B. Laughl<strong>in</strong>, Phys. Rev. B 23, R5632 (1981).<br />

[16] M. Fujita et al. J. Phys. Soc. Jpn. 65, 1920 (1996).<br />

[17] Y. Niimi et al., Phys. Rev. B 70, 214430 (2004).<br />

[18] T. Giamarchi and H. Schulz, Phys. Rev. B 37, 325 (1988).<br />

[19] M. Büttiker, Phys. Rev. B 38, 9375 (1988).<br />

[20] J. Gonzalez, F. Gu<strong>in</strong>ea, and M. A. H. Vozmediano, Phys.<br />

Rev. B 59, R2474 (1999).<br />

[21] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 93, 197402<br />

(2004).<br />

226801-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!