24.09.2014 Views

Zeroth Order Bessel Equation

Zeroth Order Bessel Equation

Zeroth Order Bessel Equation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The solution of the zeroth order <strong>Bessel</strong>’s <strong>Equation</strong><br />

Zero <strong>Order</strong> <strong>Bessel</strong> Function<br />

Ang Man Shun<br />

October 16, 2012<br />

Is<br />

t 2 d2 y(t)<br />

dt 2 + t d dt y(t) + t2 y = 0<br />

y(t) =<br />

∞∑<br />

k=0<br />

(−1) k<br />

2 2k (k!) 2 · t2k<br />

1 Review of related mathematics<br />

1.1 Binomial Expansion<br />

A special case ,<br />

(a + b) n =<br />

n∑<br />

Cr n a n−r b r<br />

r=0<br />

(1 + x) n =<br />

n∑<br />

Cr n x r<br />

r=0<br />

The binomial coefficient C n r<br />

For n ∈ R and r > 0<br />

C n r =<br />

n!<br />

(n − r)!r!<br />

n, r ∈ Z + n > r<br />

C n r =<br />

n · (n − 1) · (n − 2) ...(n − r + 1)<br />

r!<br />

1


1.2 Laplace Transfrom<br />

Property 1<br />

Pf.<br />

And thus<br />

{ } d<br />

L<br />

dt x(t) =<br />

{ } d 2 x(t)<br />

L<br />

dt 2<br />

ˆ ∞<br />

0<br />

⎧<br />

L {x(t)} =<br />

( d<br />

dt x(t) )<br />

e −st dt =<br />

ˆ ∞<br />

ˆ ∞<br />

0<br />

e −st dx(t) = e −st x(t)| ∞ 0<br />

= −x(0) + s x(t)e −st dt = sX(s) − x(0)<br />

0<br />

} {{ }<br />

⎫<br />

ˆ ∞<br />

X(s)<br />

⎪⎨ ( )<br />

d dx(t)<br />

⎪⎬ { } dx(t)<br />

= L<br />

= s L<br />

dt dt<br />

dt<br />

⎪⎩ } {{ } ⎪⎭ } {{ }<br />

f(t)<br />

F (s)<br />

0<br />

x(t)e −st dt = X(s)<br />

{ } d<br />

L<br />

dt x(t) = sX(s) − x(0)<br />

−<br />

ˆ ∞<br />

0<br />

x(t)de −st<br />

− dx(t) | x=0 = s 2 X(s) − sx(0) − x ′ (0)<br />

dt<br />

Property 2<br />

L {tx(t)} = − d ds X(s)<br />

Pf.<br />

− d ds X(s) = − d ds L {x(t)} = − d ds<br />

ˆ ∞<br />

0<br />

x(t)e −st dt = −<br />

ˆ ∞<br />

x(t) d ds e−st dt = −<br />

ˆ ∞<br />

0<br />

0<br />

x(t)(−t)e −st dt = L {tx(t)}<br />

Property 3<br />

Pf.<br />

L {t n } = n!<br />

s n+1<br />

L { t 0} =L {1}=<br />

ˆ ∞<br />

0<br />

e −st dt = e−st | ∞ 0<br />

−s<br />

= 1 s = 0!<br />

s 1<br />

L { t 1} = L {t · 1}= − d ds L {1} = − d 1<br />

ds s = 1 s = 1!<br />

2 s 2<br />

L { t 2} = L {t · t}= − d ds L {t} = − d 1<br />

ds s = 2 2 s = 2!<br />

3 s 3<br />

Assume L { t k} = k! , then apply property 2 again ,<br />

sk+1 L { t k+1} = L { t · t k} = − d ds L { t k} = − d k! (k + 1)!<br />

=<br />

ds sk+1 s k+2<br />

So the prove by Mathematical Induction is now complete.<br />

2


2 Solving <strong>Zeroth</strong> Oder <strong>Bessel</strong> Differential <strong>Equation</strong><br />

2.1 General <strong>Bessel</strong> Differential Eqaution<br />

t 2 d2 y(t)<br />

dt 2<br />

+ t dy(t)<br />

dt<br />

p is called the order of <strong>Bessel</strong>’s <strong>Equation</strong><br />

+ ( t 2 − p 2) y = 0 p ≥ 0<br />

2.2 The solution of p = 0 , <strong>Zeroth</strong> <strong>Order</strong><br />

Divide the equation by t<br />

Apply Laplace Transform<br />

t 2 d2 y(t)<br />

dt 2<br />

+ t dy(t)<br />

dt<br />

ty” + y ′ + ty = 0<br />

+ t 2 y(t) = 0<br />

Apply L-property :<br />

L {ty”} + L {y ′ } + L {ty} = 0<br />

ty” ←→ (−1) 1 dF<br />

ds , d 2<br />

dt y(t) ←→ 2 s2 Y (s) − sy(0) − y ′ (0) and d y(t) ←→ sY (s) −<br />

dt<br />

y(0)<br />

⇒<br />

⇒<br />

− d ds L {y”} + L {y′ } − d ds L {y} = 0<br />

− d ds<br />

{<br />

s 2 Y (s) − sy(0) − y ′ (0) } + {sY (s) − y(0)} − d ds Y (s) = 0<br />

⇒<br />

− d ds s2 Y (s) + d<br />

} {{ } ds sy(0) + d<br />

} {{ } ds y′ (0) +sY (s) − y(0) − d<br />

} {{ }<br />

ds Y (s) = 0<br />

2sY +s 2 Y ′ +y(0) 0<br />

⇒ −2sY − s 2 Y ′ + sY − Y ′ = 0 ⇒ ( s 2 + 1 ) dY (s)<br />

ds<br />

+ sY (s) = 0 ⇒<br />

dY (s)<br />

ds<br />

+ s<br />

s 2 + 1 Y (s) = 0<br />

⇒<br />

dY (s)<br />

Y (s) + s<br />

s 2 + 1 ds = 0 ⇒ ln Y (s) + 1 2 ln ( s 2 + 1 ) = C ′ ⇒ ln Y + ln ( s 2 + 1 ) 1 2<br />

= C<br />

⇒<br />

[<br />

ln Y √ ]<br />

s 2 + 1 = C ′ ⇒ Y (s) =<br />

C<br />

√<br />

s2 + 1<br />

Let C = 1 , and rewrite it into the form<br />

Y (s) = ( s 2 + 1 ) − 1 2<br />

= 1 s<br />

(1 + 1 s 2 ) −<br />

1<br />

2<br />

3


Apply Binomial Expansion<br />

Where<br />

Y (s) = 1 s<br />

∞∑<br />

k=0<br />

C − 1 2<br />

k<br />

( 1<br />

s 2 ) k<br />

=<br />

∞∑<br />

k=0<br />

C − 1 2<br />

k<br />

1<br />

s 2k+1<br />

C −1<br />

2<br />

k<br />

=<br />

(<br />

− 1 ) ( −1<br />

2<br />

2 − 1 ) ( −1<br />

2 − 2 )<br />

...<br />

k!<br />

( −1<br />

2 − k + 1 )<br />

=<br />

( ) ( ) ( ( )<br />

1 3 5 2k − 1<br />

(−1) k ...<br />

2 2 2)<br />

2<br />

k!<br />

∴<br />

Since,<br />

(2k)!<br />

{ }} {<br />

= (−1)k 1.3.5... (2k − 1) · 2.4.6...2k<br />

2 k k! · 2.4.6...2k } {{ }<br />

2 k k!<br />

Y (s) =<br />

∞∑<br />

k=0<br />

C − 1 2<br />

k<br />

1<br />

s = ∑ ∞ 2k+1<br />

k=0<br />

= (−1)k (2k)!<br />

2 k k!2 k k!<br />

(−1) k (2k)!<br />

2 2k (k!) 2 1<br />

s 2k+1 = ∞<br />

∑<br />

k=0<br />

= (−1)k (2k)!<br />

2 2k (k!) 2<br />

( )<br />

(−1) k (2k)!<br />

2 2k (k!) 2 s 2k+1<br />

Y (s) = L {y(t)} , which is the solution of t 2 d2 y(t)<br />

+ t dy(t) + t 2 y = 0<br />

dt 2 dt<br />

Denote y(t) = J 0 (t) , take the inverse Laplace Transfrom using the property<br />

∴<br />

J 0 (t) = L −1 { ∞<br />

∑<br />

k=0<br />

}<br />

(−1) k (2k)!<br />

=<br />

2 2k (k!) 2 s 2k+1<br />

L {t n } = n!<br />

s n+1<br />

∞∑<br />

k=0<br />

{ }<br />

(−1) k (2k)!<br />

2 2k (k!) L =<br />

2 s 2k+1<br />

∞∑<br />

k=0<br />

(−1) k<br />

2 2k (k!) 2 t2k<br />

−END−

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!