24.09.2014 Views

The Sinc Dirichlet Function

The Sinc Dirichlet Function

The Sinc Dirichlet Function

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Sinc</strong> <strong>Dirichlet</strong> <strong>Function</strong><br />

February 20, 2013<br />

Diric (x) =<br />

sin nx<br />

2<br />

n sin x 2<br />

1 <strong>The</strong> L-point running-average filter<br />

y[n] = 1 ∑L−1<br />

x[n − k]<br />

L<br />

<strong>The</strong> output is the average of x[n] and the previous L − 1 samples (total L samples )<br />

k=0<br />

y[n] = 1 ( x[n] + x[n − 1] + x[n − 2] + ... + x[n − L + 2] + x[n − L + 1] )<br />

L<br />

This is an example of linear time-invariant system<br />

Consider the frequency response<br />

i.e. When input is x[n] = Ae j(nˆω+ϕ)<br />

y(ˆω) = 1 ∑L−1<br />

Ae j((n−k)ˆω+ϕ) =<br />

L<br />

k=0<br />

Apply the sum of geometric series<br />

H (ˆω) = 1 L<br />

(<br />

1 ∑L−1<br />

L<br />

∑L−1<br />

k=0<br />

k=0<br />

−j ˆωk<br />

e<br />

e −j ˆωk )<br />

Ae j(nˆω+ϕ)<br />

Thus<br />

Apply a trick<br />

N−1<br />

∑<br />

n=0<br />

H (ˆω) = 1 L<br />

= 1 L<br />

a n = 1 − aN<br />

1 − a<br />

∑L−1<br />

k=0<br />

−j ˆωL<br />

1 − e<br />

1 − e−j ˆω<br />

−j ˆωk<br />

e<br />

1 − e j ˆωN = e ( j ˆωN/2 e −j ˆωN/2 − e j ˆωN/2) 1 − e −j ˆωN = e ( −j ˆωN/2 e j ˆωN/2 −j<br />

− e<br />

ˆωN/2)<br />

1


H (ˆω) = 1 e ( −j ˆωL/2 e j ˆωL/2 −j<br />

− e<br />

ˆωL/2)<br />

L e −j ˆω/2 (e j ˆω/2 − e −j ˆω/2) )<br />

= 1 L<br />

(<br />

e<br />

j ˆωL/2 − e −j ˆωL/2) · 1<br />

2j<br />

(e j ˆω/2 − e −j ˆω/2) ) · 1<br />

2j<br />

= 1 sin ˆωL 2<br />

L sin ˆω 2<br />

·<br />

−j ˆω(L−1)/2<br />

e<br />

ˆωL/2 e−j<br />

e−j ˆω/2<br />

−j ˆω(L−1)/2<br />

H(ˆω) = Diric (ˆω) e<br />

Thus, the Diric function is the magnitude component of the L-point running average filter<br />

2 <strong>The</strong> <strong>Dirichlet</strong> <strong>Function</strong><br />

Diric (x) =<br />

sin nx<br />

2<br />

n sin x 2<br />

When x = 2kπ<br />

k ∈ Z<br />

=<br />

Diric (x) =<br />

sin nx<br />

2<br />

n x 2<br />

x<br />

2<br />

sin x 2<br />

sin nkπ<br />

n sin kπ<br />

=<br />

sinc nx<br />

2<br />

sinc x 2<br />

<strong>The</strong>refore<br />

lim<br />

x→0<br />

Diric (x) = lim<br />

x→0<br />

sinc nx<br />

2<br />

sinc x 2<br />

<strong>Sinc</strong>e the limit exists for both upper side and lower side<br />

Thus<br />

Also, it can be shown that<br />

=<br />

lim sincnx<br />

x→0 2<br />

lim sincx<br />

x→0 2<br />

= 1 1 = 1<br />

limDiric (x) = 1<br />

x→0<br />

max Diric (x) = 1<br />

−END−<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!