24.09.2014 Views

Dipole Antenna / Hertzian dipole

Dipole Antenna / Hertzian dipole

Dipole Antenna / Hertzian dipole

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dipole</strong> <strong>Antenna</strong> / <strong>Hertzian</strong> <strong>dipole</strong><br />

January 2, 2013<br />

1. The A<br />

2. The B and H<br />

3. The E<br />

4. Far field approximation<br />

5. The S , P rad and R rad<br />

• The <strong>Hertzian</strong> <strong>dipole</strong> does not exists in real life, but the real antenna can be formed by taking<br />

integration on <strong>Hertzian</strong> <strong>dipole</strong>.<br />

Current element / <strong>dipole</strong> carry dynamic current<br />

dl ≤ λ 10<br />

, it is very small<br />

i(t) = I 0 cos ωt , the current on the <strong>dipole</strong><br />

It is difficult to solve for the B and E directly.<br />

Use Retarded Potential : V (x, y, z, t) −→ V ( )<br />

x, y, z, t − r c , so the retarded current is<br />

i(t) = I 0 cos ω ( t − c) r = I0 cos(ωt − ωr) = I c 0 cos(ωt − βr)<br />

Retarded : time delay by r c or phase delay by βr 1


1 The retarded magnetic vector potential<br />

In phasor form<br />

A(r, t) = µ[i(t)]dl<br />

4πr<br />

ẑ = µI0 cos ( t − ) r dl<br />

c ẑ<br />

4πr<br />

Ã(r) = µI 0dl<br />

4πr e−jβr ẑ<br />

( Recall ) Phasor transformation : V 0 cos (ωt + ϕ) = Re ( V 0 e j(ωt+ϕ)) = Re<br />

⎛<br />

⎞<br />

⎝V 0 e<br />

} {{ jϕ e<br />

}<br />

jωt ⎠<br />

P hasor<br />

For radiation by antenna, it is more convenient to select spherical coordinate system<br />

( Recall ) The coordinate transform of rectangular to spherical V (x, y, z) → V (r, θ, ϕ)<br />

Given vector ¯V = V xˆx + V y ŷ + V z ẑ , the vector representation in spherical coordinate is<br />

ˆV = (V x sin θ cos ϕ + V y sin θ sin ϕ + V z cos θ) ˆr+(−V x sin ϕ + V y cos ϕ) ˆϕ+(V x cos θ cos ϕ + V y cos θ sin ϕ − V z sin θ) ˆθ<br />

Since Ã(r) = µI 0<br />

4πr dl e−jβr ẑ = A z ẑ only, A x = A y = 0 , thus<br />

à = (A z cos θ) ˆr + (−A z sin θ) ˆθ<br />

= µI 0dl<br />

4πr cos θe−jβrˆr − µI 0dl<br />

4πr sin θe−jβr ˆθ<br />

( )<br />

cos θ<br />

= µI 0dl<br />

4π<br />

r<br />

e−jβrˆr − sin θ<br />

r<br />

e−jβr ˆθ<br />

• A(r, θ) is ϕ independent ⇐⇒<br />

∂<br />

∂ϕ = 0<br />

• A = A rˆr + A θ ˆθ ⇐⇒ Aϕ = 0<br />

2 B and H<br />

Find B by B = ∇ × A<br />

˜B = ∇ × Ã = ∣ ∣∣∣∣∣∣∣∣<br />

∣<br />

ˆr ˆθ ˆϕ ∣∣∣∣∣∣∣∣<br />

r 2 sin θ r sin θ r<br />

∂ ∂ ∂<br />

∂r ∂θ ∂ϕ<br />

A r rA θ r sin θA ϕ<br />

Since A is ϕ independent ⇒ ∂<br />

∂ϕ = 0 , and A ϕ = 0<br />

ˆr ˆθ ˆϕ<br />

∣ r<br />

˜B 2 sin θ r sin θ r<br />

=<br />

∂ ∂<br />

= 1 ∂ ∂ ∣∣∣∣ ( 1 ∂rAθ<br />

0<br />

r ∣<br />

∂r ∂θ ˆϕ = ∂r ∂θ<br />

A r rA θ<br />

r ∂r<br />

∣ A r rA θ 0 ∣<br />

2<br />

− ∂A )<br />

r ˆϕ<br />

∂θ


= µI 0dl<br />

4πr<br />

= 1 µI 0 dl<br />

r 4π<br />

(sin θjβ + e−jβr<br />

(<br />

− ∂ ∂r sin θe−jβr − ∂ )<br />

cos θ<br />

∂θ r e−jβr ˆϕ<br />

)<br />

sin θ ˆϕ = µI (<br />

0dl<br />

jβ<br />

r<br />

4π sin θe−jβr r + 1 )<br />

ˆϕ<br />

r 2<br />

Thus, by H = B µ<br />

˜H = I 0dl<br />

4π sin θe−jβr ( jβ<br />

r + 1 r 2 )<br />

ˆϕ<br />

• H r = H θ = 0<br />

• H(r, θ) is ϕ independent ⇐⇒<br />

∂<br />

∂ϕ = 0<br />

3 The E<br />

Find E by ε ∂E<br />

∂t = ∇ × H<br />

In phasor form, εjωẼ = ∇ × ˜H, thus<br />

Since H is ϕ independent ,<br />

Ẽ = 1<br />

jωε<br />

∣<br />

Ẽ = 1<br />

jωε ∇ × ˜H = 1<br />

jωε<br />

∣<br />

∂<br />

∂ϕ = 0 , and H r = H θ = 0<br />

∣<br />

ˆr ˆθ ˆϕ ∣∣∣∣∣∣∣∣<br />

(<br />

r 2 sin θ r sin θ r<br />

∂ ∂<br />

= 1<br />

0 jωε<br />

∂r ∂θ<br />

0 0 r sin θH ϕ<br />

H ϕ = I (<br />

0dl<br />

jβ<br />

4π sin θe−jβr r + 1 )<br />

r 2<br />

and thus<br />

∂r sin θH ϕ<br />

∂θ<br />

∣<br />

ˆr ˆθ ˆϕ ∣∣∣∣∣∣∣∣<br />

r 2 sin θ r sin θ r<br />

∂ ∂ ∂<br />

∂r ∂θ ∂ϕ<br />

H r rH θ r sin θH ϕ<br />

ˆr<br />

r 2 sin θ<br />

∂r sin θH ϕ<br />

∂θ<br />

, so r sin θH ϕ = I 0dl<br />

4π sin2 θe<br />

(jβ −jβr + 1 )<br />

r<br />

= I 0dl<br />

(jβ<br />

4π 2 sin θ cos θe−jβr + 1 )<br />

r<br />

−<br />

ˆθ<br />

r sin θ<br />

∂r sin θH ϕ<br />

∂r<br />

)<br />

∂r sin θH ϕ<br />

∂r<br />

= I (<br />

0dl<br />

4π sin2 θ<br />

[−jβe −jβr jβ + 1 ) ( )] −1<br />

+ e −jβr = I 0dl<br />

r<br />

r 2 4π sin2 θ<br />

[β 2 e −jβr − jβe−jβ<br />

r<br />

− e−jβr<br />

r 2 ]<br />

And therefore<br />

ˆr ∂r sin θH ϕ<br />

r 2 sin θ ∂θ<br />

= I 0dl<br />

2π cos θe−jβr ( jβ<br />

r 2 + 1 r 3 )<br />

ˆr<br />

3


ˆθ ∂r sin θH ϕ<br />

r sin θ ∂r<br />

= I [<br />

0dl β 2<br />

4π sin θ e −jβr<br />

r<br />

− jβe−jβr<br />

r 2<br />

− e−jβr<br />

r 3 ]<br />

ˆθ<br />

= 1<br />

ωε<br />

√ µ<br />

Since η =<br />

ϵ = β ωϵ<br />

• E ϕ = 0<br />

(<br />

Ẽ = 1<br />

jωε<br />

ˆr<br />

r 2 sin θ<br />

∂r sin θH ϕ<br />

∂θ<br />

−<br />

ˆθ<br />

r sin θ<br />

∂r sin θH ϕ<br />

∂r<br />

(<br />

I 0 dl<br />

β<br />

2π cos θe−jβr r − j )<br />

ˆr − 1<br />

[<br />

I 0 dl<br />

β<br />

2<br />

2 r 3 ωε 4π sin θe−jβr jr − β r − 1 ]<br />

ˆθ<br />

2 jr 3<br />

Ẽ = η I 0dl<br />

2π cos θe−jβr ( 1<br />

r 2 −<br />

j )<br />

ˆr + η I [<br />

0dl<br />

jβ<br />

βr 3 4π sin θe−jβr r + 1 r − 2<br />

)<br />

j ]<br />

ˆθ<br />

βr 3<br />

• E is ϕ independent ⇐⇒<br />

∂<br />

∂ϕ = 0<br />

4 Far Field Approximations<br />

Therefore the fields are<br />

Ẽ = η I 0dl<br />

2π cos θe−jβr ( 1<br />

r 2 −<br />

˜H = I 0dl<br />

4π sin θe−jβr ( jβ<br />

r + 1 r 2 )<br />

ˆϕ<br />

j )<br />

ˆr + η I [<br />

0dl<br />

jβ<br />

βr 3 4π sin θe−jβr r + 1 r − 2<br />

When r is large ( far field ) , ignore all the term with power ≥ 2<br />

j ]<br />

ˆθ<br />

βr 3<br />

In time domain<br />

˜H(r, θ) = I 0dl<br />

4π sin θe−jβr jβ r ˆϕ<br />

Ẽ(r, θ) = η I 0dl<br />

4π sin θ jβ r ˆθ<br />

H(r, θ, t) = − I 0βdl<br />

4πr<br />

sin θ sin (ωt − βr) ˆϕ Ẽ<br />

= −η I 0βdl<br />

4πr<br />

sin θ sin (ωt − βr) ˆθ<br />

5 Poynting Vector S , S avg , P rad and R rad<br />

The Poynting vector S in time domain is<br />

S = E × H = η I2 0β 2 dl 2<br />

16π 2 r 2 sin2 θ sin 2 (ωt − βr) ˆr<br />

The time-average Poynting vector in phasor domain is<br />

˜S avg = 1 ] [Ẽ<br />

2 Re × ˜H∗ = 1 2 Re [ ]<br />

E θ Hϕ<br />

∗ 1 ˆr =<br />

2 η|H ϕ| 2ˆr = η I2 0β 2 dl 2<br />

32π 2 r 2 sin2 θˆr<br />

Thus the time-average radiated power is<br />

4


( ) 2 2π<br />

• β 2 = = 4π2<br />

λ<br />

• ´ 2π<br />

dϕ = 2π<br />

ϕ=0<br />

‹<br />

ˆ 2π ˆ π<br />

( ηI<br />

2<br />

P rad = ˜S avg · d¯S =<br />

0 β 2 dl 2<br />

S<br />

ϕ=0 θ=0 32π 2 r 2<br />

λ 2<br />

= ηI2 0β 2 dl 2<br />

32π 2<br />

ˆ 2π<br />

• ´ π<br />

θ=0 sin3 θdθ = − ´ π<br />

θ=0 (1 − cos 2 θ) d cos θ = −<br />

P rad =<br />

ηI 2 0<br />

Special case, in free space, η 0 ≈ 120π<br />

ϕ=0<br />

ˆ π<br />

dϕ sin 3 θdθ<br />

θ=0<br />

[<br />

] π<br />

cos θ − cos3 θ<br />

3<br />

0<br />

( ) 4π<br />

2<br />

dl 2<br />

λ 2 2π · 4<br />

32π 2 3 = ηI2 0π<br />

3<br />

( ) 2 dl<br />

P rad = I040π 2 2 λ<br />

) (r<br />

sin 2 θ<br />

2 sin θdθdϕ )<br />

[<br />

= − −2 − −2 ]<br />

= 4 3 3<br />

( ) 2 dl<br />

λ<br />

Since P = I 2 R (for static) P = 1 2 I2 0R ( for dynamic ), thus the fictitious resistance, the radiation<br />

resistance R rad ( in free space ) is<br />

Where the general radiation resistance<br />

( ) 2 dl<br />

R rad = 80π 2 λ<br />

R rad = 2ηπ<br />

3<br />

( ) 2 dl<br />

λ<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!