14.09.2014 Views

pdf, 9 MiB - Infoscience - EPFL

pdf, 9 MiB - Infoscience - EPFL

pdf, 9 MiB - Infoscience - EPFL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

156 CHAPTER 6. ORBITAL CURRENTS IN THE CUPRATES<br />

w.f. Etot Tdp Tpp Ud Up ∆p Vdp variance<br />

Lanczos −1.13821 −3.10036 −0.79666 0.26737 0.08398 1.77545 0.63201 0<br />

Gutzwiller −0.8987(1) −3.04326 −0.88752 0.27849 0.11712 1.88523 0.75122 0.190<br />

JA/FLUX −1.0505(1) −3.03928 −0.82504 0.27835 0.07725 1.82681 0.63139 0.051<br />

1LS/JA/FLUX −1.0877(1) −3.06206 −0.84549 0.25164 0.08835 1.84430 0.63553 0.018<br />

JA/RVB −1.0775(1) −3.06068 −0.83073 0.26176 0.08197 1.83466 0.64076 0.018<br />

AFQMC/FLUX −1.0814(1) −2.73965 −0.59317 0.39413 0.04142 1.20917 0.60668 0.001<br />

1LS/JA/RVB −1.1153(1) −3.14070 −0.83715 0.26559 0.08736 1.86495 0.64469 0.018<br />

GFMC/JA −1.1112(5) 0.26966 0.08708 1.77314 0.63177 0.001<br />

Table 6.1: Variational energies of the different variational wavefunctions compared with the exact diagonalization calculations<br />

(Lanczos) done on a 8 copper lattice with 10 holes and S z = 0. We show the total energy (Etot), the kinetic energy<br />

of the copper-oxygen links (Tdp) and of the oxygen-oxygen links (Tpp), the on-site repulsion energy of the d (Ud) andp<br />

(Up) orbitals, the expectation value of the charge gap operator (∆p), and the expectation value of the Coulomb repulsion<br />

between the d and p orbitals (Vdp). The Lanczos step applied on the RVB wavefunction is the best variational Ansatz<br />

(1LS/JA/RVB) The auxiliary field Quantum Monte Carlo applied on the orbital current wavefunction (AFQMC/FLUX)<br />

and the fixe node approximation applied on a simple Jastrow wavefunction (GFMC/JA) are also shown.<br />

w.f. Etot variance M = √ 〈S i z Sz i+r 〉<br />

JA/SDW −1.5742(5) 0.00148(5) 0.3200(5)<br />

1LS/JA/SDW −1.5756(5) 0.00125(5) 0.3366(5)<br />

GFMC/JA/SDW −1.575(2) 0.0010(5) 0.3441(5)<br />

Table 6.2: Projected antiferromagnetic order parameter M = limr→∞√<br />

〈S<br />

z<br />

i S i+r z 〉 at half-filling on a 6 × 6 copper lattice<br />

(108 sites) for the magnetic variational wavefunction JA/SDW, for the same wavefunction improved by one lanczos step<br />

1LS/JA/SDW, and for the fixe node method using the JA/SDW as a guiding wavefunction.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!