14.09.2014 Views

Weak Measurements:

Weak Measurements:

Weak Measurements:

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Weak</strong> <strong>Measurements</strong>:<br />

Wigner-Moyal and Bohm in a<br />

New Light.<br />

Basil J. Hiley.<br />

www.bbk.ac.uk/tpru.<br />

Thursday, 2 February 2012


<strong>Weak</strong> <strong>Measurements</strong>.<br />

1. New type of quantum measurement.<br />

[Aharonov, and Vaidman, Phys. Rev., 41, (1990) 11-19].<br />

2. What do we measure?<br />

<strong>Weak</strong> values defined by<br />

A W (ψ,φ) = φ|A|ψ<br />

φ|ψ<br />

∈ C<br />

3. Will show that P W (ψ,x) is related to the Bohm momentum<br />

P 2 W (ψ,x)<br />

is related to the Bohm energy and quantum potential.<br />

[Leavens, Found. Phys., 35 (2005) 469-91]<br />

4. Will obtain expressions for weak values for spin-1/2 particles using Clifford algebras.<br />

5. Will indicate how to combine the Clifford with the Moyal algebra.<br />

6. Discuss what may lie behind the formalism-- Process.<br />

Acknowledgements<br />

Ernst Binz, Maurice de Gosson, Bob Callaghan and David Robson.<br />

Thursday, 2 February 2012


<strong>Weak</strong> measurements.<br />

Why the interest?<br />

Photon ‘trajectories’.<br />

Schrödinger particle ‘trajectories<br />

Experimental--Photons.<br />

[Kocsis, Braverman,Ravets,Stevens,Mirin, Shalm, Steinberg,<br />

Science 332, 1170 (2011)]<br />

[Prosser, IJTP , 15, (1976) 169]<br />

Theory--Schrödinger particle.<br />

[Philippidis, Dewdney and Hiley, Nuovo Cimento 52B, 15-28 (1979)]<br />

Real part of Schrödinger equation<br />

∂S<br />

∂t + (∇S)2<br />

2m + Q + V =0<br />

E B = − ∂S<br />

∂t<br />

P B = ∇S<br />

Thursday, 2 February 2012


<strong>Weak</strong> Measurement: the principle.<br />

H I = λ(t)Âs ˆB d<br />

|initial = |ψ s |Ψ d |final = e i R λ(t)Âs ˆB d dt |ψ s |Ψ d <br />

<br />

λ(t)dt =1<br />

|final = e iÂsb |ψ s |Ψ d <br />

Form the transition probability amplitude T φ−ψ = b d |φ s |final b d |Â|Ψ d = ÂΨ d(b)<br />

T φ−ψ = φ s |e iÂb |ψ s Ψ d (b) = (ib) n<br />

φ s<br />

n!<br />

|Ân |ψ s Ψ d (b) =φ s |ψ s (ib) n φ s |Ân |ψ s <br />

Ψ d (b)<br />

n! φ<br />

n=0<br />

n=0<br />

s |ψ s <br />

<br />

T φ−ψ = φ s |ψ s e ibA W<br />

+ <br />

(ib) n<br />

[A n W −A n W ] Ψ d (b)<br />

n!<br />

n=2<br />

small<br />

Post select with b = x T φ−ψ = φ s |ψ s e ixA W<br />

Ψ d (x)<br />

−x<br />

2<br />

Choose Ψ d (x) =exp<br />

and take the imaginary part of A W we find<br />

4(∆x) 2 <br />

T φ−ψ ∝ e −xA IW −x<br />

2<br />

exp<br />

4(∆x) 2 ∝ exp − <br />

x + 2(∆x) 2 2<br />

A IW<br />

4(∆x) 2<br />

Centre of Gaussian in x-space shifted by amount ∝A IW<br />

Centre of Gaussian in p-space shifted by amount ∝A RW<br />

Thursday, 2 February 2012<br />

[Duck, Stevenson and Sudarshan Phys. Rev, 40 (1989) 2112-7]


von Neumann measurement.<br />

<strong>Weak</strong> measurement.<br />

<strong>Weak</strong> Experiment cont.<br />

Single measurement ---- collapse of the wave function.<br />

<br />

Ψ j → Ψ r<br />

j<br />

∝A IW<br />

Statistical measurement producing a phase shift in the distribution of final results.<br />

Actual experimental arrangement for photon trajectories.<br />

x<br />

|Ψ = |D polarizer |ψ path H = g ˆP x Ŝ 1 Ŝ 1 =(|HH| − |V V |)/2<br />

Thursday, 2 February 2012<br />

[Kocsis, Braverman,Ravets,Stevens,Mirin, Shalm, Steinberg,<br />

Science 332, 1170 (2011)]


<strong>Weak</strong> values.<br />

φ|A|ψ<br />

φ|ψ<br />

How do they appear in the formalism?<br />

[ Hiley quant-ph/1111.6536]<br />

Then<br />

ψ|A|ψ = ψ|φ j φ j |A|ψ where |φ j form a complete orthonormal set.<br />

ψ|A|ψ = ψ|φ j <br />

Post select<br />

φj |ψ<br />

φ j |A|ψ = φ j |A|ψ<br />

ρ j<br />

φ j |ψ<br />

φ j |ψ<br />

<strong>Weak</strong> value.<br />

Special case:<br />

If A|φ j = a j |φ j <br />

ψ|A|ψ = ρ j a j<br />

Well known result!<br />

Eigenvalue!<br />

Remember<br />

φ|A|ψ<br />

φ|ψ<br />

is a complex number.<br />

But what does it mean in general?<br />

It is clearly a transition probability amplitude.<br />

Thursday, 2 February 2012


<strong>Weak</strong> values when<br />

ˆP is involved.<br />

<br />

Consider x| ˆP |ψ(t) = x| ˆP |x x |ψ(t)dx = −i∇ x ψ(x, t)<br />

Write<br />

ψ(x, t) =R(x, t)e iS(x,t)<br />

then<br />

x| ˆP |ψ(t)<br />

x|ψ(t)<br />

= ∇ x S(x, t) − i∇ x ρ(x, t)/2ρ(x, t)<br />

with<br />

ρ(x, t) =|ψ(x, t)| 2<br />

Bohm velocity:<br />

Osmotic velocity:<br />

In terms of one expression<br />

⎡<br />

[[P W ]] ± =<br />

Bohm momentum.<br />

v B (x, t) =∇ x S(x, t)/m = 1<br />

2m<br />

v O (x, t) = 1<br />

2m<br />

⎣ ψ(t)|←−ˆP |x<br />

ψ(t)|x<br />

More simply for Schrödinger<br />

then<br />

[[P W ]] ± =<br />

∇ x ρ(x, t)<br />

ρ(x, t)<br />

osmotic momentum.<br />

⎡<br />

⎣ ψ(t)|←−ˆP |x<br />

ψ(t)|x<br />

= 1<br />

2m<br />

⎡<br />

⎣ ψ(t)|←−ˆP |x<br />

ψ(t)|x<br />

+ x|−→ˆP |ψ(t)<br />

x|ψ(t)<br />

⎤<br />

⎦<br />

⎤<br />

− x|−→ˆP |ψ(t)<br />

⎦<br />

x|ψ(t)<br />

⎤<br />

± x|−→ˆP |ψ(t)<br />

⎦ = ψ∗ (x, t) ←−ˆPx ψ(x, t) ± ψ ∗ (x, t) −→ˆPx ψ(x, t)<br />

.<br />

x|ψ(t)<br />

ρ(x, t)<br />

i<br />

ρ(x, t) [(∇ xψ ∗ (x, t))ψ(x, t) ∓ ψ ∗ (x, t)(∇ x ψ(x, t))]<br />

− iρ[[P xW ]] + = [∇ x ψ ∗ (x)]ψ(x) − ψ ∗ (x)[∇ x ψ(x)] = ψ ∗ (x) ←→ ∇ x ψ(x)<br />

− iρ[[P xW ]] − = [∇ x ψ ∗ (x)]ψ(x) + ψ ∗ (x)[∇ x ψ(x)] = ∇ x (ψ ∗ (x)ψ(x)) = ∇ x ρ(x).<br />

Thursday, 2 February 2012


Remark 1: Relation to Nelson.<br />

Mean forward derivative: Dx(t) = lim<br />

∆t→0 + E i<br />

x(t + ∆t) − x(t)<br />

∆t<br />

[Nelson, Phys. Rev., 150, (1966), 1079-1085.]<br />

Mean backward derivative:<br />

D ∗ x(t) =<br />

x(t) − x(t − ∆t)<br />

lim E i<br />

∆t→0 + ∆t<br />

With these construct a forward velocity b(x, t) and backward velocity b ∗ (x, t) :<br />

[b(x, t)+b ∗ (x, t)]/2 =v B (x, t) = ∇ xS(x, t)<br />

m<br />

b(x, t) − b ∗ (x, t) =v O (x, t) = 1<br />

2m<br />

∇ x ρ(x, t)<br />

ρ(x, t)<br />

[Bohm and Hiley, Phys. Reps, 172, (1989), 92-122.]<br />

Thursday, 2 February 2012


Remark 2: Relation to Energy-Momentum Tensor.<br />

∂L<br />

T µν = −<br />

∂(∂ µ ψ) ∂ν ψ +<br />

∂L <br />

∂(∂ µ ψ ∗ ) ∂ν ψ ∗<br />

Take the Schrödinger Lagrangian: L = − 1<br />

2m ∇ψ∗ · ∇ψ + i 2 [ψ∗ (∂ t ψ) − (∂ t ψ ∗ )ψ] − V ψ ∗ ψ.<br />

and find<br />

T 0µ = − i 2 [(∂µ ψ ∗ )ψ − ψ ∗ (∂ µ ψ)] = i 2 [ψ∗←→ ∂ µ ψ]=−ρ∂ µ S<br />

Recalling that<br />

P B = ∇S<br />

and<br />

E B = −∂ t S<br />

Then we find<br />

ρP jB = ρ∂ j S = −T 0j = − ρ 2 [[P jW]] +<br />

ρE B = −ρ∂ t S = −T 00 = − ρ 2 [[P tW ]] +<br />

Bohm momentum.<br />

Bohm energy.<br />

This generalises to the Pauli and Dirac particles<br />

The Bohm kinetic energy.<br />

[Hiley and Callaghan, Fond. Phys 42 (2012) 192-208,<br />

math-ph:1011.4031 and 1011.4033]<br />

1<br />

2 [[P W 2 ]] + = (∇ x S(x)) 2 − ∇2 xR(x)<br />

= PB 2 + Q.<br />

R(x)<br />

<br />

1<br />

2i [[P W 2 ]] − = ∇ 2 ∇x ρ(x)<br />

xS(x) +<br />

∇ x S(x).<br />

ρ(x)<br />

Quantum potential<br />

[Leavens, Found. Phys., 35 (2005) 469-91]<br />

[Wiseman, New J. Phys., 9 (2007) 165-77.]<br />

Thursday, 2 February 2012


Multiplication of phase space functions defined by<br />

Let<br />

<strong>Weak</strong> values from Moyal algebra.<br />

a(x, p) b(x, p)<br />

where<br />

f(x, p) be the density matrix in (x, p) representation, viz. f(x, p) =<br />

<br />

i<br />

=exp<br />

2 ( ∂ ← →<br />

x ∂p − ∂ ← →<br />

p ∂x )<br />

<br />

[ Moyal, Proc. Camb. Phil. Soc. 45, (1949), 99-123].<br />

[Baker, Phys. Rev. 6 (1958) 2198-2206.]<br />

ρ(x − y/2; x + y/2)e −ipy dy<br />

p f(x, p) =<br />

<br />

p − i <br />

→<br />

∂ x<br />

f(x, p) f(x, p) p = f(x, p) p + i <br />

←<br />

and<br />

∂ x<br />

2<br />

2<br />

Now form<br />

(f p + p f)<br />

[p, f(x, p)] BB := = pf(x, p)<br />

2<br />

Baker bracket<br />

(f p − p f)<br />

[p, f(x, p)] MB := = ∇ x f(x, p)<br />

i<br />

Moyal bracket [x, p] MB =1<br />

To make contact with configuration space we must form a marginal;<br />

<br />

<br />

[p, f(x, p)] BB dp = pf(x, p)dp = ρ(x) p (x)<br />

Moyal momentum<br />

Using<br />

ρ(x) p n (x) =<br />

1<br />

2i<br />

n<br />

∂<br />

∂x 1<br />

−<br />

∂ n<br />

<br />

ψ(x 1 )ψ (x 2 )<br />

∂x 2 x 1 =x 2 =x<br />

(A1.1)<br />

we find<br />

p (x) = ∇ x S(x)<br />

(A1.6)<br />

P B (x) =<br />

<br />

[p, f(x, p)] BB dp/ρ(x)<br />

Bohm Momentum<br />

Finally<br />

∇ x ρ(x)<br />

2ρ(x)<br />

=<br />

<br />

<br />

[p, f(x, p)] MB dp /ρ(x)<br />

Osmotic Momentum<br />

Thursday, 2 February 2012


Kinetic energy.<br />

Form<br />

p 2 f(x, p) = [p 2 − ip −→ ∇ x − 1 4<br />

−→ 2<br />

∇ x ]f(x, p).<br />

and<br />

f(x, p) p 2 = f(x, p)[p 2 + ip ←−<br />

∇ x − 1 4<br />

←−<br />

∇ x<br />

2]<br />

Now form the Baker bracket<br />

[p 2 ,f(x, p)] BB = p 2 f(x, p) − 1 4 ∇2 xf(x, p).<br />

We need to find the marginal<br />

<br />

[p 2 ,f(x, p)] BB dp = ρ(x) p 2 (x) − 1 4 ∇2 xρ(x).<br />

with<br />

p 2 (x) = (∇ x S(x)) 2 + 1 4<br />

∇ 2 xρ(x)<br />

ρ(x)<br />

− ∇2 xR(x)<br />

R(x)<br />

So that<br />

<br />

Bohm Kinetic Energy<br />

[p 2 ,f(x, p)] BB dp/ρ(x) = (∇ x S(x)) 2 −∇ 2 xR(x)/R(x) = P 2 B + Q. [Remember m=1/2.]<br />

To complete the story, the Moyal bracket gives<br />

<br />

[p 2 ,F(x, p)] MB dp/ρ(x) = ∇ 2 xS(x) +<br />

<br />

∇x ρ(x)<br />

∇ x S(x).<br />

ρ(x)<br />

Quantum Potential<br />

[Leavens, Found. Phys., 35 (2005) 469-91]<br />

Thursday, 2 February 2012


Summary so far.<br />

We are interested in the values that can be found experimentally using weak measurements.<br />

We have seen how these weak values are related to the Bohm momentum, Bohm energy and the quantum potential<br />

ρP jB = ρ∂ j S = −T 0j , ρE B = −ρ∂ t S = −T 00<br />

The separation of the real from the imaginary parts of weak values achieved by forming brackets<br />

Then, for example<br />

[[P W ]] ± =<br />

ψ(t)|<br />

←<br />

P |x<br />

ψ(t)|x<br />

→<br />

± x| P |ψ(t)<br />

x|ψ(t)<br />

and<br />

P B = − 1 2 [[P xW ]] + E B = − 1 2 [[P tW ]] +<br />

In the Moyal algebra these brackets are replaced by the Baker and Moyal brackets<br />

[[P W ]] + ⇒<br />

[p, f(x, p)] BB =<br />

(f p + p f)<br />

2<br />

and<br />

[[P W ]] − ⇒<br />

[p, f(x, p)] MB =<br />

(f p − p f)<br />

i<br />

What about spin and relativity?<br />

Thursday, 2 February 2012


Spin and Clifford Algebras.<br />

We could use standard approach with matrices.<br />

Neater to use Clifford algebras.<br />

One single mathematical structure with a natural hierarchy<br />

Generating<br />

elements.<br />

C (2,4)<br />

Conformal {1, e 0<br />

, e 1<br />

, e 2<br />

, e 3<br />

, e 4<br />

, e 5<br />

}<br />

Twistors {ω, π}<br />

C (1,3)<br />

C (3,0)<br />

C (0,1)<br />

Dirac<br />

Pauli<br />

Schrödinger<br />

Klein-Gordon.<br />

{1, e 0<br />

, e 1<br />

, e 2<br />

, e 3<br />

}<br />

{1, γ 0<br />

, γ 1<br />

, γ 2<br />

, γ 3<br />

}<br />

{1, e 1<br />

, e 2<br />

, e 3<br />

}<br />

{1, σ 1<br />

, σ 2<br />

, σ 3<br />

}<br />

{1, e 1<br />

}<br />

{1, i }<br />

General element of algebra A(x) = g(x)e K where e K = e i ◦ e j ◦ ···◦ e n and i


Replace<br />

Replacement of kets and bras by elements of the algebra.<br />

x|ψ<br />

by<br />

Φ L (x) =φ L (x)<br />

ψ|x<br />

Replace by ΦL (x) = φ L (x)<br />

Clifford reversion<br />

element of min left ideal<br />

idempotent 2 = <br />

Pauli<br />

x|Ψ P →<br />

<br />

ψ1 (x)<br />

ψ 2 (x)<br />

Φ L (x) =<br />

g 0 (x)+ <br />

g i (x)e jk <br />

i, j, k cyclic<br />

g ∈ R<br />

Dirac<br />

x|Ψ D →<br />

⎛ ⎞<br />

ψ 1 (x)<br />

⎜ψ 2 (x)<br />

⎟<br />

⎝ψ 3 (x) ⎠<br />

ψ 4 (x)<br />

2g 0 =(ψ1 ∗ + ψ 1 ) 2e 123 g 3 =(ψ1 ∗ − ψ 1 ) = (1+e 3 )/2<br />

2g 2 =(ψ2 ∗ + ψ 2 ) 2e 123 g 1 =(ψ2 ∗ − ψ 2 )<br />

Φ L (x) =<br />

g 0 (x)+ <br />

g i (x)e µν + g 5 (x)e 5 µ


P B = − 1 2 [[P W ]] +<br />

Bohm momentum and energy for Pauli particle.<br />

now becomes<br />

ρP B (x) =−iΦ L (x) ←→ ∇ x<br />

ΦL (x) =−i<br />

<br />

(∇ x Φ L (x)) Φ <br />

L (x) − Φ L (x) ∇ xΦL (x)<br />

Φ L (x) =φ L (x)<br />

we choose the idempotent =(1+e 3 )/2<br />

Pauli current = convection part + rotation part<br />

The Bohm momentum comes from the convection part using<br />

Φ L (x) =<br />

g 0 (x)+ <br />

g i (x)e jk <br />

ρP B = −e 123 [g 0 ∇ x g 3 − g 3 ∇ x g 0 + g 2 ∇ x g 1 − g 1 ∇ x g 2 ].<br />

Using the conversion g(x) → ψ(x)<br />

and<br />

ψ j (x) = R j (x)e iS j(x)<br />

ρP B (x) = ρ 1 (x)∇ x S 1 (x) + ρ 2 (x)∇ x S 2 (x) = − 1 2 [[P W ]] +<br />

ρE B (x) = ρ 1 (x)∂ t S 1 (x) + ρ 2 (x)∂ t S 2 (x) = − 1 2 [[P tW ]] +<br />

Bohm Momentum<br />

Bohm Energy<br />

Bohm, Schiller and Tiomno spin-1/2 model.<br />

P B =(∇S + cos θ∇φ)/2<br />

E B = −(∂ t S + cos θ∂ t φ)/2<br />

They are the same if you use<br />

Ψ =<br />

<br />

ψ1<br />

ψ 2<br />

<br />

=<br />

<br />

cos(θ/2) exp(iφ/2)<br />

exp(iψ/2)<br />

i sin(θ/2)exp(−iφ/2)<br />

[Bohm, Schiller, and Tiomno, Nuovo Cim. Supp. 1, (1955) 48-66 and 67-91].<br />

Thursday, 2 February 2012


Bohm kinetic energy for spin-1/2 particle.<br />

Then as shown in Hiley and Callaghan, the Bohm kinetic energy is<br />

− m[[P 2 W ]] + = P 2 B (x) + [2(∇ xW (x) · S(x)) + W 2 (x)] = P 2 B + Q.<br />

Spin of particle<br />

S = i(φ L e 3<br />

φL )<br />

and<br />

ρW = ∇ x (ρS)<br />

[Hiley, and Callaghan, Found. Phys. 42, (2012) 192 and Maths-ph: 1011.4031]<br />

BST values:<br />

Q = − 1<br />

2m<br />

∇ 2 R<br />

R<br />

+[(∇θ)2 +sin 2 θ(∇φ) 2 ]/8m<br />

[Bohm, Schiller, and Tiomno, Nuovo Cim. Supp. 1, (1955) 48-66 and 67-91].<br />

Thursday, 2 February 2012


Spin in the Moyal Algebra.<br />

Central to the the Clifford algebra approach is the Clifford density element.<br />

Then<br />

ρ(x) = Φ L (x) ΦL (x)<br />

= Tr[Aρ(x)] = Tr[AΦ L (x) ΦL (x)] = Tr[Φ L (x)A Φ L (x)] = ψ|Â|ψ<br />

Generalise ρ(x 1 ,x 2 ) = Φ L (x 1 )Ξ R (x 2 )<br />

Now we are in a position extend this to phase space using a Wigner-Moyal transformation<br />

<br />

ρ M (x, p) = F (x, p) =2π Φ L (x 1 )Ξ R (x 2 )e ipy dy Cross-Wigner function.<br />

where x = (x 2 + x 1 )/2 and y = x 2 − x 1<br />

[de Gosson, Symplectic Metods in Harmonic Analysis]<br />

Recall for Pauli Φ L (x) =<br />

g 0 (x)+ <br />

g i (x)e jk <br />

Replaces spinor ket.<br />

Ξ R (x) =<br />

G 0 (x) − <br />

G i (x)e jk <br />

Replaces spinor bra.<br />

Use these expressions in the cross-Wigner function.<br />

Thursday, 2 February 2012


Easier to use the momentum representation.<br />

Details of Spin in the Moyal Algebra.<br />

F (x, p) =<br />

Now with p = (p 2 + p 1 )/2 and ∆p = p 2 − p 1<br />

and Ξ L (p) = ξ(p) =<br />

γ 0 (p) + <br />

γ K (p)e K , where the γ(p) s are Fourier transforms of the g(x)s.<br />

<br />

Again choose =(1+e 3 )/2,<br />

taking just the 1 term and then define 2F (x, p) := ξ L (p 2 ) 1 ξ L (p 1 )e −ix∆p d∆p<br />

<br />

So that 2F (x, p) = [γ 0 (p 2 )γ 0 (p 1 ) + γ 1 (p 2 )γ 1 (p 1 ) + γ 2 (p 2 )γ 2 (p 1 ) + γ 3 (p 2 )γ 3 (p 1 )]e −ix∆p d∆p.<br />

1<br />

2π<br />

<br />

Ξ L (p 1 ) ΞL (p 2 )e −ix∆p d∆p.<br />

Now form<br />

p F (x, p) = pF (x, p) − i 2 ∇ xF (x, p) F (x, p) p = pF (x, p) + i 2 ∇ xF (x, p)<br />

and<br />

Baker bracket<br />

[p, F ] BB = pF (x, p),<br />

Moyal bracket [p, F ] MB = ∇ x F (x, p).<br />

Use the Moyal relation<br />

F (x, p) = 1<br />

2π<br />

<br />

<br />

M(p 1 ,p 2 )δ p − p <br />

2 − p 1<br />

e ix(p 2−p 1 ) dp 1 dp 2<br />

2<br />

where<br />

M(p 1 ,p 2 ) = 1 2 [φ 0(p 1 )φ ∗ 0 (p 2) + φ 1 (p 1 )φ ∗ 1 (p 2) + φ 2 (p 1 )φ ∗ 2 (p 2) + φ 3 (p 1 )φ ∗ 3 (p 2)]<br />

<br />

so that we find<br />

[p, F ] BB dp = ρ 1 (x)∂ x S 1 (x) + ρ 2 (x)∂ x S 2 (x). Baker bracket Bohm momentum.<br />

<br />

[p 2 ,F(x, p)] BB dp = ρ 1 (x)(∇ x S 1 (x)) 2 + ρ 2 (x)(∇ x S 2 (x)) 2 − R 1 (x)∇ 2 xR 1 (x) − R 2 (x)∇ 2 xR.<br />

Thursday, 2 February 2012<br />

Bohm KE<br />

Quantum Potential


Time Development Equations.<br />

-ganvalues<br />

H(x, p) f(x, p) =E 1 f(x, p) f(x, p) H(x, p) =E 2 f(x, p)<br />

or<br />

Time development<br />

Difference<br />

Sum<br />

H f =<br />

i<br />

2π<br />

<br />

ψ ∗ (x 2 )[∂ t ψ(x 1 )]e ipy dy<br />

and<br />

f H = −i<br />

2π<br />

∂f<br />

∂t +[f,H] MB =0 In the limit O() → Classical Liouville eqn.<br />

<br />

i<br />

ψ ∗ (x 2 ) ←→ ∂ t ψ(x 1 )e ipy dy +[f,H] BB =0<br />

π<br />

f(x, p)E B (x, p) =<br />

i <br />

ψ ∗ (x 2 ) ←→ ∂ t ψ(x 1 )e ipy dy<br />

2π<br />

<br />

[∂ t ψ ∗ (x 2 )]ψ(x 1 )e ipy dy<br />

NB<br />

x =(x 2 + x 1 )/2<br />

y =(x 2 − x 1 )<br />

In the limit O() →<br />

∂S<br />

∂t + H =0<br />

Hamilton-Jacobi eqn.<br />

Take the marginal as before<br />

∂f(x, p)<br />

∂t<br />

+[f,H] MB =0<br />

is equivalent to<br />

∂ρ(x)<br />

∂t<br />

+[ρ, H] − =0<br />

Quantum Liouville eqn.<br />

2f(x, p)E B (x, p)+[f,H] BB =0<br />

is equivalent to 2ρ(x)E B (x)+[ρ,H] + =0<br />

If<br />

H = p2 (x)<br />

2m<br />

+ V (x)<br />

then<br />

∂S<br />

∂t + (∇S)2<br />

2m<br />

+ Q + V =0 Quantum Hamilton-Jacobi eqn.<br />

[Bohm, Phys. Rev., 85 (1952) 166-179; and 85 (1952), 180-193\.<br />

Thursday, 2 February 2012


Summary of Algebraic Time Evolution Equations.<br />

Moyal algebra<br />

Phase space<br />

Quantum algebra<br />

Configuration space<br />

Notice in the general form there is no quantum potential.<br />

The QP appears ONLY in a representation<br />

In the x-representation you get Bohm’s Q(x).<br />

In the p-representation you get another QP--Q(p)<br />

In Moyal take the x-marginal.<br />

[M. R. Brown & B. J. Hiley, quant-ph/0005026]<br />

Thursday, 2 February 2012


Mathematical Structure.<br />

Orthogonal Clifford<br />

+ Moyal<br />

Symplectic Clifford.<br />

[Crumeyrolle Orthogonal and Symplectic Clifford Algebras, (1990)]<br />

Take marginals<br />

Configuration space<br />

Position<br />

Configuration space<br />

Momentum<br />

Order <br />

Classical<br />

phase space<br />

Thursday, 2 February 2012


Physics behind these Algebras?<br />

Basic structure ρ φψ (x 1 ,x 2 ) → f(x, p)<br />

Transition ⇒ Process “Phase” space<br />

(x, p)<br />

x 1<br />

x 2<br />

y<br />

<br />

ρ M (x, p) =2π<br />

Φ L (x 1 )Ξ R (x 2 )e ipy dy<br />

Quantum particle not a ‘rock’ but a ‘blob’.<br />

Structure process.<br />

[Bohm, Proc. Int. Conf. on Elementary Particles, Kyoto, 252-287, (1965)]<br />

t s t Only combine if t = s a b<br />

groupoid<br />

s<br />

orthogonal and symplectic<br />

product ⇒ order of succession and the order of co-existence ⇒ addition gives the algebra.<br />

Combine Clifford and Moyal algebras<br />

⇒<br />

Non-commutative geometry<br />

Orthogonal Clifford and symplectic Clifford algebras.<br />

[Hiley, Lecture Notes in Physics, vol. 813, pp. 705-750, Springer (2011)].<br />

[Lizzi, Non-commutative spaces, Springer Lecture Notes in Physics 774, 2009]<br />

Thursday, 2 February 2012


Consequences of Non-commutative Structure.<br />

Changes from both sides Inner automorphism T AT −1<br />

Evolution in τ<br />

A τ = T (τ)A τ0 T (τ) −1<br />

If<br />

T =exp[iHτ] then for small τ<br />

i (A τ − A 0 )<br />

τ<br />

=(HA 0 − A 0 H)<br />

⇒<br />

i ˙ A =[A, H]<br />

Heisenberg eqn.<br />

Just Bohm’s ‘folding’ and ‘unfolding’.<br />

T 1<br />

T 2<br />

T 1<br />

T 2<br />

[T 1<br />

,T 2<br />

]<br />

[Hiley, Lecture Notes in Physics, vol. 813, pp. 705-750, Springer (2011)].<br />

Thursday, 2 February 2012


Overarching Philosophy.<br />

[Bohm, D., Wholeness and the Implicate Order, 1980.]<br />

The deeper structure gives rise to a non-commutative phase space geometry.<br />

In this context non-commutativity ⇒ not all orders can be made explicit together.<br />

Implicate order<br />

⇒<br />

algebra<br />

Project out explicate orders<br />

ψ(x)<br />

or<br />

φ(p)<br />

Quantum world<br />

Classical world<br />

Thursday, 2 February 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!