14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

with<br />

F HFT<br />

mix = −<br />

F P mix = −<br />

F V mix = −<br />

F N mix = −<br />

∫<br />

ΦΨT<br />

(<br />

Ŵ ′ Ψ T<br />

Ψ T<br />

)<br />

∫<br />

ΦΨT dV<br />

dV<br />

−<br />

∫ [ (<br />

Ŵ Ψ<br />

′<br />

ΦΨT<br />

T<br />

Ψ T<br />

− Ŵ ΨT<br />

∫<br />

ΦΨT dV<br />

∫<br />

ΦΨT<br />

[<br />

Φ ′<br />

]<br />

(Ĥ−ED)ΨT<br />

Φ Ψ T<br />

∫<br />

ΦΨT dV<br />

∫<br />

ΦΨT<br />

[<br />

( Ĥ−E D)Ψ ′ T<br />

Ψ T<br />

]<br />

∫<br />

ΦΨT dV<br />

∫<br />

ΦΨT V ′<br />

loc dV<br />

∫<br />

ΦΨT dV<br />

) ]<br />

Ψ<br />

′<br />

T<br />

Ψ T Ψ T<br />

dV<br />

dV<br />

+ Z α<br />

∑<br />

β (β≠α)<br />

Z β<br />

R α − R β<br />

|R α − R β | 3 (422)<br />

(423)<br />

(424)<br />

dV<br />

. (425)<br />

is the mixed DMC HFT force and the other expressions are Pulay terms. The HFT force in Eq.<br />

(422) contains two contributions from the pseudopotential, one from its local part V loc and one from<br />

its nonlocal part Ŵ , and a third contribution from the nucleus–nucleus interaction. In this nucleus–<br />

nucleus interaction term, R α represents the 3-dimensional position vector <strong>of</strong> the αth nucleus, and Z α<br />

is the associated charge. The three Pulay terms in Eqs. (423)–(425) are identified as follows: Fmix<br />

P<br />

results from the PLA and is therefore called the pseudopotential Pulay term, Fmix V is the volume term,<br />

and Fmix N is called the mixed DMC nodal term since it can be written as an integral over the nodal<br />

surface [102]. Note that all terms in Eqs. (422)–(425) take the same form under both localization<br />

schemes; the only difference is the distribution (Ψ T Φ A or Ψ T Φ B ) used to evaluate the expectation<br />

values. A simple way to understand this is to note that Ĥ always acts on the trial wave function Ψ T<br />

and ĤAΨ T = ĤBΨ T .<br />

F HFT<br />

mix<br />

In mixed DMC simulations, it is straightforward to evaluate the contributions to the force, except for<br />

the volume term Fmix V , because it depends on the derivative <strong>of</strong> the DMC wave function, Φ′ . Since<br />

it is unclear how to evaluate Φ ′ in mixed DMC calculations, we use the Reynolds’ approximation<br />

[103, 104],<br />

Φ ′<br />

Φ ≃ Ψ′ T<br />

, (426)<br />

Ψ T<br />

which is exact on the nodal surface [see Eqs. (4) and (16) <strong>of</strong> Ref. [102]] but introduces an error <strong>of</strong> first<br />

order in (Ψ T − Φ) away from the nodal surface.<br />

34.4 The pure DMC forces<br />

The total force in the pure DMC method, F tot<br />

pure, is obtained by setting Ψ = Φ in Eq. (420). After<br />

some manipulations, we obtain<br />

F tot<br />

pure = F HFT<br />

pure + F P pure + F N pure, (427)<br />

with<br />

F HFT<br />

pure =<br />

F P pure =<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

−<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

F N pure = − 1 2<br />

−<br />

∫<br />

Φ A Φ A<br />

(<br />

Ŵ ′ Ψ T<br />

Ψ T<br />

)<br />

dV<br />

∫<br />

∫<br />

Φ AΦ A dV<br />

Φ B Φ B<br />

(<br />

(Ŵ + ) ′ Ψ T<br />

Ψ T<br />

− ∫<br />

∫<br />

ΦΦV<br />

′<br />

loc<br />

dV<br />

∫<br />

ΦΦ dV<br />

+ Z α<br />

∑<br />

∫<br />

−<br />

∫<br />

−<br />

∫<br />

Φ A Φ A<br />

[<br />

Ŵ Ψ<br />

′<br />

T<br />

Ψ T<br />

∫<br />

Φ B Φ B<br />

[<br />

Ŵ<br />

+ Ψ<br />

′<br />

T<br />

Ψ T<br />

Φ B Φ B dV<br />

+ (Ŵ − ) ′ Φ B<br />

Φ B<br />

)<br />

dV<br />

Z β<br />

β (α≠β)<br />

( ) ]<br />

Ŵ Ψ Ψ ′ − T T<br />

Ψ T Ψ dV T<br />

Φ A Φ A dV<br />

( ) ]<br />

Ŵ<br />

−<br />

+ Ψ Ψ ′ T T<br />

Ψ T Ψ dV T<br />

∫<br />

Φ B Φ B dV<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

R α − R β<br />

|R α − R β | 3<br />

(428)<br />

(429)<br />

Γ |∇ rΦ|Φ ′ dS<br />

∫ . (430)<br />

ΦΦ dV<br />

199

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!