14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

33.5 One-body density matrix, two-body density matrix and condensate<br />

fraction<br />

K eywords: onep density mat, twop density mat, cond fraction<br />

Density matrices are important tools to determine properties <strong>of</strong> systems, such as the phase <strong>of</strong> an<br />

electron–hole system.<br />

33.5.1 Definition <strong>of</strong> the density matrices<br />

The one-body density matrix (OBDM) is defined as<br />

∫<br />

2 Ψ(r |Ψ(R)| ′ 1 )<br />

α (r 1 ; r ′ Ψ(r<br />

1) = N dr 1) 2 . . . dr N<br />

α ∫<br />

|Ψ(R)| 2 dR<br />

ρ (1)<br />

, (390)<br />

and the two-body density matrix (TBDM) is<br />

∫<br />

2 Ψ(r |Ψ(R)| ′ 1 ,r′ 2 )<br />

ρ (2)<br />

αβ (r 1, r 2 ; r ′ 1, r ′ Ψ(r<br />

2) = N α (N β − δ αβ )<br />

dr 1,r 2) 3 . . . dr N<br />

∫<br />

|Ψ(R)| 2 dR<br />

, (391)<br />

where α and β are the spin indices (or particle indices, in general) corresponding to r 1 and r 2 ,<br />

respectively, and the irrelevant dependencies <strong>of</strong> the wave function have been omitted (i.e., Ψ(r ′ 1, r ′ 2) ≡<br />

Ψ(r ′ 1, r ′ 2, r 3 , . . . , r N )). Normalization is such that<br />

∑<br />

∫<br />

ρ (1)<br />

α (r 1 ; r ′ 1)δ(r 1 − r ′ 1)dr 1 dr ′ 1 = N , (392)<br />

α<br />

and<br />

∑<br />

∫<br />

αβ<br />

ρ (2)<br />

αβ (r 1, r 2 ; r ′ 1, r ′ 2)δ(r 1 − r ′ 1)δ(r 2 − r ′ 2)dr 1 dr 2 dr ′ 1dr ′ 2 = N(N − 1) . (393)<br />

We are interested in the QMC accumulation <strong>of</strong> the density matrices for the case <strong>of</strong> an isotropic,<br />

homogeneous system. Hence we require the translational and rotational average <strong>of</strong> Eqs. (390) and<br />

391. The translational average is<br />

and<br />

ρ (1)T<br />

α (r ′ ) = N α<br />

Ω<br />

∫<br />

2 |Ψ(R)|<br />

Ψ(r 1+r ′ )<br />

Ψ(r 1)<br />

dR<br />

∫<br />

|Ψ(R)| 2 , (394)<br />

dR<br />

∫<br />

ρ (2)T<br />

αβ (r′ ) = N 2<br />

α(N β − δ αβ ) |Ψ(R)|<br />

Ψ(r 1+r ′ ,r 2+r ′ )<br />

Ψ(r 1,r 2)<br />

dR<br />

Ω 2 ∫<br />

|Ψ(R)| 2 , (395)<br />

dR<br />

where Ω is the volume <strong>of</strong> the simulation cell. The rotational average <strong>of</strong> Eqs. (394) and (395) is<br />

ρ (1)T R<br />

α (r) = N α<br />

ΩS(r)<br />

∫<br />

2 |Ψ(R)|<br />

Ψ(r 1+r ′ )<br />

Ψ(r 1)<br />

δ(|r ′ | − r)dRdr ′<br />

∫<br />

|Ψ(R)| 2 , (396)<br />

dR<br />

and<br />

∫<br />

ρ (2)T R<br />

αβ<br />

(r) = N 2<br />

α(N β − δ αβ ) |Ψ(R)|<br />

Ψ(r 1+r ′ ,r 2+r ′ )<br />

Ψ(r 1,r 2)<br />

δ(|r ′ | − r)dRdr ′<br />

Ω 2 ∫<br />

S(r)<br />

|Ψ(R)| 2 , (397)<br />

dR<br />

where S(r) is 4πr 2 in 3D, 2πr in 2D and 1 in 1D.<br />

33.5.2 QMC accumulation<br />

The integral over R in Eqs. (394) and 395 can be approximated by a Monte Carlo average, using<br />

∫<br />

|Ψ(R)| 2 f(R)dR<br />

∫<br />

|Ψ(R)| 2 dR<br />

= 1 M<br />

M∑<br />

f(R i ) , (398)<br />

i=1<br />

193

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!