14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

33.3.3 Homogeneous and isotropic systems<br />

Suppose we specialize to a homogeneous and isotropic system where g αβ (r, r ′ ) = g αβ (|r−r ′ |) = g αβ (r),<br />

and n α (r) = N α /Ω, where Ω is the volume <strong>of</strong> the simulation cell. Performing a translational average<br />

<strong>of</strong> g αβ we obtain<br />

g αβ (r) = 1 ∫<br />

g αβ (r ′′ , r ′′′ ) δ(r ′′ − r ′′′ − r) dr ′′ dr ′′′ (340)<br />

Ω<br />

=<br />

Ω<br />

N α N β<br />

∫<br />

|Ψ|<br />

2 ∑ i,α<br />

∑<br />

j,β≠i,α δ(r i,α − r j,β − r) dR<br />

∫ . (341)<br />

|Ψ|2 dR<br />

Performing a rotational average we obtain<br />

∫<br />

1<br />

g αβ (r) =<br />

4πr 2 g αβ (r ′ ) δ(|r ′ | − r) dr ′ (342)<br />

∫<br />

Ω |Ψ|<br />

2<br />

∑ ∑<br />

i,α j,β≠i,α<br />

=<br />

δ(|r i,α − r j,β | − r) dR<br />

∫<br />

4πr 2 . (343)<br />

N α N β |Ψ|2 dR<br />

The rotationally and translationally averaged pair correlation functions could be evaluated by collecting<br />

in bins, see Sec. 33.3.5.<br />

The sum rule <strong>of</strong> Eq. (339) gives<br />

N β<br />

Ω<br />

33.3.4 Translational and rotational averaging <strong>of</strong> g αβ (r, r ′ )<br />

∫<br />

[g αβ (r) − 1] 4πr 2 dr = −δ αβ . (344)<br />

The translational average <strong>of</strong> g αβ (r, r ′ ) is<br />

gαβ(r) T = 1 ∫<br />

g αβ (r ′′ , r ′′′ ) δ(r ′′ − r ′′′ − r) dr ′′ dr ′′′ (345)<br />

Ω<br />

= 1 ∫ |Ψ|<br />

2 ∑ i,α δ(r i,α − r ′′ ) ∑ j,β≠i,α δ(r j,β − r ′′′ ) δ(r ′′ − r ′′′ − r) dr ′′ dr ′′′<br />

∫ dR (346)<br />

Ω |Ψ|2 dR n α (r ′′ ) n β (r ′′′ )<br />

= 1 ∫ |Ψ|<br />

2 ∑ ∑<br />

i,α j,β≠i,α δ(r i,α − r j,β − r)<br />

∫ dR. (347)<br />

Ω |Ψ|2 dR n α (r i,α ) n β (r j,β )<br />

The rotational average <strong>of</strong> gαβ T (r) is<br />

g T R<br />

αβ (r) =<br />

=<br />

1<br />

4πr 2 Ω<br />

1<br />

4πr 2 Ω<br />

∫<br />

gαβ(r T ′ ) δ(|r ′ | − r) dr ′ (348)<br />

∫ |Ψ|<br />

2 ∑ ∑<br />

i,α j,β≠i,α δ(|r i,α − r j,β | − r)<br />

∫ dR. |Ψ|2 dR n α (r i,α ) n β (r j,β )<br />

(349)<br />

As well as the above averages one can calculate the pair correlation g αβ (r, r ′ ) where an electron <strong>of</strong><br />

spin α is fixed at a particular position r. Suppose we write g αβ (r ′ , r ′ ) as<br />

∫<br />

|Ψ|<br />

2 ∑<br />

g αβ (r, r ′ i,α<br />

) =<br />

δ(r i,α − r) ∑ j,β≠i,α δ(r j,β − r ′ ) dR<br />

∫ ∑ |Ψ|<br />

2<br />

i,α δ(r (350)<br />

i,α − r) dR n β (r ′ )<br />

= N ∫<br />

α(N β − δ αβ ) |Ψ| 2 δ(r 1,α − r)δ(r 2,β − r ′ ) dR<br />

∫ . (351)<br />

N α |Ψ|2 δ(r 1,α − r) dR n β (r ′ )<br />

We now define the probability distribution |Ψ F | 2 as<br />

∫<br />

|Ψ F | 2 = |Ψ| 2 δ(r 1,α − r) dr 1,α . (352)<br />

Writing Eq. (350) in terms <strong>of</strong> |Ψ F | 2 we obtain<br />

∫<br />

|Ψ<br />

g αβ (r, r ′ F | 2 δ(r 2,β − r ′ ) dr 2 . . . dr N<br />

) = (N β − δ αβ ) ∫<br />

|ΨF | 2 dr 2 . . . dr N n β (r ′ )<br />

(353)<br />

= n αβ(r, r ′ )<br />

n β (r ′ , (354)<br />

)<br />

189

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!