14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where G is a reciprocal lattice vector <strong>of</strong> the simulation cell.<br />

After each configuration move, we can evaluate a contribution to two out <strong>of</strong> the four components <strong>of</strong><br />

˜ρ sdm for each electron. Given that the ith electron has spin value s i , we can record ˜ρ sdm (G; s, s i ) for<br />

both values <strong>of</strong> s by evaluating the ratio <strong>of</strong> the wave functions for those two values.<br />

Casino evaluates the Fourier components <strong>of</strong> the spin-density matrix if the spin density keyword is<br />

set to T in a noncollinear-spin calculation. The Fourier components are stored in the expval.data<br />

file. The plot expval utility reads the Fourier components in the expval.data file and enables the<br />

user to plot the components <strong>of</strong> the spin-density matrix along lines in real space. It also asks the user<br />

if he or she wishes to plot the components <strong>of</strong> the magnetization density along lines in real space.<br />

33.3 Reciprocal-space and spherical real-space pair-correlation functions<br />

K eywords: pair corr, pair corr sph<br />

The two-particle density matrix is defined as<br />

∫<br />

γ (2)<br />

Ψ<br />

αβ (r, r′ ; r ′′ , r ′′′ ∗ (r, r ′ , r 3 , . . . , r N )Ψ(r ′′ , r ′′′ , r 3 , . . . , r N ) dr 3 . . . dr N<br />

) = N α (N β − δ αβ ) ∫ , (328)<br />

Ψ∗ (r 1 , r 2 , . . . , r N )Ψ(r 1 , r 2 , . . . , r N ) dR<br />

where r and r ′′ are α-spin electron coordinates and r ′ and r ′′′ are β-spin electron coordinates. The<br />

diagonal elements <strong>of</strong> the two-particle density matrix,<br />

∫<br />

γ (2)<br />

Ψ<br />

αβ (r, r′ ; r, r ′ ∗ (r, r ′ , r 3 , . . . , r N )Ψ(r, r ′ , r 3 , . . . , r N ) dr 3 . . . dr N<br />

) = N α (N β − δ αβ ) ∫ , (329)<br />

Ψ∗ (r 1 , r 2 , . . . , r N )Ψ(r 1 , r 2 , . . . , r N ) dR<br />

are <strong>of</strong> special interest. The normalization has been chosen so that<br />

∫<br />

γ (2)<br />

αβ (r, r′ ; r, r ′ ) dr dr ′ = N α (N β − δ αβ ). (330)<br />

The sum over spin indices gives<br />

where N = N α + N β .<br />

∑<br />

N α (N β − δ αβ ) = N(N − 1), (331)<br />

αβ<br />

The pair correlation functions, g αβ (r, r ′ ), are related to the diagonal elements <strong>of</strong> the two-particle<br />

density matrix by<br />

γ (2)<br />

αβ (r, r′ ; r, r ′ ) = n α (r) n β (r ′ ) g αβ (r, r ′ ). (332)<br />

The pair correlation functions are given by<br />

g αβ (r, r ′ ) =<br />

1<br />

n α (r)n β (r ′ )<br />

= N α(N β − δ αβ )<br />

n α (r)n β (r ′ )<br />

∫<br />

|Ψ|<br />

2 ∑ i,α δ(r i,α − r) ∑ j,β≠i,α δ(r j,β − r ′ ) dR<br />

∫ (333)<br />

|Ψ|2 dR<br />

∫<br />

|Ψ| 2 δ(r i,α − r) δ(r j,β − r ′ ) dR<br />

∫ . (334)<br />

|Ψ|2 dR<br />

33.3.1 The total or spin-averaged pair correlation function<br />

g(r, r ′ ) = ∑ α,β<br />

n α (r)n β (r ′ )<br />

n(r)n(r ′ )<br />

g αβ (r, r ′ ). (335)<br />

33.3.2 Properties <strong>of</strong> the pair correlation functions<br />

The pair correlation functions satisfy the following properties:<br />

∫<br />

g αβ (r, r ′ ) ≥ 0 (336)<br />

g αβ (r, r ′ ) = g βα (r ′ , r) (337)<br />

g αβ (r, r ′ ) = 0 for α = β, r = r ′ (338)<br />

n β (r ′ ) [g αβ (r, r ′ ) − 1] dr ′ = −δ αβ . (339)<br />

188

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!