14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The spin-density matrix is a two-by-two matrix which is the generalization <strong>of</strong> the spin density in a<br />

noncollinear-spin system (see Sec. 36). It is diagonal for the case <strong>of</strong> collinear spins, with the two<br />

diagonal elements being equal to the spin densities.<br />

Let x i ≡ {r i , s i }, where r i and s i are the spatial and spin coordinates <strong>of</strong> electron i.<br />

notation ∫ f(x) dx ≡ ∑ ∫<br />

s f({r, s}) dr.<br />

The spin-density matrix is defined as<br />

We use the<br />

ρ sdm (r; s, s ′ ) = N ∫ Ψ ∗ ({r, s ′ }, x 2 , . . . , x N )Ψ({r, s}, x 2 , . . . , x N ) dx 2 . . . dx<br />

∫ N<br />

. (320)<br />

|Ψ|2 dx 1 . . . dx N<br />

Note that ρ sdm (r; s, s ′ ) = ρ ∗ sdm (r; s′ , s).<br />

The diagonal elements <strong>of</strong> the spin-density matrix, which are real, give the spin density:<br />

The magnetization density operator is defined as<br />

ρ s (r) = ρ sdm (r; s, s). (321)<br />

ˆM(r) = 2 ∑ i<br />

δ(r − r i )ŝ i , (322)<br />

where ŝ i is the spin operator for electron i. Let M(r) = 〈 ˆM(r)〉.<br />

So<br />

M z (r) = 2 ∑ i<br />

∫<br />

Ψ ∗ δ(r − r i )ŝ iz Ψ dx 1 . . . dx N<br />

∫<br />

|Ψ|2 dx 1 . . . dx N<br />

= 2N ∑ ∫<br />

s 1 Ψ ∗ ({r, s 1 }, x 2 , . . . , x N )ŝ 1z Ψ({r, s 1 }, x 2 , . . . , x N ) dx 2 . . . dx N<br />

∫<br />

|Ψ|2 dx 1 . . . dx N<br />

∫<br />

|Ψ({r, ↑}, x2 , . . . , x N )| 2 dx 2 . . . dx N − ∫ |Ψ({r, ↓}, x 2 , . . . , x N )| 2 dx 2 . . . dx N<br />

= N<br />

∫<br />

|Ψ|2 dx 1 . . . dx N<br />

= ρ sdm (r; ↑, ↑) − ρ sdm (r; ↓, ↓) = ρ ↑ (r) − ρ ↓ (r). (323)<br />

We also have<br />

M x (r) = 2 ∑ ∫<br />

i Ψ ∗ δ(r − r i )ŝ ix Ψ dx 1 . . . dx<br />

∫ N<br />

|Ψ|2 dx 1 . . . dx N<br />

∑ ∫<br />

s<br />

= N 1 Ψ ∗ ({r, s 1 }, x 2 , . . . , x N )[ŝ 1+ + ŝ 1− ]Ψ({r, s 1 }, x 2 , . . . , x N ) dx 2 . . . dx N<br />

∫<br />

|Ψ|2 dx 1 . . . dx N<br />

[∫<br />

Ψ ∗ ({r, ↑}, x 2 , . . . , x N )Ψ({r, ↓}, x 2 , . . . , x N ) dx 2 . . . dx N<br />

= N<br />

∫<br />

|Ψ|2 dx 1 . . . dx N<br />

+ ∫ Ψ ∗ ]<br />

({r, ↓}, x 2 , . . . , x N )Ψ({r, ↑}, x 2 , . . . , x N ) dx 2 . . . dx<br />

∫ N<br />

|Ψ|2 dx 1 . . . dx N<br />

= ρ sdm (r; ↓, ↑) + ρ sdm (r; ↑, ↓) = 2Re [ρ sdm (r; ↓, ↑)] , (324)<br />

where we have used the raising and lowering properties <strong>of</strong> the ladder operators ŝ + = ŝ x + iŝ y and<br />

ŝ − = ŝ x − iŝ y . In a similar fashion,<br />

To evaluate the spin-density matrix in VMC, we rewrite it as<br />

∫<br />

|Ψ| 2 δ(r − r i ) δ si,s ′<br />

ρ sdm (r; s, s ′ ) = ∑ i<br />

〈 ∑<br />

=<br />

i<br />

M y (r) = 2Im [ρ sdm (r; ↓, ↑)] . (325)<br />

Ψ(...,{r i,s},...)<br />

Ψ(...,{r i,s ′ },...) dx 1 . . . dx N<br />

∫<br />

|Ψ|2 dx 1 . . . dx N<br />

〉<br />

Ψ(. . . , {r i , s}, . . .)<br />

δ(r − r i ) δ si,s ′ Ψ(. . . , {r i , s ′ . (326)<br />

}, . . .)<br />

In practice we gather the Fourier components <strong>of</strong> the spin-density matrix, which are<br />

〈 〉<br />

˜ρ sdm (G; s, s ′ ) = 1 ∑ Ψ(. . . , {r i , s}, . . .)<br />

exp(−iG · r i ) δ si,s<br />

Ω<br />

′ Ψ(. . . , {r<br />

i<br />

i , s ′ , (327)<br />

}, . . .)<br />

187

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!