14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

= 4π k<br />

= 4π k<br />

∫ Lu<br />

0<br />

∑N u<br />

∑<br />

C<br />

α l<br />

l=0 m=0<br />

ru(r) sin(kr) dr<br />

( ∫ C<br />

Lu<br />

u )<br />

m)(−L C−m r m+l+1 sin(kr) dr. (252)<br />

Let I n (k) = ∫ L u<br />

0<br />

r n sin(kr) dr. Then I 0 = [1 − cos(kL u )]/k and I 1 = −L u cos(kL u )/k + sin(kL u )/k 2 ,<br />

and, for n ≥ 2,<br />

I n (k) = 1 k<br />

[ n<br />

k<br />

0<br />

(<br />

L<br />

n−1<br />

u sin(kL u ) − (n − 1)I n−2 (k) ) ]<br />

− L n u cos(kL u ) . (253)<br />

Hence we can rapidly evaluate I n (k) for all n required (that is, up to n = N u + C + 1).<br />

For k = 0 we have<br />

∑N u<br />

ũ(0) = 4π<br />

∑<br />

C<br />

α l<br />

l=0 m=0<br />

( C C−m Ll+m+3 u<br />

u )<br />

m)(−L<br />

l + m + 3 . (254)<br />

29.2.4 Fourier transformation <strong>of</strong> u in 2D<br />

An analytic expression for ũ(k) is not available in two dimensions. We therefore evaluate ũ(k) numerically<br />

using a fast Fourier transform.<br />

29.2.5 Fourier transformation <strong>of</strong> u in 1D<br />

ũ(k) =<br />

∫ L/2<br />

−L/2<br />

u(|x|) exp(−ikx) dx<br />

∑N u ∫ Lu<br />

= 2 α l (x − L u ) C x l cos(kx) dx<br />

l=0<br />

∑N u<br />

= 2<br />

0<br />

∑ C<br />

α l<br />

l=0 n=0<br />

( C<br />

n)<br />

(−L u ) C−n J n+l (k), (255)<br />

where L is the length <strong>of</strong> the simulation cell and J n = ∫ L u<br />

x n cos(kx) dx. Suppose k ≠ 0. Then<br />

0<br />

J 0 (k) = sin(kL u )/k, J 1 (k) = L u sin(kL u )/k + [cos(kL u ) − 1]/k 2 and, for n ≥ 2<br />

J n (k) = 1 k<br />

[ n<br />

k<br />

(<br />

L<br />

n−1<br />

u cos(kL u ) − (n − 1)J n−2 (k) ) ]<br />

+ L n u sin(kL u ) . (256)<br />

Hence we can rapidly evaluate J n (k) for all n required (from n = 0 to n = N u + C). If k = 0 then<br />

J n = L n+1<br />

u /(n + 1).<br />

29.3 Fitting form for the long-ranged two-body Jastrow factor (3D)<br />

29.3.1 The ‘RPA-Kato’ Jastrow factor<br />

Consider the infinite-system ‘RPA-Kato’ two-body Jastrow factor [11] for pairs <strong>of</strong> particles <strong>of</strong> type α,<br />

which satisfies the Kato cusp condition and has the long-ranged 1/r decay predicted by the random<br />

phase approximation (RPA) [79],<br />

u αα (r) = − A α<br />

r [1 − exp(−r/F α)] , (257)<br />

where A α is a free parameter and Fα 2 = c α A α is determined by the cusp conditions, where c α =<br />

2/(qαm 2 α ). The Fourier transformation <strong>of</strong> this two-body Jastrow factor is<br />

( )<br />

1<br />

ũ αα (k) = −4πA α<br />

k 2 − 1<br />

k 2 . (258)<br />

+ 1/c α A α )<br />

176

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!