14.09.2014 Views

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

CASINO manual - Theory of Condensed Matter

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Suppose the ground-state trial wave function Ψ can be written as the product <strong>of</strong> a part involving<br />

long-ranged two-body correlations u αβ and a part consisting <strong>of</strong> everything else, Ψ s [17, 14]:<br />

⎛<br />

∑N s<br />

Ψ(R) = Ψ s (R) exp ⎝<br />

∑N s<br />

N β<br />

α=1 β=α+1 i=1 j=1<br />

∑N α<br />

∑<br />

∑N s<br />

u αβ (r iα − r jβ ) +<br />

α=1<br />

N∑<br />

α−1<br />

i=1<br />

∑N α<br />

j=i+1<br />

⎞<br />

u αα (r iα − r jα ) ⎠ , (238)<br />

where u αβ (r) has the periodicity <strong>of</strong> the simulation cell and u αβ (r) = u αβ (−r). Note that, throughout<br />

this section, we use u to denote the two-body Jastrow factor; in fact this is the sum <strong>of</strong> the u and p<br />

terms in casino’s Jastrow factor.<br />

Let the Fourier transform <strong>of</strong> u αβ be<br />

∫<br />

ũ αβ (G) =<br />

where the {G} are the simulation-cell reciprocal lattice vectors. Let<br />

Ω<br />

u αβ (r) exp(−iG · r) dr, (239)<br />

∑N α<br />

˜ρ α (G; R) = exp(−iG · r iα ) (240)<br />

i=1<br />

be the Fourier transform <strong>of</strong> the density operator ρ α (r; R) = ∑ N α<br />

i=1 δ(r − r iα). Then<br />

⎛<br />

Ψ(R) = Ψ s (R) exp ⎝ 1 N∑<br />

s−1<br />

∑N s<br />

∑<br />

ũ αβ (G)˜ρ ∗<br />

Ω<br />

α(G; R)˜ρ β (G; R)<br />

α=1 β=α+1 G<br />

)<br />

+ 1 ∑N s<br />

∑N α<br />

∑<br />

ũ αα ˜ρ ∗<br />

2Ω<br />

α(G; R)˜ρ β (G; R) − 1 ∑N s<br />

∑<br />

N α ũ αα (G)<br />

2Ω<br />

α=1 i=1 G<br />

α=1 G<br />

⎛<br />

⎞<br />

= Ψ s (R) exp ⎝ 1 ∑N s<br />

∑N s<br />

∑<br />

ũ αβ (G)˜ρ ∗<br />

2Ω<br />

α(G; R)˜ρ β (G; R) + K⎠ , (241)<br />

where K is independent <strong>of</strong> R.<br />

α=1 β=1 G≠0<br />

If we assume that only electrons are present, the ‘TI’ kinetic-energy estimator [11] may be written as<br />

T (R) = −1<br />

4 ∇2 log(Ψ) = T s (R) − 1<br />

8Ω<br />

where T s = −∇ 2 log(Ψ s (R))/4 [14].<br />

It can easily be shown that<br />

∑N s N s<br />

∑ ∑<br />

ũ αβ (G)∇ 2 [˜ρ ∗ α(G; R)˜ρ β (G; R)] , (242)<br />

α=1 β=1 G≠0<br />

∇ 2 [˜ρ ∗ α(G; R)˜ρ β (G; R)] = −2|G| 2 [˜ρ ∗ α(G; R)˜ρ β (G; R) − N α δ αβ ] . (243)<br />

Hence the kinetic energy is<br />

⎛<br />

⎞<br />

〈T (R)〉 = 〈T s 〉 + 1 ∑ ∑N s<br />

∑N s<br />

∑N s<br />

|G| 2 ⎝ ũ αβ (G) 〈˜ρ ∗<br />

4Ω<br />

α(G; R)˜ρ β (G; R)〉 − N α ũ αα (G) ⎠ . (244)<br />

G≠0<br />

α=1 β=1<br />

The Fourier transform <strong>of</strong> the translationally averaged structure factor is<br />

˜S αβ (k) = 1 N<br />

α=1<br />

(〈˜ρα (k; R)˜ρ ∗ β(k; R) 〉 − 〈˜ρ α (k; R)〉 〈˜ρ ∗ β(k; R) 〉) . (245)<br />

The charge density has the periodicity <strong>of</strong> the primitive lattice and therefore 〈˜ρ α (k; R)〉 is only nonzero<br />

for G vectors <strong>of</strong> the primitive lattice. In particular, the second term in the Fourier-transformed<br />

structure factor is zero for small k, which is the regime <strong>of</strong> relevance here. Hence<br />

〈T 〉 = 〈T s 〉 + N 4Ω<br />

∑ ∑N s<br />

∑N s<br />

|G| 2<br />

G≠0<br />

α=1 β=1<br />

ũ αβ (G) ˜S ∗ αβ(G) − 1<br />

4Ω<br />

∑ ∑N s<br />

|G| 2 N α ũ αα (G). (246)<br />

G≠0<br />

α=1<br />

174

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!