14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Latent heat of the phase transition for hot heavy <strong>nuclei</strong><br />

<strong>IPN</strong>O Participation: B. Borderie, E. Galichet, M. F. Rivet<br />

Collaborations : INDRA <strong>and</strong> ALADIN<br />

LPC Caen, ENSICAEN, Université de Caen, CNRS/<strong>IN2P3</strong>, Caen, France<br />

GANIL, CEA et CNRS/<strong>IN2P3</strong>, Caen, France<br />

<strong>IPN</strong> Lyon, Université Claude Bernard Lyon1, CNRS/<strong>IN2P3</strong>, Villeurbanne, France<br />

IRFU/SPhN, CEA/Saclay Gif-sur-Yvette, France<br />

Laboratoire de Physique Nucléaire, Université Laval, Québec, Canada<br />

Dpt de Scienze Fisiche e Sez. INFN, Università di Napoli « Federico II », Napoli, Italy<br />

N<strong>IPN</strong>E, Bucharest Magurele, Romania<br />

Institute of Nuclear Physics IFJ-PAN, Krakov, Pol<strong>and</strong><br />

The Andrzej Soltan Institute for Nuclear Studies, Warsaw, Pol<strong>and</strong><br />

La distribution en charge du plus gros fragment détecté lors de la désexcitation de <strong>noyaux</strong> chauds par multifragmentation<br />

est bimodale. Les <strong>noyaux</strong> chauds étudiés sont des quasi-projectiles produits dans des réactions<br />

semi-périphériques entre <strong>noyaux</strong> d’or aux énergies incidentes de 60-100 MeV par nucléon. Ce signal<br />

de bimodalité est générique d’une transition de phases du premier ordre dans un système fini. En utilisant<br />

deux méthodes de sélection des <strong>noyaux</strong> quasi-projectiles chauds et les différentes énergies incidentes<br />

la chaleur latente de la transition a pu, pour la première fois, être estimée.<br />

Bimodality <strong>and</strong> first order phase transition for<br />

finite systems<br />

At a first-order phase transition, the distribution of<br />

the order parameter in a finite system presents a<br />

characteristic bimodal behavior in the canonical or<br />

gr<strong>and</strong>canonical ensemble [1,2]. The bimodality<br />

comes from an anomalous convexity of the underlying<br />

microcanonical entropy [2,3]. It physically<br />

corresponds to the simultaneous presence of two<br />

different classes of physical states for the same<br />

value of the control parameter, <strong>and</strong> can survive at<br />

the thermodynamic limit in a large class of physical<br />

systems subject to long-range interactions.<br />

Indeed if one considers a finite system in contact<br />

with a reservoir (canonical sampling), the value of<br />

the extensive variable (order parameter) X may<br />

fluctuate as the system explores the phase space.<br />

The entropy function F(X) is no more addititive due<br />

to the fact that surfaces are not negligible for finite<br />

systems <strong>and</strong> the resulting equilibrium entropy function<br />

has a local convexity. The Maxwell construction<br />

is no longer valid. The associated distribution<br />

at equilibrium, P(X)~exp(S(X)-λX) where λ is the<br />

corresponding Lagrange multiplier, acquires a bimodal<br />

character (see figure 1).<br />

In the case of nuclear multifragmentation, we have<br />

shown that the size of the heaviest cluster produced<br />

in each collision event is an order parameter.<br />

A difficulty comes however from the absence of a<br />

true canonical sorting in the data. The statistical<br />

ensembles produced by selecting hot <strong>nuclei</strong> are<br />

neither canonical nor microcanonical. Recently a<br />

simple weighting of the probabilities associated to<br />

each excitation energy bin for quasi-projectile<br />

events was proposed to allow the comparison with<br />

the canonical ensemble [4].That weighting procedure<br />

is used to test the independence of the decay<br />

Figure 1: Canonical ensemble for finite systems;<br />

the bimodal equilibrium distribution is<br />

given by P(X)~exp(S(X)-λX). The figure shows<br />

the case when the Lagrange multiplier λ is<br />

equal to the slope of the common tangent.<br />

from the dynamics of the entrance channel <strong>and</strong> to<br />

compare data with canonical expectations for<br />

quasi-projectile sources produced in Au + Au collisions<br />

at incident energies from 60 to 100 AMeV.<br />

Then, a double saddle-point approximation is applied<br />

to extract from the measured data equivalentcanonical<br />

distributions [4].<br />

Estimation of the latent heat<br />

In this incident energy regime, a part of the cross<br />

section corresponds to collisions with dynamical<br />

neck formation [5]. We thus need to make sure<br />

that the observed change in the fragmentation<br />

108

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!