14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Radial collective energy <strong>and</strong> fragment partitions in<br />

multifragmentation of hot heavy <strong>nuclei</strong><br />

<strong>IPN</strong>O Participation: B. Borderie, E. Galichet, M. F. Rivet<br />

Collaborations : INDRA <strong>and</strong> ALADIN<br />

LPC Caen, ENSICAEN, Université de Caen, CNRS/<strong>IN2P3</strong>, Caen, France<br />

GANIL, CEA et CNRS/<strong>IN2P3</strong>, Caen, France<br />

<strong>IPN</strong> Lyon, Université Claude Bernard Lyon1, CNRS/<strong>IN2P3</strong>, Villeurbanne, France<br />

IRFU/SPhN, CEA/Saclay Gif-sur-Yvette, France<br />

Laboratoire de Physique Nucléaire, Université Laval, Québec, Canada<br />

Dpt de Scienze Fisiche e Sez. INFN, Università di Napoli « Federico II », Napoli, Italy<br />

N<strong>IPN</strong>E, Bucharest Magurele, Romania<br />

Institute of Nuclear Physics IFJ-PAN, Krakov, Pol<strong>and</strong><br />

The Andrzej Soltan Institute for Nuclear Studies, Warsaw, Pol<strong>and</strong><br />

Les partitions de fragments issus de la désexcitation par multifragmentation de <strong>noyaux</strong> chauds produits<br />

dans des collisions centrales et semi-périphériques ont été comparées dans le domaine en énergie d’excitation<br />

ou l’on observe la présence d’énergie collective radiale. Il est montré qu’à énergie d’excitation par<br />

nucléon fixée (thermique + collective) pour les <strong>noyaux</strong> chauds, l’énergie collective radiale moyenne fixe la<br />

multiplicité moyenne de fragments. De plus, les partitions de fragments sont complètement déterminées à<br />

multiplicité réduite de fragments donnée. Le volume de freeze-out est vraisemblablement responsable de la<br />

loi d’échelle observée.<br />

Introduction<br />

Nucleus-nucleus collisions at intermediate energies<br />

offer various possibilities to produce hot <strong>nuclei</strong><br />

which undergo a break-up into smaller pieces,<br />

which is called multifragmentation. The measured<br />

fragment properties are expected to reveal the<br />

existence of a phase transition for hot <strong>nuclei</strong> which<br />

was earlier theoretically predicted for nuclear matter<br />

[1]. By comparing in detail the properties of<br />

fragments (Z ≥ 5) emitted by hot <strong>nuclei</strong> formed in<br />

central (quasi-fused systems, QF, from<br />

129 Xe+ nat Sn, 25-50 AMeV) <strong>and</strong> semi-peripheral collisions<br />

(quasi-projectiles, QP, from 197 Au+ 197 Au, 80<br />

<strong>and</strong> 100 AMeV), i.e. with different dynamical conditions<br />

for their formation, the role of radial collective<br />

energy on partitions is emphasized [2] <strong>and</strong> general<br />

properties of partitions are deduced.<br />

Radial collective energy <strong>and</strong> fragment partitions<br />

To make a meaningful comparison of fragment<br />

properties which can be related to the nuclear phase<br />

diagram, hot <strong>nuclei</strong> showing, to a certain extent,<br />

statistical emission features must be selected. For<br />

central collisions (QF events) one selects complete<br />

<strong>and</strong> compact events in velocity space (constraint of<br />

flow angle ≥ 60°). For peripheral collisions (QP<br />

subevents) the selection method applied to quasiprojectiles<br />

minimizes the contribution of dynamical<br />

emissions by imposing a compacity of fragments in<br />

velocity space.The excitation energies of the different<br />

hot <strong>nuclei</strong> produced are calculated using the<br />

calorimetry procedure (see [2] for details); they<br />

include thermal <strong>and</strong> radial energies. By comparing<br />

the properties of selected sources on the same<br />

excitation energy domain, significant differences<br />

Figure 1: Evolution of the radial collective<br />

energy with the excitation energy per nucleon<br />

for different sources. Full squares st<strong>and</strong> for<br />

QF sources. Open (full) circles correspond to<br />

QP sources produced in 80 (100) AMeV collisions.<br />

Full triangles correspond to π - + Au<br />

<strong>reaction</strong>s <strong>and</strong> the open square to an estimate<br />

of the thermal part of the radial collective<br />

energy for Xe + Sn sources produced at 50<br />

AMeV incident energy.<br />

are observed above 5 AMeV excitation energy. QF<br />

sources have larger mean fragment multiplicities,<br />

, even normalized to the sizes of the sources<br />

(which differ by about 20% for QF <strong>and</strong> QP<br />

sources), <strong>and</strong> lower values for generalized asymmetry:<br />

A Z = σ Z / ( √M frag -1).<br />

A possible explanation of those different fragment<br />

partitions is related to the different dynamical<br />

contraints applied to the hot <strong>nuclei</strong> produced:<br />

a compression-expansion cycle for central collisions<br />

<strong>and</strong> a more gentle friction-abrasion process<br />

106

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!