14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Pegase project, a new solid surface probe :<br />

focused massive cluster ion beams.<br />

<strong>IPN</strong>O Participation: Della-Negra S., Arianer J., Depauw J. , Blache P., Dozon F., Kaminski M., Pereira<br />

M., Pochon O., Amorri T. <strong>and</strong> Yaniche J.F.<br />

Collaboration: Verkhoturov S.V. <strong>and</strong> Schweikert E.A. , Department of Chemistry, Texas A&M University,<br />

College Station, Texas 77842-3012 USA<br />

Les résultats obtenus au T<strong>and</strong>em d’Orsay ont montré que le rendement d’émission ionique secondaire d’une<br />

surface, bombardée par un faisceau d’agrégats, augmente de façon importante avec le nombre de<br />

constituants de l’agrégat et aussi avec son énergie. D’où l’intérêt d’utiliser des agrégats massifs d’or<br />

(plusieurs centaines à plus d’un millier d’atomes) ou de bismuth, à une énergie bien choisie, pour une analyse<br />

fine de surfaces métalliques et organiques, en particulier biologiques. Un autre paramètre décisif est la<br />

dimension du faisceau d’ions poly-atomiques, le but étant d’obtenir une mesure localisée d’un diamètre de<br />

1 à 10 μm. Pour remplir ces conditions, la collaboration entre l’<strong>IPN</strong> et Texas A&M University a mis sur pied<br />

un projet comportant une plate-forme isolée à 130 kV qui supporte la colonne ionique et une chambre de<br />

diagnostic, suivie par un gap accélérateur, un spectromètre de masse par temps de vol de haute résolution<br />

et un microscope à émission électronique.<br />

Ce projet Pégase, accepté par la National Science Foundation (USA) en février 2008 a été réalisé et testé<br />

à l’<strong>IPN</strong> et expédié fin novembre 2009 au Texas où les expériences de physique ont pu commencer en février<br />

2010.<br />

Polyatomic ion beams, for an efficient surface<br />

analysis, were first used at the Institut de Physique<br />

Nucléaire in Orsay. The projectiles were then<br />

made of a few atoms <strong>and</strong> this type of beam is now<br />

commercially available for mass spectrometry. But<br />

fundamental studies of the ion-solid interaction<br />

show that increasing the particles mass leads to an<br />

important enhancement of the ionic emission rates<br />

<strong>and</strong>, consequently, to a more accurate analysis.<br />

This is particularly interesting for the complex <strong>and</strong><br />

molecular ions, such as biological molecules or<br />

tissues for example. Through a continuous R&D on<br />

the liquid metal ion sources (LMIS), beams of massive<br />

multi-charged clusters containing hundreds to<br />

thous<strong>and</strong>s gold atoms were obtained; the ions are<br />

extracted from a melted down metal <strong>and</strong> their size<br />

is in the nanometer scale, from which the gold<br />

nano-droplets name [1] (fig 1)<br />

Figure 1: n/q (n <strong>and</strong> q being the atom number <strong>and</strong><br />

the charge of the ions) spectrum obtained with the<br />

Pegase Wien filter for a Gold LMISource through<br />

a 150 µm collimator.<br />

An advantage of these beams was proved, as<br />

soon as they were available, with ionic emission<br />

rates 1000 times those of atomic ions. In collaboration<br />

with the Centre of Chemical Characterization<br />

& Analysis of Texas A&M University, directed by<br />

Pr. E.A. Schweikert, we explore the exceptional<br />

properties of these new beams for surface analysis.[2-5]<br />

The main surface analysis object is, at present, to<br />

produce the most focused possible beam. The new<br />

projectiles are perfect c<strong>and</strong>idates for this kind of<br />

application <strong>and</strong> a micro-beam project was proposed<br />

in 2006 to obtain massive cluster beams<br />

with a diameter of 1-10 μm. To reach this object a<br />

100 kV acceleration at least is necessary. A feasibility<br />

study was undertaken at the TANDEM accelerator<br />

in order to first confirm the possibility to accelerate<br />

these particles while keeping them intact,<br />

<strong>and</strong> secondly to verify the energy value choice.<br />

This study, performed in 2007, was conclusive for<br />

the first point <strong>and</strong> showed that the choice of an<br />

energy between 100 <strong>and</strong> 200 keV was justified as<br />

the ionic emission rates increase strongly between<br />

20 keV per charge <strong>and</strong> 200 keV per charge <strong>and</strong><br />

then follow a quasi linear growth with energy<br />

above 200 keV per charge up to 4 MeV per<br />

charge. The 100-200 keV per charge energy region<br />

is most interesting because the ionic emission<br />

rates per impact lie far beyond unity which permits<br />

to get a mass spectrum [6]<strong>and</strong> to analyse 10 nm<br />

diameter areas with a single impact. The <strong>IPN</strong> Orsay<br />

team received for this collaboration a grant, in<br />

the frame of the CNRS-USA collaborations, which<br />

was renewed up to 2008.<br />

Following the preliminary encouraging results the<br />

collaboration built a project aiming at producing<br />

<strong>and</strong> using gold (or bismuth) nano-droplets for surface<br />

analysis on a nanometer scale. This project,<br />

called the PEGASE project, is made of an insulated<br />

130 kV platform which supports the ionic col-<br />

100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!