14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A study of new solvable few body problems.<br />

<strong>IPN</strong>O Participation: M. Lassaut, R.J. Lombard<br />

Collaboration : A. Bachkhaznadji, Laboratoire de Physique Théorique, Département de Physique,<br />

Université Mentouri, Constantine, Algérie<br />

Nous avons étudié des modèles solubles à petit nombre de nucléons. Nous avons généralisé les problèmes<br />

à 3 corps de Calogero et Calogero-Marchiero-Wolfes en introduisant des potentiels à trois corps non<br />

invariants par translation. Après avoir séparé les variables radiales et angulaires par des transformations<br />

de coordonnées nous avons fourni les solutions propres de l'équation de Schrödinger avec le spectre en<br />

énergie correspondant. Nous avons mis en évidence un domaine de la constante de couplage pour lequel<br />

les solutions irrégulières sont de carré intégrables.<br />

The study of exactly solvable non trivial quantum<br />

systems of few interacting particles still retains attention.<br />

The early works of Calogero [1], Sutherl<strong>and</strong><br />

[2] <strong>and</strong> Wolfes [3] have been followed by the systematic<br />

classification of Olshanetsky <strong>and</strong> Perelomov<br />

[4]. Generalizations <strong>and</strong> new cases have been investigated<br />

in the recent years. In a non exhaustive<br />

way, we quote, for instance, the three-body version<br />

of Sutherl<strong>and</strong> problem, with only a three-body potential,<br />

solved by Quesne [5]. By using supersymmetric<br />

quantum mechanics, Khare <strong>and</strong> co-workers<br />

gave examples of algebraically solvable three-body<br />

problems of Calogero type in D=1 dimensional<br />

space, with additional translationally invariant two<strong>and</strong>/or<br />

three-body potentials[6]. A new integrable<br />

model of the Calogero type, with a non translationally<br />

invariant two-body potential, was worked out in<br />

D=1 by Diaf, Kerris, Lassaut et Lombard [7], <strong>and</strong><br />

extended to D-dimensional space by Bachkhazndji,<br />

Lassaut <strong>and</strong> Lombard [8]. A generalization of the<br />

latter model in D=1 was solved by Meljanac <strong>and</strong> coworkers<br />

[9], by emphasizing the underlying conformal<br />

SU(1,1) symmetry. However, for the three-body<br />

case <strong>and</strong> D=1, these authors give only the energy<br />

spectrum <strong>and</strong> the form of the radial wave function.<br />

The present work investigates again the problem of<br />

Meljanac <strong>and</strong> co-workers for three particles in the<br />

D=1 dimensional space. The model may be viewed<br />

as a generalization of the three-body Calogero problem<br />

with an additional non-translationally invariant<br />

three-body<br />

potential. We recall here that this model belongs to<br />

the class possessing the underlying conformal SU<br />

(1,1) symmetry. It may also be understood as describing<br />

a system of three light interacting particles<br />

of the same mass m in the harmonic field generated<br />

by a fourth infinitely heavy particle.<br />

We provide the full wavefunction in terms of the radial<br />

<strong>and</strong> two angular variables, together with the<br />

corresponding eigenvalues. An emphasis is put on<br />

the irregular solutions stressing the domain of the<br />

coupling constants for which the irregular solutions<br />

are physically acceptable. Finally, we also give the<br />

exact results of two other generalizations of the Calogero-Marchioro-Wolfes<br />

three-body problem.<br />

References:<br />

[1] F. Calogero, J. Math. Phys.10(1969) 2191, J.<br />

Math. Phys.12 (1971) 419.<br />

[2] B. Sutherl<strong>and</strong>, J. Math. Phys. 12 (1971) 246,<br />

Phys. Rev. A 4 (1971) 2019.<br />

[3] J. Wolfes,J. Math. Phys. 15 (1974) 1420.<br />

[4] M.A. Olshanetsky <strong>and</strong> A.M. Perelomov, Phys.<br />

Rep. 71 (1981) 314, Phys. Rep.94 (1983) 6.<br />

[5]C.Quesne, Phys. Rev. A 55 (1997)3931.<br />

[6] A. Khare <strong>and</strong> R.K. Bhaduri, J. Phys A: Math.<br />

Gen. 27 (1994) 2213.<br />

[7] A. Diaf, A.T. Kerris, M. Lassaut <strong>and</strong> R.J.<br />

Lombard, J. Phys. A: Math. Gen. 39 (2006) 7305.<br />

[8] A. Bachkhaznadji, M. Lassaut <strong>and</strong> R.J.<br />

Lombard, J. Phys. A: Math. Theo. 40 (2007) 8791.<br />

[9]S. Meljanac, A. Samsarov, B. Basu-Mallick <strong>and</strong><br />

K.S. Gupta Eur. Phys. J. C 49 (2007) 875.<br />

91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!