14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IPN</strong>O Participation: Véronique Bernard<br />

Collaboration : HISKP (Th), Bonn (Allemagne)<br />

Resonnance properties from the<br />

finite volume spectrum<br />

Nous avons déterminé la self-énergie de la résonance Δ dans un volume fini en utilisant une théorie effective<br />

chirale incluant des champs de spin 3/2 de façon explicite. Les calculs ont été faits jusqu'a l'ordre<br />

quatre inclus dans le développement à petite échelle. Nous avons ainsi obtenu une paramétrisation du<br />

spectre en énergie de la paire pion-nucléon interagissant dans une boîte en terme de la masse des quarks<br />

et de la taille de la boîte. On a pu montrer que les corrections de volume fini peuvent être non négligeables<br />

pour des petites masses de quarks. Nous avons de plus proposé une méthode basée sur le concept de<br />

distribution de probabilité pour analyser le spectre en énergie dans un volume fini en QCD sur réseau.<br />

Nous avons montré que, dans le canal avec les nombres quantiques du Δ, une <strong>structure</strong> en résonance apparaissait<br />

clairement dans une telle analyse, permettant de déterminer la masse et la largeur de la résonance<br />

avec une précision raisonnable.<br />

Recent surge of interest in lattice calculations of<br />

the excited baryon spectrum has been mainly motivated<br />

by the experimental resonance physics program<br />

at Jefferson. Also, the hadron spectrum is<br />

arguably the least understood feature of Quantum<br />

Chromodynamics. In general, the extraction of the<br />

properties of the excited states from the lattice<br />

data is a more delicate enterprise as compared to<br />

the ground-state hadrons. The reason is that the<br />

excited states are unstable <strong>and</strong>, strictly speaking,<br />

can not be put in correspondence to a single isolated<br />

level in the discrete spectrum measured in<br />

lattice simulations. A st<strong>and</strong>ard procedure proposed<br />

by Lüscher [1] consists in placing the system into a<br />

finite cubic box of a size L <strong>and</strong> studying the response<br />

of the spectrum on the change of L. It can<br />

of extracting the phase shift from the lattice data<br />

that also determines the position <strong>and</strong> the width of<br />

the resonance.<br />

The Δ resonance is the most important baryon<br />

resonance. Its mass is close to the nucleon one<br />

<strong>and</strong> it couples strongly to nucleons, pions <strong>and</strong> photons.<br />

It is clear that a systematic study of the properties<br />

of the Δ resonance in lattice QCD could lay<br />

a solid theoretical basis for underst<strong>and</strong>ing the low<br />

energy QCD dynamics in the one nucleon sector<br />

in lattice QCD.<br />

In actual calculation on the lattice the quark<br />

masses do not usually coincide with physical<br />

quark masses. This qualitatively changes the picture<br />

since, if the quark mass is large enough, the Δ<br />

does not decay <strong>and</strong> can be extracted by the methods<br />

applicable in case of the stable particles. Reducing<br />

the quark mass, a value is reached such<br />

that the Δ starts to decay into a pion <strong>and</strong> a nu-<br />

Fig.1 A schematic representation of the avoided<br />

level crossing in the presence of a resonance. The<br />

center of mass momentum of a two particle pair is<br />

plotted against the size of a box L (arbitrary units).<br />

be shown that the dependence of the energy levels<br />

on L exhibits a very peculiar behavior near the<br />

resonance, where the so-called avoided level<br />

crossing takes place, see Fig.1 <strong>and</strong> that it is dictated<br />

solely by the scattering phase shift in the infinite<br />

volume. Consequently, the method is capable<br />

Fig.2 Fit to the nucleon <strong>and</strong> Δ ++ spectrum.<br />

The lowest data point has been purified with<br />

respect to the finite volume corrections. For<br />

comparison the uncorrected lowest data points<br />

(triangles) are shown.<br />

89

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!