14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chiral expansions of the π 0 lifetime<br />

<strong>IPN</strong>O Participation: B. Moussallam<br />

Collaboration : K. Kampf (Charles University, Prague)<br />

L’amplitude de désintégration du pion neutre en deux photons est une observable clé pour la brisure spontannée<br />

de la symétrie chirale en QCD , la nature de quasi boson de Nambu-Goldstone du pion et l’anomalie.<br />

L’amplitude est connue exactement dans la limite chirale et l’amplitude physique s’exprime comme un<br />

développement en fonction des masses des quarks dans le cadre d’une théorie effective: ChPT. Dans ce<br />

travail nous avons a) calculé pour la première fois la correction à deux boucles en ChPT montrant, en particulier<br />

que des termes logarithmiques apparaissent à cet ordre et b) nous avons étudié le matching, à l’ordre<br />

d’une boucle entre les développements à deux et trois saveurs ce qui permet d’estimer les constantes<br />

de couplage chirales et le role des mélanges π-η et π-η’ . Ce travail est motivé par l’expérience PRIMEX<br />

qui cherche à mesurer la durée de vie avec une précision de 1% (contre 10% actuellement) et par les<br />

simulations numériques de QCD sur réseau qui permettent de faire varier les masses des quarks.<br />

Introduction<br />

The decay amplitude of the neutral pion into two<br />

photons is a key observable with respect to the<br />

spontaneous breaking of chiral symmetry in QCD,<br />

the Nambu-Goldstone nature of the neutral pion<br />

<strong>and</strong> the anomaly. In this work we compute, firstly,the<br />

corrections of order NNLO in the quark<br />

mass expansion of the amplitude. This is useful in<br />

view of forthcoming results from lattice QCD simulations<br />

in which the quark masses can be varied.<br />

We have furthermore displayed the presence of<br />

chiral logarithms in the expansion, which are absent<br />

at NLO. Secondly, we study the matching, at<br />

order NLO, between the two-flavour <strong>and</strong> the three<br />

flavour expansions. This allows us to refine the<br />

phenomenological estimates of the chiral coupling<br />

constants at NLO <strong>and</strong> the numerical prediction of<br />

the decay amplitude in view of the forthcoming<br />

measurement, at the 1% level, of the PRIMEX collaboration.<br />

Two-flavour NNLO expansion of π 0 amplitude<br />

We consider first the expansion of the decay amplitude<br />

as a function of the two quark masses<br />

mu,md which can be performed using ChPT. The<br />

leading order result is given exactly by the ABJ<br />

anomaly<br />

At NLO, one must compute one-loop diagrams <strong>and</strong><br />

use the NLO chiral Lagrangian which was classified<br />

by Bijnens et al.[1]. When expressed in terms<br />

of the physical pion mass <strong>and</strong> decay constant the<br />

NLO contribution is a polynomial (no logarithms)<br />

controled by two combinations of chiral coupling<br />

constants. In this work, we have considered the<br />

NNLO contributions, which could be enhanced by<br />

chiral logarithms <strong>and</strong> are also necessary for matching<br />

with lattice QCD simulations. The evaluation<br />

involves computing a set of two-loop graphs, as<br />

well as a set of one-loop graphs containing one<br />

NLO vertex. The explicit result is the following:<br />

It indeed contains two kinds of chiral logarithms,<br />

with the coefficient of the quadratic logarithm depending<br />

only on F as expected from Weinberg’s<br />

arguments.<br />

Matching two <strong>and</strong> three-flavour expansions<br />

For physical quark masses we find that the NNLO<br />

chiral logarithms are numerically small <strong>and</strong> it is<br />

necessary to estimate the coupling constants involved<br />

in the NLO contribution. We reconsider this<br />

issue by matching the two-flavour <strong>and</strong> the threeflavour<br />

expansions. A new method to perform this<br />

directly at the level of the generating functionals<br />

was recently proposed[2] . It amounts to express<br />

the two-flavour coupling constants in terms of the<br />

three-flavour ones as an expansion in inverse powers<br />

of the strange quark mass. It turns out that<br />

only two of these constants are involved. Using<br />

experimental inputs from η decay, from η’ decay as<br />

well as from π(1300) decay it is possible to determine<br />

all the chiral couplings at NLO. We make the<br />

following prediction for the width<br />

Γ = (8.09 ± 0.08 ± 0.10) eV<br />

Where the first uncertainty comes from md-mu <strong>and</strong><br />

the second from contributions quadratic in ms.<br />

References<br />

[1]J. Bijnens et al., Eur. Phys. J. C23 (2002) 539<br />

[2]J. Gasser et al., Phys. Lett. B652 (2007) 21<br />

84

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!