14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Non-perturbative asymptotic improvement of perturbation theory<br />

<strong>and</strong> Mellin-Barnes representation<br />

<strong>IPN</strong>O Participation: S. Friot<br />

Collaboration : D. Greynat (IFAE)<br />

Dans ce travail on s’intéresse à un procédé formel permettant l’obtention d’information non-perturbative à<br />

partir de séries perturbatives divergentes. On considère le cas simple de la théorie scalaire Φ^4 en<br />

dimension zéro qui permet un contrôle totalement rigoureux des résultats. Le procédé formel utilisé, qui<br />

repose sur des développements factoriels inverses et sur la représentation de Mellin-Barnes, mène à une<br />

amélioration non-perturbative des séries perturbatives des fonctions à N points de la théorie sous forme de<br />

séries hyperasymptotiques présentant un phénomène de résurgence. Dans ce cas simple on montre que<br />

ces résultats formels peuvent en fait être obtenus rigoureusement à l’aide de la théorie hyperasymptotique<br />

de Mellin-Barnes, ce qui prouve la validité du procédé formel. Ce cadre permet en outre de démontrer le<br />

caractère non-perturbatif de nos résultats. Une étude numérique montre les gains de précision des séries<br />

hyperasymptotiques par rapport aux séries perturbatives.<br />

Introduction<br />

The divergent behavior of a (divergent) asymptotic expansion<br />

does not at all detract from its computational<br />

utility. This statement is corroborated by the fact that, in<br />

what concerns its first few partial sums, a divergent<br />

asymptotic expansion of a given quantity ''converges'' in<br />

general much faster to the exact result than what a<br />

convergent series representation of the same quantity<br />

does. In the case of the St<strong>and</strong>ard Model quantum field<br />

theories, we may therefore say that, regarding the extreme<br />

difficulty to go beyond the first few perturbative orders<br />

when computing observables in QCD or in the electroweak<br />

theory, it is an advantage, for phenomenology,<br />

to deal with a formalism that leads to presumably<br />

asymptotic power series, diverging for all values of the<br />

coupling constants, rather than convergent ones.<br />

However, one has of course to keep in mind that when<br />

dealing with divergent asymptotic perturbative power<br />

expansions, there always remains a finite limit of precision<br />

beyond which the usual asymptotic theory cannot<br />

go, even when the objects that one wants to compute<br />

are well-defined (in the case of the 4D St<strong>and</strong>ard Model<br />

of particle physics, due to the absence of a clear definition<br />

of the theory, already the correct evaluation of the<br />

size of this precision limit is lacking, i.e. theoretical errors<br />

implied by truncations of perturbative expansions, OPE,<br />

etc. are not under control, although it is in principle of<br />

crucial importance in precision test of the St<strong>and</strong>ard Model<br />

if one aims to find new physics effects). All ways to<br />

break open this precision limit are welcome. In the beginning<br />

of the 1990's, new asymptotic objects, which<br />

have in general a larger region of validity (a larger domain<br />

of definition in the complex expansion parameter)<br />

<strong>and</strong> a greater accuracy than conventional asymptotic<br />

expansions, appeared in the mathematical litterature.<br />

With them, a new asymptotic theory emerged: exponential<br />

asymptotics (or hyperasymptotics). These asymptotic<br />

objects (hyperasymptotic expansions) are very interesting<br />

since they correspond to what we could call in physics<br />

a non-perturbative asymptotic improvement of a<br />

perturbative (asymptotic) power series. Our aim in this<br />

work is to show how hyperasymptotic expansions appear<br />

naturally in the simplest example one may have in<br />

mind, namely zero-dimensional Φ^4 field theory.<br />

sults of our paper [1], focusing only on the case of the 0-<br />

dimensional version of the generating functional of vacuum<br />

to vacuum transitions<br />

Z<br />

0<br />

1<br />

2<br />

e<br />

although in the original paper the general N-point function<br />

case has also been considered.<br />

Leading non-perturbative asymptotic improvement<br />

of perturbative results<br />

The perturbative expansion of Z_0 is given by<br />

Z<br />

0<br />

1<br />

k<br />

This is a divergent series for any value of λ.<br />

For a given choice of λ the first few partial sums begin to<br />

converge to the exact value, but after a certain rank, the<br />

divergence of the perturbative series is of course unavoidable.<br />

This is the usual behaviour of an asymptotic expansion.<br />

Dividing the series into 2 parts, one keeps explicitly n<br />

perturbative terms <strong>and</strong> the aim now is to give a meaning<br />

to the infinite remaining divergent tail.<br />

This is done formally by applying the following inverse<br />

factorial expansion [2], to (a slightly modified expression<br />

of) the perturbative tail:<br />

( k 1/ 4) ( k<br />

( k 1)<br />

3/ 4)<br />

4!<br />

where c belongs to ]0,1[ <strong>and</strong> c+m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!